/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Chris Wilson * */ #include #include "igt.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm.h" #define LOCAL_I915_EXEC_FENCE_IN (1<<16) #define LOCAL_I915_EXEC_FENCE_OUT (1<<17) #define CONTEXT 0x1 #define REALTIME 0x2 #define CMDPARSER 0x4 #define FENCE_OUT 0x8 static int done; static int fd; static volatile uint32_t *timestamp_reg; #define REG(x) (volatile uint32_t *)((volatile char *)igt_global_mmio + x) #define REG_OFFSET(x) ((volatile char *)(x) - (volatile char *)igt_global_mmio) #if defined(__USE_XOPEN2K) && defined(gen7_safe_mmio) static pthread_spinlock_t timestamp_lock; static uint32_t read_timestamp_locked(void) { uint32_t t; pthread_spin_lock(×tamp_lock); t = *timestamp_reg; pthread_spin_unlock(×tamp_lock); return t; } static int setup_timestamp_locked(void) { if (pthread_spin_init(×tamp_lock, 0)) return 0; read_timestamp = read_timestamp_locked; return 1; } static uint32_t read_timestamp_unlocked(void) { return *timestamp_reg; } static uint32_t (*read_timestamp)(void) = read_timestamp_unlocked; #else static int setup_timestamp_locked(void) { return 1; } inline static uint32_t read_timestamp(void) { return *timestamp_reg; } #endif struct consumer { pthread_t thread; int go; struct igt_mean latency; struct producer *producer; }; struct producer { pthread_t thread; uint32_t ctx; struct { struct drm_i915_gem_exec_object2 exec[1]; struct drm_i915_gem_execbuffer2 execbuf; } nop_dispatch; struct { struct drm_i915_gem_exec_object2 exec[2]; struct drm_i915_gem_execbuffer2 execbuf; } workload_dispatch; struct { struct drm_i915_gem_exec_object2 exec[1]; struct drm_i915_gem_relocation_entry reloc[1]; struct drm_i915_gem_execbuffer2 execbuf; } latency_dispatch; pthread_mutex_t lock; pthread_cond_t p_cond, c_cond; uint32_t *last_timestamp; int wait; int complete; int done; struct igt_mean latency, dispatch; int nop; int nconsumers; struct consumer *consumers; }; #define LOCAL_EXEC_NO_RELOC (1<<11) #define COPY_BLT_CMD (2<<29|0x53<<22|0x6) #define BLT_WRITE_ALPHA (1<<21) #define BLT_WRITE_RGB (1<<20) #define WIDTH 1024 #define HEIGHT 1024 #define RCS_TIMESTAMP (0x2000 + 0x358) #define BCS_TIMESTAMP (0x22000 + 0x358) #define CYCLES_TO_NS(x) (80.*(x)) #define CYCLES_TO_US(x) (CYCLES_TO_NS(x)/1000.) static uint32_t create_workload(int gen, int factor) { const int has_64bit_reloc = gen >= 8; uint32_t handle = gem_create(fd, 4096); uint32_t *map = gem_mmap__cpu(fd, handle, 0, 4096, PROT_WRITE); int i = 0; while (factor--) { /* XY_SRC_COPY */ map[i++] = COPY_BLT_CMD | BLT_WRITE_ALPHA | BLT_WRITE_RGB; if (has_64bit_reloc) map[i-1] += 2; map[i++] = 0xcc << 16 | 1 << 25 | 1 << 24 | (4*WIDTH); map[i++] = 0; map[i++] = HEIGHT << 16 | WIDTH; map[i++] = 0; if (has_64bit_reloc) map[i++] = 0; map[i++] = 0; map[i++] = 4096; map[i++] = 0; if (has_64bit_reloc) map[i++] = 0; } map[i++] = MI_BATCH_BUFFER_END; munmap(map, 4096); return handle; } static void setup_workload(struct producer *p, int gen, uint32_t scratch, uint32_t batch, int factor, unsigned flags) { struct drm_i915_gem_execbuffer2 *eb; const int has_64bit_reloc = gen >= 8; struct drm_i915_gem_relocation_entry *reloc; int offset; reloc = calloc(sizeof(*reloc), 2*factor); p->workload_dispatch.exec[0].handle = scratch; p->workload_dispatch.exec[1].relocation_count = 2*factor; p->workload_dispatch.exec[1].relocs_ptr = (uintptr_t)reloc; p->workload_dispatch.exec[1].handle = batch; offset = 0; while (factor--) { reloc->offset = (offset+4) * sizeof(uint32_t); reloc->target_handle = scratch; reloc->read_domains = I915_GEM_DOMAIN_RENDER; reloc->write_domain = I915_GEM_DOMAIN_RENDER; reloc++; reloc->offset = (offset+7) * sizeof(uint32_t); if (has_64bit_reloc) reloc->offset += sizeof(uint32_t); reloc->target_handle = scratch; reloc->read_domains = I915_GEM_DOMAIN_RENDER; reloc++; offset += 8; if (has_64bit_reloc) offset += 2; } eb = memset(&p->workload_dispatch.execbuf, 0, sizeof(*eb)); eb->buffers_ptr = (uintptr_t)p->workload_dispatch.exec; eb->buffer_count = 2; if (flags & CMDPARSER) eb->batch_len = 4096; eb->flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC; eb->rsvd1 = p->ctx; } static void setup_latency(struct producer *p, int gen, unsigned flags) { struct drm_i915_gem_execbuffer2 *eb; const int has_64bit_reloc = gen >= 8; uint32_t handle; uint32_t *map; int i = 0; handle = gem_create(fd, 4096); if (gem_has_llc(fd)) map = gem_mmap__cpu(fd, handle, 0, 4096, PROT_WRITE); else map = gem_mmap__gtt(fd, handle, 4096, PROT_WRITE); p->latency_dispatch.exec[0].relocation_count = 1; p->latency_dispatch.exec[0].relocs_ptr = (uintptr_t)p->latency_dispatch.reloc; p->latency_dispatch.exec[0].handle = handle; /* MI_STORE_REG_MEM */ map[i++] = 0x24 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = REG_OFFSET(timestamp_reg); p->latency_dispatch.reloc[0].offset = i * sizeof(uint32_t); p->latency_dispatch.reloc[0].delta = 4000; p->latency_dispatch.reloc[0].target_handle = handle; p->latency_dispatch.reloc[0].read_domains = I915_GEM_DOMAIN_INSTRUCTION; p->latency_dispatch.reloc[0].write_domain = 0; /* We lie! */ p->latency_dispatch.reloc[0].presumed_offset = 0; p->last_timestamp = &map[1000]; map[i++] = 4000; if (has_64bit_reloc) map[i++] = 0; map[i++] = MI_BATCH_BUFFER_END; eb = memset(&p->latency_dispatch.execbuf, 0, sizeof(*eb)); eb->buffers_ptr = (uintptr_t)p->latency_dispatch.exec; eb->buffer_count = 1; if (flags & CMDPARSER) eb->batch_len = sizeof(*map) * ((i + 1) & ~1); eb->flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC; if (flags & FENCE_OUT) eb->flags |= LOCAL_I915_EXEC_FENCE_OUT; eb->rsvd1 = p->ctx; } static uint32_t create_nop(void) { uint32_t buf = MI_BATCH_BUFFER_END; uint32_t handle; handle = gem_create(fd, 4096); gem_write(fd, handle, 0, &buf, sizeof(buf)); return handle; } static void setup_nop(struct producer *p, uint32_t batch, unsigned flags) { struct drm_i915_gem_execbuffer2 *eb; p->nop_dispatch.exec[0].handle = batch; eb = memset(&p->nop_dispatch.execbuf, 0, sizeof(*eb)); eb->buffers_ptr = (uintptr_t)p->nop_dispatch.exec; eb->buffer_count = 1; if (flags & CMDPARSER) eb->batch_len = 8; eb->flags = I915_EXEC_BLT | LOCAL_EXEC_NO_RELOC; eb->rsvd1 = p->ctx; } static void fence_wait(int fence) { struct pollfd pfd = { .fd = fence, .events = POLLIN }; poll(&pfd, 1, -1); } static void measure_latency(struct producer *p, struct igt_mean *mean) { if (!(p->latency_dispatch.execbuf.flags & LOCAL_I915_EXEC_FENCE_OUT)) gem_sync(fd, p->latency_dispatch.exec[0].handle); else fence_wait(p->latency_dispatch.execbuf.rsvd2 >> 32); igt_mean_add(mean, read_timestamp() - *p->last_timestamp); } static void *producer(void *arg) { struct producer *p = arg; int n; while (!done) { uint32_t start = read_timestamp(); int batches; /* Control the amount of work we do, similar to submitting * empty buffers below, except this time we will load the * GPU with a small amount of real work - so there is a small * period between execution and interrupts. */ gem_execbuf(fd, &p->workload_dispatch.execbuf); /* Submitting a set of empty batches has a two fold effect: * - increases contention on execbuffer, i.e. measure dispatch * latency with number of clients. * - generates lots of spurious interrupts (if someone is * waiting). */ batches = p->nop; while (batches--) gem_execbuf(fd, &p->nop_dispatch.execbuf); /* Finally, execute a batch that just reads the current * TIMESTAMP so we can measure the latency. */ if (p->latency_dispatch.execbuf.flags & LOCAL_I915_EXEC_FENCE_OUT) gem_execbuf_wr(fd, &p->latency_dispatch.execbuf); else gem_execbuf(fd, &p->latency_dispatch.execbuf); /* Wake all the associated clients to wait upon our batch */ p->wait = p->nconsumers; for (n = 0; n < p->nconsumers; n++) p->consumers[n].go = 1; pthread_cond_broadcast(&p->c_cond); /* Wait for this batch to finish and record how long we waited, * and how long it took for the batch to be submitted * (including the nop delays). */ measure_latency(p, &p->latency); igt_mean_add(&p->dispatch, *p->last_timestamp - start); /* Tidy up all the extra threads before we submit again. */ pthread_mutex_lock(&p->lock); while (p->wait) pthread_cond_wait(&p->p_cond, &p->lock); pthread_mutex_unlock(&p->lock); p->complete++; if (p->latency_dispatch.execbuf.flags & LOCAL_I915_EXEC_FENCE_OUT) close(p->latency_dispatch.execbuf.rsvd2 >> 32); } pthread_mutex_lock(&p->lock); p->wait = p->nconsumers; p->done = true; for (n = 0; n < p->nconsumers; n++) p->consumers[n].go = 1; pthread_cond_broadcast(&p->c_cond); pthread_mutex_unlock(&p->lock); return NULL; } static void *consumer(void *arg) { struct consumer *c = arg; struct producer *p = c->producer; /* Sit around waiting for the "go" signal from the producer, then * wait upon the batch to finish. This is to add extra waiters to * the same request - increasing wakeup contention. */ do { pthread_mutex_lock(&p->lock); if (--p->wait == 0) pthread_cond_signal(&p->p_cond); while (!c->go) pthread_cond_wait(&p->c_cond, &p->lock); c->go = 0; pthread_mutex_unlock(&p->lock); if (p->done) return NULL; measure_latency(p, &c->latency); } while (1); } static double l_estimate(igt_stats_t *stats) { if (stats->n_values > 9) return igt_stats_get_trimean(stats); else if (stats->n_values > 5) return igt_stats_get_median(stats); else return igt_stats_get_mean(stats); } static double cpu_time(const struct rusage *r) { return 10e6*(r->ru_utime.tv_sec + r->ru_stime.tv_sec) + (r->ru_utime.tv_usec + r->ru_stime.tv_usec); } static int run(int seconds, int nproducers, int nconsumers, int nop, int workload, unsigned flags) { pthread_attr_t attr; struct producer *p; igt_stats_t platency, latency, dispatch; struct rusage rused; uint32_t nop_batch; uint32_t workload_batch; uint32_t scratch; int gen, n, m; int complete; int nrun; #if 0 printf("producers=%d, consumers=%d, nop=%d, workload=%d, flags=%x\n", nproducers, nconsumers, nop, workload, flags); #endif fd = drm_open_driver(DRIVER_INTEL); gen = intel_gen(intel_get_drm_devid(fd)); if (gen < 6) return IGT_EXIT_SKIP; /* Needs BCS timestamp */ intel_register_access_init(intel_get_pci_device(), false, fd); if (gen == 6) timestamp_reg = REG(RCS_TIMESTAMP); else timestamp_reg = REG(BCS_TIMESTAMP); if (gen < 8 && !setup_timestamp_locked()) return IGT_EXIT_SKIP; nrun = read_timestamp(); usleep(1); if (read_timestamp() == nrun) return IGT_EXIT_SKIP; scratch = gem_create(fd, 4*WIDTH*HEIGHT); nop_batch = create_nop(); workload_batch = create_workload(gen, workload); p = calloc(nproducers, sizeof(*p)); for (n = 0; n < nproducers; n++) { if (flags & CONTEXT) p[n].ctx = gem_context_create(fd); setup_nop(&p[n], nop_batch, flags); setup_workload(&p[n], gen, scratch, workload_batch, workload, flags); setup_latency(&p[n], gen, flags); pthread_mutex_init(&p[n].lock, NULL); pthread_cond_init(&p[n].p_cond, NULL); pthread_cond_init(&p[n].c_cond, NULL); igt_mean_init(&p[n].latency); igt_mean_init(&p[n].dispatch); p[n].wait = nconsumers; p[n].nop = nop; p[n].nconsumers = nconsumers; p[n].consumers = calloc(nconsumers, sizeof(struct consumer)); for (m = 0; m < nconsumers; m++) { p[n].consumers[m].producer = &p[n]; igt_mean_init(&p[n].consumers[m].latency); pthread_create(&p[n].consumers[m].thread, NULL, consumer, &p[n].consumers[m]); } pthread_mutex_lock(&p[n].lock); while (p[n].wait) pthread_cond_wait(&p[n].p_cond, &p[n].lock); pthread_mutex_unlock(&p[n].lock); } pthread_attr_init(&attr); if (flags & REALTIME) { #ifdef PTHREAD_EXPLICIT_SCHED struct sched_param param = { .sched_priority = 99 }; pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED); pthread_attr_setschedpolicy(&attr, SCHED_FIFO); pthread_attr_setschedparam(&attr, ¶m); #else return IGT_EXIT_SKIP; #endif } for (n = 0; n < nproducers; n++) pthread_create(&p[n].thread, &attr, producer, &p[n]); sleep(seconds); done = true; nrun = complete = 0; igt_stats_init_with_size(&dispatch, nproducers); igt_stats_init_with_size(&platency, nproducers); igt_stats_init_with_size(&latency, nconsumers*nproducers); for (n = 0; n < nproducers; n++) { pthread_join(p[n].thread, NULL); if (!p[n].complete) continue; nrun++; complete += p[n].complete; igt_stats_push_float(&latency, p[n].latency.mean); igt_stats_push_float(&platency, p[n].latency.mean); igt_stats_push_float(&dispatch, p[n].dispatch.mean); for (m = 0; m < nconsumers; m++) { pthread_join(p[n].consumers[m].thread, NULL); igt_stats_push_float(&latency, p[n].consumers[m].latency.mean); } } getrusage(RUSAGE_SELF, &rused); switch ((flags >> 8) & 0xf) { default: printf("%d/%d: %7.3fus %7.3fus %7.3fus %7.3fus\n", complete, nrun, CYCLES_TO_US(l_estimate(&dispatch)), CYCLES_TO_US(l_estimate(&latency)), CYCLES_TO_US(l_estimate(&platency)), cpu_time(&rused) / complete); break; case 1: printf("%f\n", CYCLES_TO_US(l_estimate(&dispatch))); break; case 2: printf("%f\n", CYCLES_TO_US(l_estimate(&latency))); break; case 3: printf("%f\n", CYCLES_TO_US(l_estimate(&platency))); break; case 4: printf("%f\n", cpu_time(&rused) / complete); break; case 5: printf("%d\n", complete); break; } return 0; } int main(int argc, char **argv) { int time = 10; int producers = 1; int consumers = 0; int nop = 0; int workload = 0; unsigned flags = 0; int c; while ((c = getopt(argc, argv, "Cp:c:n:w:t:f:sRF")) != -1) { switch (c) { case 'p': /* How many threads generate work? */ producers = atoi(optarg); if (producers < 1) producers = 1; break; case 'c': /* How many threads wait upon each piece of work? */ consumers = atoi(optarg); if (consumers < 0) consumers = 0; break; case 'n': /* Extra dispatch contention + interrupts */ nop = atoi(optarg); if (nop < 0) nop = 0; break; case 'w': /* Control the amount of real work done */ workload = atoi(optarg); if (workload < 0) workload = 0; if (workload > 100) workload = 100; break; case 't': /* How long to run the benchmark for (seconds) */ time = atoi(optarg); if (time < 0) time = INT_MAX; break; case 'f': /* Select an output field */ flags |= atoi(optarg) << 8; break; case 's': /* Assign each producer to its own context, adding * context switching into the mix (e.g. execlists * can amalgamate requests from one context, so * having each producer submit in different contexts * should force more execlist interrupts). */ flags |= CONTEXT; break; case 'R': /* Run the producers at RealTime priority */ flags |= REALTIME; break; case 'C': /* Don't hide from the command parser (gen7) */ flags |= CMDPARSER; break; case 'F': flags |= FENCE_OUT; break; default: break; } } return run(time, producers, consumers, nop, workload, flags); }