/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Chris Wilson * */ #define _GNU_SOURCE #include #include "igt.h" #include #include #include #include #include #include #include #include #include #include #include #include "drm.h" static int done; static int fd; struct consumer { pthread_t thread; int wait; igt_stats_t latency; struct producer *producer; }; struct producer { pthread_t thread; uint32_t ctx; uint32_t nop_handle; struct drm_i915_gem_exec_object2 exec[2]; struct drm_i915_gem_relocation_entry reloc[3]; pthread_mutex_t lock; pthread_cond_t p_cond, c_cond; uint32_t *last_timestamp; int wait; int complete; igt_stats_t latency, throughput; int nop; int workload; int nconsumers; struct consumer *consumers; }; #define LOCAL_EXEC_NO_RELOC (1<<11) #define COPY_BLT_CMD (2<<29|0x53<<22|0x6) #define BLT_WRITE_ALPHA (1<<21) #define BLT_WRITE_RGB (1<<20) #define WIDTH 128 #define HEIGHT 128 #define BCS_TIMESTAMP (0x22000 + 0x358) static void setup_workload(struct producer *p, int gen, uint32_t scratch) { const int has_64bit_reloc = gen >= 8; uint32_t *map; int i = 0; p->exec[0].handle = scratch; p->exec[1].relocation_count = 3; p->exec[1].relocs_ptr = (uintptr_t)p->reloc; p->exec[1].handle = gem_create(fd, 4096); if (gem_has_llc(fd)) map = gem_mmap__cpu(fd, p->exec[1].handle, 0, 4096, PROT_WRITE); else map = gem_mmap__gtt(fd, p->exec[1].handle, 4096, PROT_WRITE); /* XY_SRC_COPY */ map[i++] = COPY_BLT_CMD | BLT_WRITE_ALPHA | BLT_WRITE_RGB; if (has_64bit_reloc) map[i-1] += 2; map[i++] = 0xcc << 16 | 1 << 25 | 1 << 24 | (4*WIDTH); map[i++] = 0; map[i++] = HEIGHT << 16 | WIDTH; p->reloc[0].offset = i * sizeof(uint32_t); p->reloc[0].delta = 0; p->reloc[0].target_handle = scratch; p->reloc[0].read_domains = I915_GEM_DOMAIN_RENDER; p->reloc[0].write_domain = I915_GEM_DOMAIN_RENDER; p->reloc[0].presumed_offset = 0; map[i++] = 0; if (has_64bit_reloc) map[i++] = 0; map[i++] = 0; map[i++] = 4096; p->reloc[1].offset = i * sizeof(uint32_t); p->reloc[1].delta = 0; p->reloc[1].target_handle = scratch; p->reloc[1].read_domains = I915_GEM_DOMAIN_RENDER; p->reloc[1].write_domain = 0; p->reloc[1].presumed_offset = 0; map[i++] = 0; if (has_64bit_reloc) map[i++] = 0; /* MI_FLUSH_DW */ map[i++] = 0x26 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = 0; map[i++] = 0; if (has_64bit_reloc) map[i++] = 0; /* MI_STORE_REG_MEM */ map[i++] = 0x24 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = BCS_TIMESTAMP; p->reloc[2].offset = i * sizeof(uint32_t); p->reloc[2].delta = 4000; p->reloc[2].target_handle = p->exec[1].handle; p->reloc[2].read_domains = I915_GEM_DOMAIN_INSTRUCTION; p->reloc[2].write_domain = 0; /* We lie! */ p->reloc[2].presumed_offset = 0; p->last_timestamp = &map[1000]; map[i++] = 4000; if (has_64bit_reloc) map[i++] = 0; map[i++] = MI_BATCH_BUFFER_END; } static uint32_t setup_nop(void) { uint32_t buf = MI_BATCH_BUFFER_END; uint32_t handle; handle = gem_create(fd, 4096); gem_write(fd, handle, 0, &buf, sizeof(buf)); return handle; } #define READ(x) *(volatile uint32_t *)((volatile char *)igt_global_mmio + x) static void measure_latency(struct producer *p, igt_stats_t *stats) { gem_sync(fd, p->exec[1].handle); igt_stats_push(stats, READ(BCS_TIMESTAMP) - *p->last_timestamp); } static void *producer(void *arg) { struct producer *p = arg; struct drm_i915_gem_execbuffer2 nop, workload; struct drm_i915_gem_exec_object2 exec; int n; memset(&exec, 0, sizeof(exec)); exec.handle = p->nop_handle; memset(&nop, 0, sizeof(nop)); nop.buffers_ptr = (uintptr_t)&exec; nop.buffer_count = 1; nop.flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC; nop.rsvd1 = p->ctx; memset(&workload, 0, sizeof(workload)); workload.buffers_ptr = (uintptr_t)p->exec; workload.buffer_count = 2; workload.flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC; workload.rsvd1 = p->ctx; while (!done) { uint32_t start = READ(BCS_TIMESTAMP); int batches; /* Submitting a set of empty batches has a two fold effect: * - increases contention on execbuffer, i.e. measure dispatch * latency with number of clients. * - generates lots of spurious interrupts (if someone is * waiting). */ batches = p->nop; while (batches--) gem_execbuf(fd, &nop); /* Control the amount of work we do, similar to submitting * empty buffers above, except this time we will load the * GPU with a small amount of real work - so there is a small * period between execution and interrupts. */ batches = p->workload; while (batches--) gem_execbuf(fd, &workload); /* Wake all the associated clients to wait upon our batch */ pthread_mutex_lock(&p->lock); p->wait = p->nconsumers; for (n = 0; n < p->nconsumers; n++) p->consumers[n].wait = 1; pthread_cond_broadcast(&p->c_cond); pthread_mutex_unlock(&p->lock); /* Wait for this batch to finish and record how long we waited, * and how long it took for the batch to be submitted * (including the nop delays). */ measure_latency(p, &p->latency); igt_stats_push(&p->throughput, *p->last_timestamp - start); /* Tidy up all the extra threads before we submit again. */ pthread_mutex_lock(&p->lock); while (p->wait) pthread_cond_wait(&p->p_cond, &p->lock); pthread_mutex_unlock(&p->lock); p->complete++; } return NULL; } static void *consumer(void *arg) { struct consumer *c = arg; struct producer *p = c->producer; /* Sit around waiting for the "go" signal from the producer, then * wait upon the batch to finish. This is to add extra waiters to * the same request - increasing wakeup contention. */ while (!done) { pthread_mutex_lock(&p->lock); if (--p->wait == 0) pthread_cond_signal(&p->p_cond); while (!c->wait) pthread_cond_wait(&p->c_cond, &p->lock); c->wait = 0; pthread_mutex_unlock(&p->lock); measure_latency(p, &c->latency); } return NULL; } static double l_estimate(igt_stats_t *stats) { if (stats->n_values > 9) return igt_stats_get_trimean(stats); else if (stats->n_values > 5) return igt_stats_get_median(stats); else return igt_stats_get_mean(stats); } #define CONTEXT 1 static int run(int nproducers, int nconsumers, int nop, int workload, unsigned flags) { struct producer *p; igt_stats_t latency, throughput; uint32_t scratch, batch; int gen, n, m; int complete; int nrun; #if 0 printf("producers=%d, consumers=%d, nop=%d, workload=%d, flags=%x\n", nproducers, nconsumers, nop, workload, flags); #endif fd = drm_open_driver(DRIVER_INTEL); gen = intel_gen(intel_get_drm_devid(fd)); if (gen < 6) return 77; /* Needs BCS timestamp */ intel_register_access_init(intel_get_pci_device(), false); batch = setup_nop(); scratch = gem_create(fd, 4*WIDTH*HEIGHT); p = calloc(nproducers, sizeof(*p)); for (n = 0; n < nproducers; n++) { p[n].nop_handle = batch; setup_workload(&p[n], gen, scratch); if (flags & CONTEXT) p[n].ctx = gem_context_create(fd); pthread_mutex_init(&p[n].lock, NULL); pthread_cond_init(&p[n].p_cond, NULL); pthread_cond_init(&p[n].c_cond, NULL); igt_stats_init(&p[n].latency); igt_stats_init(&p[n].throughput); p[n].wait = nconsumers; p[n].nop = nop; p[n].workload = workload; p[n].nconsumers = nconsumers; p[n].consumers = calloc(nconsumers, sizeof(struct consumer)); for (m = 0; m < nconsumers; m++) { p[n].consumers[m].producer = &p[n]; igt_stats_init(&p[n].consumers[m].latency); pthread_create(&p[n].consumers[m].thread, NULL, consumer, &p[n].consumers[m]); } } for (n = 0; n < nproducers; n++) pthread_create(&p[n].thread, NULL, producer, &p[n]); sleep(10); done = true; nrun = complete = 0; igt_stats_init_with_size(&throughput, nproducers); igt_stats_init_with_size(&latency, nconsumers*nproducers); for (n = 0; n < nproducers; n++) { pthread_cancel(p[n].thread); pthread_join(p[n].thread, NULL); if (!p[n].complete) continue; nrun++; complete += p[n].complete; igt_stats_push_float(&latency, l_estimate(&p[n].latency)); igt_stats_push_float(&throughput, l_estimate(&p[n].throughput)); for (m = 0; m < nconsumers; m++) { pthread_cancel(p[n].consumers[m].thread); pthread_join(p[n].consumers[m].thread, NULL); igt_stats_push_float(&latency, l_estimate(&p[n].consumers[m].latency)); } } printf("%d/%d: %7.3fus %7.3fus\n", complete, nrun, 80/1000.*l_estimate(&throughput), 80/1000.*l_estimate(&latency)); return 0; } int main(int argc, char **argv) { int producers = 1; int consumers = 0; int nop = 0; int workload = 1; unsigned flags = 0; int c; while ((c = getopt(argc, argv, "p:c:n:w:s")) != -1) { switch (c) { case 'p': /* How many threads generate work? */ producers = atoi(optarg); if (producers < 1) producers = 1; break; case 'c': /* How many threads wait upon each piece of work? */ consumers = atoi(optarg); if (consumers < 0) consumers = 0; break; case 'n': /* Extra dispatch contention + interrupts */ nop = atoi(optarg); if (nop < 0) nop = 0; break; case 'w': /* Control the amount of real work done */ workload = atoi(optarg); if (workload < 1) workload = 1; break; case 's': /* Assign each producer to its own context, adding * context switching into the mix (e.g. execlists * can amalgamate requests from one context, so * having each producer submit in different contexts * should force more execlist interrupts). */ flags |= CONTEXT; break; default: break; } } return run(producers, consumers, nop, workload, flags); }