/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Chris Wilson * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm.h" #include "ioctl_wrappers.h" #include "drmtest.h" #include "intel_io.h" #include "igt_stats.h" enum { ADD_BO = 0, DEL_BO, ADD_CTX, DEL_CTX, EXEC, WAIT, }; struct trace_add_bo { uint32_t handle; uint64_t size; } __attribute__((packed)); struct trace_del_bo { uint32_t handle; } __attribute__((packed)); struct trace_add_ctx { uint32_t handle; } __attribute__((packed)); struct trace_del_ctx { uint32_t handle; } __attribute__((packed)); struct trace_exec { uint32_t object_count; uint64_t flags; uint32_t context; }__attribute__((packed)); struct trace_exec_object { uint32_t handle; uint32_t relocation_count; uint64_t alignment; uint64_t offset; uint64_t flags; uint64_t rsvd1; uint64_t rsvd2; }__attribute__((packed)); struct trace_wait { uint32_t handle; } __attribute__((packed)); static uint32_t hars_petruska_f54_1_random(void) { static uint32_t state = 0x12345678; #define rol(x,k) ((x << k) | (x >> (32-k))) return state = (state ^ rol (state, 5) ^ rol (state, 24)) + 0x37798849; #undef rol } static double elapsed(const struct timespec *start, const struct timespec *end) { return 1e3*(end->tv_sec - start->tv_sec) + 1e-6*(end->tv_nsec - start->tv_nsec); } static uint32_t __gem_context_create_local(int fd) { struct drm_i915_gem_context_create arg = {}; drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &arg); return arg.ctx_id; } static double replay(const char *filename, long nop, long range) { struct timespec t_start, t_end; struct drm_i915_gem_execbuffer2 eb = {}; const struct trace_version { uint32_t magic; uint32_t version; } *tv; const uint32_t bbe = 0xa << 23; struct drm_i915_gem_exec_object2 *exec_objects = NULL; uint32_t *bo, *ctx; int num_bo, num_ctx; int max_objects = 0; struct stat st; uint8_t *ptr, *end; int fd; fd = open(filename, O_RDONLY); if (fd < 0) return -1; if (fstat(fd, &st) < 0) { close(fd); return -1; } ptr = mmap(0, st.st_size, PROT_WRITE, MAP_PRIVATE, fd, 0); close(fd); if (ptr == MAP_FAILED) return -1; madvise(ptr, st.st_size, MADV_SEQUENTIAL); end = ptr + st.st_size; tv = (struct trace_version *)ptr; if (tv->magic != 0xdeadbeef) { fprintf(stderr, "%s: invalid magic\n", filename); return -1; } if (tv->version != 1) { fprintf(stderr, "%s: unhandled version %d\n", filename, tv->version); return -1; } ptr = (void *)(tv + 1); ctx = calloc(1024, sizeof(*ctx)); num_ctx = 1024; bo = calloc(4096, sizeof(*bo)); num_bo = 4096; fd = drm_open_driver(DRIVER_INTEL); if (nop > 0) { bo[0] = gem_create(fd, nop + range); gem_write(fd, bo[0], nop + range - sizeof(bbe), &bbe, sizeof(bbe)); range *= 2; range -= 64; } else { bo[0] = gem_create(fd, 4096); gem_write(fd, bo[0], 0, &bbe, sizeof(bbe)); } clock_gettime(CLOCK_MONOTONIC, &t_start); do switch (*ptr++) { case ADD_BO: { struct trace_add_bo *t = (void *)ptr; ptr = (void *)(t + 1); if (t->handle >= num_bo) { int new_bo = ALIGN(t->handle, 4096); bo = realloc(bo, sizeof(*bo)*new_bo); memset(bo + num_bo, 0, sizeof(*bo)*(new_bo - num_bo)); num_bo = new_bo; } bo[t->handle] = gem_create(fd, t->size); break; } case DEL_BO: { struct trace_del_bo *t = (void *)ptr; ptr = (void *)(t + 1); assert(t->handle && t->handle < num_bo && bo[t->handle]); gem_close(fd, bo[t->handle]); bo[t->handle] = 0; break; } case ADD_CTX: { struct trace_add_ctx *t = (void *)ptr; ptr = (void *)(t + 1); if (t->handle >= num_ctx) { int new_ctx = ALIGN(t->handle, 1024); ctx = realloc(ctx, sizeof(*ctx)*new_ctx); memset(ctx + num_ctx, 0, sizeof(*ctx)*(new_ctx - num_ctx)); num_ctx = new_ctx; } ctx[t->handle] = __gem_context_create_local(fd); break; } case DEL_CTX: { struct trace_del_ctx *t = (void *)ptr; ptr = (void *)(t + 1); assert(t->handle < num_ctx && ctx[t->handle]); gem_context_destroy(fd, ctx[t->handle]); ctx[t->handle] = 0; break; } case EXEC: { struct trace_exec *t = (void *)ptr; ptr = (void *)(t + 1); eb.buffer_count = t->object_count; eb.flags = t->flags; eb.rsvd1 = ctx[t->context]; if (eb.buffer_count >= max_objects) { free(exec_objects); max_objects = ALIGN(eb.buffer_count + 1, 4096); exec_objects = malloc(max_objects*sizeof(*exec_objects)); eb.buffers_ptr = (uintptr_t)exec_objects; } for (uint32_t i = 0; i < eb.buffer_count; i++) { struct trace_exec_object *to = (void *)ptr; ptr = (void *)(to + 1); exec_objects[i].handle = bo[to->handle]; exec_objects[i].alignment = to->alignment; exec_objects[i].offset = to->offset; exec_objects[i].flags = to->flags; exec_objects[i].rsvd1 = to->rsvd1; exec_objects[i].rsvd2 = to->rsvd2; exec_objects[i].relocation_count = to->relocation_count; exec_objects[i].relocs_ptr = (uintptr_t)ptr; if (!(eb.flags & I915_EXEC_HANDLE_LUT)) { struct drm_i915_gem_relocation_entry *relocs = (struct drm_i915_gem_relocation_entry *)ptr; for (uint32_t j = 0; j < to->relocation_count; j++) relocs[j].target_handle = bo[relocs[j].target_handle]; } ptr += sizeof(struct drm_i915_gem_relocation_entry) * to->relocation_count; } ((struct drm_i915_gem_exec_object2 *) memset(&exec_objects[eb.buffer_count++], 0, sizeof(*exec_objects)))->handle = bo[0]; if (nop > 0) { eb.batch_start_offset = hars_petruska_f54_1_random(); eb.batch_start_offset = ((uint64_t)eb.batch_start_offset * range) >> 32; eb.batch_start_offset = ALIGN(eb.batch_start_offset, 64); } gem_execbuf(fd, &eb); break; } case WAIT: { struct trace_wait *t = (void *)ptr; ptr = (void *)(t + 1); assert(t->handle && t->handle < num_bo && bo[t->handle]); gem_wait(fd, bo[t->handle], NULL); break; } default: fprintf(stderr, "Unknown cmd: %x\n", *ptr); return -1; } while (ptr < end); clock_gettime(CLOCK_MONOTONIC, &t_end); return elapsed(&t_start, &t_end); } static long calibrate_nop(int usecs) { const uint32_t bbe = 0xa << 23; int fd = drm_open_driver(DRIVER_INTEL); struct drm_i915_gem_exec_object2 obj = {}; struct drm_i915_gem_execbuffer2 eb = { .buffer_count = 1, .buffers_ptr = (uintptr_t)&obj}; unsigned long size, last_size; size = 256*1024; do { struct timespec t_start, t_end; obj.handle = gem_create(fd, size); gem_write(fd, obj.handle, size - sizeof(bbe), &bbe, sizeof(bbe)); gem_execbuf(fd, &eb); gem_sync(fd, obj.handle); clock_gettime(CLOCK_MONOTONIC, &t_start); for (int loop = 0; loop < 9; loop++) gem_execbuf(fd, &eb); gem_sync(fd, obj.handle); clock_gettime(CLOCK_MONOTONIC, &t_end); gem_close(fd, obj.handle); last_size = size; size = 9e-3*usecs / elapsed(&t_start, &t_end) * size; size = ALIGN(size, 4096); } while (size != last_size); close(fd); return size; } static int measure_nop(long nop) { const uint32_t bbe = 0xa << 23; int fd = drm_open_driver(DRIVER_INTEL); struct drm_i915_gem_exec_object2 obj = {}; struct drm_i915_gem_execbuffer2 eb = { .buffer_count = 1, .buffers_ptr = (uintptr_t)&obj}; struct timespec t_start, t_end; obj.handle = gem_create(fd, nop); gem_write(fd, obj.handle, nop - sizeof(bbe), &bbe, sizeof(bbe)); gem_execbuf(fd, &eb); gem_sync(fd, obj.handle); clock_gettime(CLOCK_MONOTONIC, &t_start); for (int loop = 0; loop < 9; loop++) gem_execbuf(fd, &eb); gem_sync(fd, obj.handle); clock_gettime(CLOCK_MONOTONIC, &t_end); gem_close(fd, obj.handle); close(fd); return 1e3*elapsed(&t_start, &t_end) / 9; } int main(int argc, char **argv) { int delay = 1000; double *results; long nop = 0; long range = 0; int i, c; results = mmap(NULL, ALIGN(argc*sizeof(double), 4096), PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); while ((c = getopt(argc, argv, "d:n:r:")) != -1) { switch (c) { case 'd': delay = atoi(optarg); break; case 'n': nop = strtol(optarg, NULL, 0); if (nop > 0) nop = ALIGN(nop, 4096); break; case 'r': range = strtol(optarg, NULL, 0); if (range > 0) range = ALIGN(range, 4096); break; default: break; } } if (!nop) nop = calibrate_nop(delay); if (!range) range = nop / 2; if (nop > 0) { delay = measure_nop(nop); printf("Using %lu nop batch for ~%dus delay, range %lu [%dus]\n", nop, delay, range, (int)(delay * range / nop)); } igt_fork(child, argc-optind) results[child] = replay(argv[child + optind], nop, range); igt_waitchildren(); for (i = 0; i < argc - optind; i++) { double t = results[i]; if (t < 0) printf("%s: failed\n", argv[optind + i]); else printf("%s: %.3f\n", argv[optind + i], t); } return 0; }