/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * * Author: * Armin Reese */ /* * This program is intended for testing sprite functionality. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i915_drm.h" #include "drmtest.h" #include "igt_kms.h" #include "ioctl_wrappers.h" /* * Mode setting with the kernel interfaces is a bit of a chore. * First you have to find the connector in question and make sure the * requested mode is available. * Then you need to find the encoder attached to that connector so you * can bind it with a free crtc. */ struct connector { uint32_t id; int mode_valid; drmModeModeInfo mode; drmModeEncoder *encoder; drmModeConnector *connector; int crtc; int pipe; }; static void dump_mode(drmModeModeInfo *mode) { printf(" %s %d %d %d %d %d %d %d %d %d 0x%x 0x%x %d\n", mode->name, mode->vrefresh, mode->hdisplay, mode->hsync_start, mode->hsync_end, mode->htotal, mode->vdisplay, mode->vsync_start, mode->vsync_end, mode->vtotal, mode->flags, mode->type, mode->clock); } static void dump_connectors(int gfx_fd, drmModeRes *resources) { int i, j; printf("Connectors:\n"); printf("id\tencoder\tstatus\t\ttype\tsize (mm)\tmodes\n"); for (i = 0; i < resources->count_connectors; i++) { drmModeConnector *connector; connector = drmModeGetConnector(gfx_fd, resources->connectors[i]); if (!connector) { printf("could not get connector %i: %s\n", resources->connectors[i], strerror(errno)); continue; } printf("%d\t%d\t%s\t%s\t%dx%d\t\t%d\n", connector->connector_id, connector->encoder_id, kmstest_connector_status_str(connector->connection), kmstest_connector_type_str(connector->connector_type), connector->mmWidth, connector->mmHeight, connector->count_modes); if (!connector->count_modes) continue; printf(" modes:\n"); printf(" name refresh (Hz) hdisp hss hse htot vdisp vss vse vtot flags type clock\n"); for (j = 0; j < connector->count_modes; j++) dump_mode(&connector->modes[j]); drmModeFreeConnector(connector); } printf("\n"); } static void dump_crtcs(int gfx_fd, drmModeRes *resources) { int i; printf("CRTCs:\n"); printf("id\tfb\tpos\tsize\n"); for (i = 0; i < resources->count_crtcs; i++) { drmModeCrtc *crtc; crtc = drmModeGetCrtc(gfx_fd, resources->crtcs[i]); if (!crtc) { printf("could not get crtc %i: %s\n", resources->crtcs[i], strerror(errno)); continue; } printf("%d\t%d\t(%d,%d)\t(%dx%d)\n", crtc->crtc_id, crtc->buffer_id, crtc->x, crtc->y, crtc->width, crtc->height); dump_mode(&crtc->mode); drmModeFreeCrtc(crtc); } printf("\n"); } static void dump_planes(int gfx_fd, drmModeRes *resources) { drmModePlaneRes *plane_resources; drmModePlane *ovr; int i; plane_resources = drmModeGetPlaneResources(gfx_fd); if (!plane_resources) { printf("drmModeGetPlaneResources failed: %s\n", strerror(errno)); return; } printf("Planes:\n"); printf("id\tcrtc\tfb\tCRTC x,y\tx,y\tgamma size\n"); for (i = 0; i < plane_resources->count_planes; i++) { ovr = drmModeGetPlane(gfx_fd, plane_resources->planes[i]); if (!ovr) { printf("drmModeGetPlane failed: %s\n", strerror(errno)); continue; } printf("%d\t%d\t%d\t%d,%d\t\t%d,%d\t%d\n", ovr->plane_id, ovr->crtc_id, ovr->fb_id, ovr->crtc_x, ovr->crtc_y, ovr->x, ovr->y, ovr->gamma_size); drmModeFreePlane(ovr); } printf("\n"); return; } static void connector_find_preferred_mode(int gfx_fd, drmModeRes *gfx_resources, struct connector *c) { drmModeConnector *connector; drmModeEncoder *encoder = NULL; int i, j; /* First, find the connector & mode */ c->mode_valid = 0; connector = drmModeGetConnector(gfx_fd, c->id); if (!connector) { printf("could not get connector %d: %s\n", c->id, strerror(errno)); drmModeFreeConnector(connector); return; } if (connector->connection != DRM_MODE_CONNECTED) { drmModeFreeConnector(connector); return; } if (!connector->count_modes) { printf("connector %d has no modes\n", c->id); drmModeFreeConnector(connector); return; } if (connector->connector_id != c->id) { printf("connector id doesn't match (%d != %d)\n", connector->connector_id, c->id); drmModeFreeConnector(connector); return; } for (j = 0; j < connector->count_modes; j++) { c->mode = connector->modes[j]; if (c->mode.type & DRM_MODE_TYPE_PREFERRED) { c->mode_valid = 1; break; } } if (!c->mode_valid) { if (connector->count_modes > 0) { /* use the first mode as test mode */ c->mode = connector->modes[0]; c->mode_valid = 1; } else { printf("failed to find any modes on connector %d\n", c->id); return; } } /* Now get the encoder */ for (i = 0; i < connector->count_encoders; i++) { encoder = drmModeGetEncoder(gfx_fd, connector->encoders[i]); if (!encoder) { printf("could not get encoder %i: %s\n", gfx_resources->encoders[i], strerror(errno)); drmModeFreeEncoder(encoder); continue; } break; } c->encoder = encoder; if (i == gfx_resources->count_encoders) { printf("failed to find encoder\n"); c->mode_valid = 0; return; } /* Find first CRTC not in use */ for (i = 0; i < gfx_resources->count_crtcs; i++) { if (gfx_resources->crtcs[i] && (c->encoder->possible_crtcs & (1<crtc = gfx_resources->crtcs[i]; c->pipe = i; gfx_resources->crtcs[i] = 0; c->connector = connector; } static int connector_find_plane(int gfx_fd, struct connector *c, unsigned int **sprite_plane_id) { drmModePlaneRes *plane_resources; drmModePlane *ovr; int i, sprite_plane_count = 0; plane_resources = drmModeGetPlaneResources(gfx_fd); if (!plane_resources) { printf("drmModeGetPlaneResources failed: %s\n", strerror(errno)); return 0; } /* Allocating buffer to hold sprite plane ids of the * current connector. */ *sprite_plane_id = (unsigned int *) malloc(plane_resources->count_planes * sizeof(unsigned int)); for (i = 0; i < plane_resources->count_planes; i++) { ovr = drmModeGetPlane(gfx_fd, plane_resources->planes[i]); if (!ovr) { printf("drmModeGetPlane failed: %s\n", strerror(errno)); continue; } /* Add the available sprite id to the buffer sprite_plane_id. */ if (ovr->possible_crtcs & (1 << c->pipe)) { (*sprite_plane_id)[sprite_plane_count++] = ovr->plane_id; } drmModeFreePlane(ovr); } return sprite_plane_count; } static int prepare_primary_surface(int fd, int prim_width, int prim_height, uint32_t *prim_handle, uint32_t *prim_stride, uint32_t *prim_size, int tiled) { uint32_t bytes_per_pixel = sizeof(uint32_t); uint32_t *prim_fb_ptr; if (bytes_per_pixel != sizeof(uint32_t)) { printf("Bad bytes_per_pixel for primary surface: %d\n", bytes_per_pixel); return -EINVAL; } if (tiled) { int v; /* Round the tiling up to the next power-of-two and the * region up to the next pot fence size so that this works * on all generations. * * This can still fail if the framebuffer is too large to * be tiled. But then that failure is expected. */ v = prim_width * bytes_per_pixel; for (*prim_stride = 512; *prim_stride < v; *prim_stride *= 2) ; v = *prim_stride * prim_height; for (*prim_size = 1024*1024; *prim_size < v; *prim_size *= 2) ; } else { /* Scan-out has a 64 byte alignment restriction */ *prim_stride = (prim_width * bytes_per_pixel + 63) & ~63; *prim_size = *prim_stride * prim_height; } *prim_handle = gem_create(fd, *prim_size); if (tiled) gem_set_tiling(fd, *prim_handle, I915_TILING_X, *prim_stride); prim_fb_ptr = __gem_mmap__gtt(fd, *prim_handle, *prim_size, PROT_READ | PROT_WRITE); if (prim_fb_ptr != NULL) { // Write primary surface with gray background memset(prim_fb_ptr, 0x3f, *prim_size); munmap(prim_fb_ptr, *prim_size); } return 0; } static void fill_sprite(int sprite_width, int sprite_height, int sprite_stride, int sprite_index, void *sprite_fb_ptr) { __u32 *pLinePat0, *pLinePat1, *pLinePtr; int i, line; int stripe_width; stripe_width = ((sprite_width > 64) && (sprite_height > 64)) ? (sprite_index + 1) * 8 : (sprite_index + 1) * 2; // Note: sprite_stride is in bytes. pLinePat0 and pLinePat1 // are both __u32 pointers pLinePat0 = sprite_fb_ptr; pLinePat1 = pLinePat0 + (stripe_width * (sprite_stride / sizeof(*pLinePat0))); for (i = 0; i < sprite_width; i++) { *(pLinePat0 + i) = ((i / stripe_width) & 0x1) ? 0 : ~0; *(pLinePat1 + i) = ~(*(pLinePat0 + i)); } for (line = 1; line < sprite_height; line++) { if (line == stripe_width) { continue; } pLinePtr = ((line / stripe_width) & 0x1) ? pLinePat1 : pLinePat0; memcpy( pLinePat0 + ((sprite_stride / sizeof(*pLinePat0)) * line), pLinePtr, sprite_width * sizeof(*pLinePat0)); } return; } static int prepare_sprite_surfaces(int fd, int sprite_width, int sprite_height, uint32_t num_surfaces, uint32_t *sprite_handles, uint32_t *sprite_stride, uint32_t *sprite_size, int tiled) { uint32_t bytes_per_pixel = sizeof(uint32_t); uint32_t *sprite_fb_ptr; int i; if (bytes_per_pixel != sizeof(uint32_t)) { printf("Bad bytes_per_pixel for sprite: %d\n", bytes_per_pixel); return -EINVAL; } if (tiled) { int v; /* Round the tiling up to the next power-of-two and the * region up to the next pot fence size so that this works * on all generations. * * This can still fail if the framebuffer is too large to * be tiled. But then that failure is expected. */ v = sprite_width * bytes_per_pixel; for (*sprite_stride = 512; *sprite_stride < v; *sprite_stride *= 2) ; v = *sprite_stride * sprite_height; for (*sprite_size = 1024*1024; *sprite_size < v; *sprite_size *= 2) ; } else { /* Scan-out has a 64 byte alignment restriction */ *sprite_stride = (sprite_width * bytes_per_pixel + 63) & ~63; *sprite_size = *sprite_stride * sprite_height; } for (i = 0; i < num_surfaces; i++) { // Create the sprite surface sprite_handles[i] = gem_create(fd, *sprite_size); if (tiled) gem_set_tiling(fd, sprite_handles[i], I915_TILING_X, *sprite_stride); // Get pointer to the surface sprite_fb_ptr = __gem_mmap__gtt(fd, sprite_handles[i], *sprite_size, PROT_READ | PROT_WRITE); if (sprite_fb_ptr != NULL) { // Fill with checkerboard pattern fill_sprite(sprite_width, sprite_height, *sprite_stride, i, sprite_fb_ptr); munmap(sprite_fb_ptr, *sprite_size); } else { i--; while (i >= 0) { gem_close(fd, sprite_handles[i]); i--; } } } return 0; } static void ricochet(int tiled, int sprite_w, int sprite_h, int out_w, int out_h, int dump_info) { int ret; int gfx_fd; int keep_moving; const int num_surfaces = 3; uint32_t sprite_handles[num_surfaces]; uint32_t sprite_fb_id[num_surfaces]; int *sprite_x = NULL; int *sprite_y = NULL; uint32_t sprite_stride; uint32_t sprite_size; uint32_t handles[4], pitches[4], offsets[4]; /* we only use [0] */ uint32_t prim_width, prim_height, prim_handle, prim_stride, prim_size, prim_fb_id; struct drm_intel_sprite_colorkey set; struct connector curr_connector; drmModeRes *gfx_resources; struct termios orig_term, curr_term; int c_index; int sprite_index; unsigned int *sprite_plane_id = NULL; uint32_t plane_flags = 0; int *delta_x = NULL, *delta_y = NULL; struct timeval stTimeVal; long long currTime, prevFlipTime, prevMoveTime, deltaFlipTime, deltaMoveTime, SleepTime; char key; int sprite_plane_count = 0; int i; int found_count = 0; // Open up I915 graphics device gfx_fd = drmOpen("i915", NULL); if (gfx_fd < 0) { printf("Failed to load i915 driver: %s\n", strerror(errno)); return; } // Obtain pointer to struct containing graphics resources gfx_resources = drmModeGetResources(gfx_fd); if (!gfx_resources) { printf("drmModeGetResources failed: %s\n", strerror(errno)); return; } if (dump_info != 0) { dump_connectors(gfx_fd, gfx_resources); dump_crtcs(gfx_fd, gfx_resources); dump_planes(gfx_fd, gfx_resources); } // Save previous terminal settings if (tcgetattr( 0, &orig_term) != 0) { printf("tcgetattr failure: %s\n", strerror(errno)); return; } // Set up input to return characters immediately curr_term = orig_term; curr_term.c_lflag &= ~(ICANON | ECHO | ECHONL); curr_term.c_cc[VMIN] = 0; // No minimum number of characters curr_term.c_cc[VTIME] = 0 ; // Return immediately, even if // nothing has been entered. if (tcsetattr( 0, TCSANOW, &curr_term) != 0) { printf("tcgetattr failure: %s\n", strerror(errno)); return; } // Cycle through all connectors and display the flying sprite // where there are displays attached and the hardware will support it. for (c_index = 0; c_index < gfx_resources->count_connectors; c_index++) { curr_connector.id = gfx_resources->connectors[c_index]; // Find the native (preferred) display mode connector_find_preferred_mode(gfx_fd, gfx_resources, &curr_connector); if (curr_connector.mode_valid == 0) { if (((c_index + 1) == gfx_resources->count_connectors) && (found_count == 0)) printf("Failed to find any valid connections.\n"); continue; } found_count++; // Determine if sprite hardware is available on pipe // associated with this connector. sprite_plane_count = connector_find_plane(gfx_fd, &curr_connector, &sprite_plane_id); if (!sprite_plane_count) { printf("Failed to find sprite plane on crtc\n"); goto out; } // Width and height of preferred mode prim_width = curr_connector.mode.hdisplay; prim_height = curr_connector.mode.vdisplay; // Allocate and fill memory for primary surface ret = prepare_primary_surface( gfx_fd, prim_width, prim_height, &prim_handle, &prim_stride, &prim_size, tiled); if (ret != 0) { printf("Failed to add primary fb (%dx%d): %s\n", prim_width, prim_height, strerror(errno)); goto out; } // Add the primary surface framebuffer ret = drmModeAddFB(gfx_fd, prim_width, prim_height, 24, 32, prim_stride, prim_handle, &prim_fb_id); gem_close(gfx_fd, prim_handle); if (ret != 0) { printf("Failed to add primary fb (%dx%d): %s\n", prim_width, prim_height, strerror(errno)); goto out; } // Allocate and fill sprite surfaces ret = prepare_sprite_surfaces(gfx_fd, sprite_w, sprite_h, num_surfaces, &sprite_handles[0], &sprite_stride, &sprite_size, tiled); if (ret != 0) { printf("Preparation of sprite surfaces failed %dx%d\n", sprite_w, sprite_h); goto out; } // Add the sprite framebuffers for (sprite_index = 0; sprite_index < num_surfaces; sprite_index++) { handles[0] = sprite_handles[sprite_index]; handles[1] = handles[0]; handles[2] = handles[0]; handles[3] = handles[0]; pitches[0] = sprite_stride; pitches[1] = sprite_stride; pitches[2] = sprite_stride; pitches[3] = sprite_stride; memset(offsets, 0, sizeof(offsets)); ret = drmModeAddFB2(gfx_fd, sprite_w, sprite_h, DRM_FORMAT_XRGB8888, handles, pitches, offsets, &sprite_fb_id[sprite_index], plane_flags); gem_close(gfx_fd, sprite_handles[sprite_index]); if (ret) { printf("Failed to add sprite fb (%dx%d): %s\n", sprite_w, sprite_h, strerror(errno)); sprite_index--; while (sprite_index >= 0) { drmModeRmFB(gfx_fd, sprite_fb_id[sprite_index]); sprite_index--; } goto out; } } if (dump_info != 0) { printf("Displayed Mode Connector struct:\n" " .id = %d\n" " .mode_valid = %d\n" " .crtc = %d\n" " .pipe = %d\n" " drmModeModeInfo ...\n" " .name = %s\n" " .type = %d\n" " .flags = %08x\n" " drmModeEncoder ...\n" " .encoder_id = %d\n" " .encoder_type = %d (%s)\n" " .crtc_id = %d\n" " .possible_crtcs = %d\n" " .possible_clones = %d\n" " drmModeConnector ...\n" " .connector_id = %d\n" " .encoder_id = %d\n" " .connector_type = %d (%s)\n" " .connector_type_id = %d\n\n", curr_connector.id, curr_connector.mode_valid, curr_connector.crtc, curr_connector.pipe, curr_connector.mode.name, curr_connector.mode.type, curr_connector.mode.flags, curr_connector.encoder->encoder_id, curr_connector.encoder->encoder_type, kmstest_encoder_type_str(curr_connector.encoder->encoder_type), curr_connector.encoder->crtc_id, curr_connector.encoder->possible_crtcs, curr_connector.encoder->possible_clones, curr_connector.connector->connector_id, curr_connector.connector->encoder_id, curr_connector.connector->connector_type, kmstest_connector_type_str(curr_connector.connector->connector_type), curr_connector.connector->connector_type_id); printf("Sprite surface dimensions = %dx%d\n" "Sprite output dimensions = %dx%d\n" "Press any key to continue >\n", sprite_w, sprite_h, out_w, out_h); // Wait for a key-press while( read(0, &key, 1) == 0); // Purge unread characters tcflush(0, TCIFLUSH); } // Set up the primary display mode ret = drmModeSetCrtc(gfx_fd, curr_connector.crtc, prim_fb_id, 0, 0, &curr_connector.id, 1, &curr_connector.mode); if (ret != 0) { printf("Failed to set mode (%dx%d@%dHz): %s\n", prim_width, prim_height, curr_connector.mode.vrefresh, strerror(errno)); continue; } // Set the sprite colorkey state for(i = 0; i < sprite_plane_count; i++) { set.plane_id = sprite_plane_id[i]; set.min_value = 0; set.max_value = 0; set.flags = I915_SET_COLORKEY_NONE; ret = drmCommandWrite(gfx_fd, DRM_I915_SET_SPRITE_COLORKEY, &set, sizeof(set)); assert(ret == 0); } // Set up sprite output dimensions, initial position, etc. if (out_w > prim_width / 2) out_w = prim_width / 2; if (out_h > prim_height / 2) out_h = prim_height / 2; delta_x = (int *) malloc(sprite_plane_count * sizeof(int)); delta_y = (int *) malloc(sprite_plane_count * sizeof(int)); sprite_x = (int *) malloc(sprite_plane_count * sizeof(int)); sprite_y = (int *) malloc(sprite_plane_count * sizeof(int)); /* Initializing the coordinates (x,y) of the available sprites on the * connector, equally spaced along the diagonal of the rectangle * {(0,0),(prim_width/2, prim_height/2)}. */ for(i = 0; i < sprite_plane_count; i++) { delta_x[i] = 3; delta_y[i] = 4; sprite_x[i] = i * (prim_width / (2 * sprite_plane_count)); sprite_y[i] = i * (prim_height / (2 * sprite_plane_count)); } currTime = 0; prevFlipTime = 0; // Will force immediate sprite flip prevMoveTime = 0; // Will force immediate sprite move deltaFlipTime = 500000; // Flip sprite surface every 1/2 second deltaMoveTime = 100000; // Move sprite every 100 ms sprite_index = num_surfaces - 1; keep_moving = 1; // Bounce sprite off the walls while (keep_moving) { // Obtain system time in usec. if (gettimeofday( &stTimeVal, NULL ) != 0) printf("gettimeofday error: %s\n", strerror(errno)); else currTime = ((long long)stTimeVal.tv_sec * 1000000) + stTimeVal.tv_usec; // Check if it's time to flip the sprite surface if (currTime - prevFlipTime > deltaFlipTime) { sprite_index = (sprite_index + 1) % num_surfaces; prevFlipTime = currTime; } // Move the sprite on the screen and flip // the surface if the index has changed // NB: sprite_w and sprite_h must be 16.16 fixed point, herego << 16 for(i = 0; i < sprite_plane_count; i++) { if (drmModeSetPlane(gfx_fd, sprite_plane_id[i], curr_connector.crtc, sprite_fb_id[sprite_index], plane_flags, sprite_x[i], sprite_y[i], out_w, out_h, 0, 0, sprite_w << 16, sprite_h << 16)) printf("Failed to enable sprite plane: %s\n", strerror(errno)); } // Check if it's time to move the sprite surface if (currTime - prevMoveTime > deltaMoveTime) { // Compute the next position for sprite for(i = 0; i < sprite_plane_count; i++) { sprite_x[i] += delta_x[i]; sprite_y[i] += delta_y[i]; if (sprite_x[i] < 0) { sprite_x[i] = 0; delta_x[i] = -delta_x[i]; } else if (sprite_x[i] > prim_width - out_w) { sprite_x[i] = prim_width - out_w; delta_x[i] = -delta_x[i]; } if (sprite_y[i] < 0) { sprite_y[i] = 0; delta_y[i] = -delta_y[i]; } else if (sprite_y[i] > prim_height - out_h) { sprite_y[i] = prim_height - out_h; delta_y[i] = -delta_y[i]; } } prevMoveTime = currTime; } // Fetch a key from input (non-blocking) if (read(0, &key, 1) == 1) { switch (key) { case 'q': // Kill the program case 'Q': goto out; break; case 's': // Slow down sprite movement; deltaMoveTime = (deltaMoveTime * 100) / 90; if (deltaMoveTime > 800000) { deltaMoveTime = 800000; } break; case 'S': // Speed up sprite movement; deltaMoveTime = (deltaMoveTime * 100) / 110; if (deltaMoveTime < 2000) { deltaMoveTime = 2000; } break; case 'f': // Slow down sprite flipping; deltaFlipTime = (deltaFlipTime * 100) / 90; if (deltaFlipTime > 1000000) deltaFlipTime = 1000000; break; case 'F': // Speed up sprite flipping; deltaFlipTime = (deltaFlipTime * 100) / 110; if (deltaFlipTime < 20000) deltaFlipTime = 20000; break; case 'n': // Next connector case 'N': keep_moving = 0; break; default: break; } // Purge unread characters tcflush(0, TCIFLUSH); } // Wait for min of flip or move deltas SleepTime = (deltaFlipTime < deltaMoveTime) ? deltaFlipTime : deltaMoveTime; usleep(SleepTime); } free(sprite_plane_id); free(sprite_x); free(sprite_y); free(delta_x); free(delta_y); sprite_plane_id = NULL; sprite_plane_count = 0; sprite_x = sprite_y = delta_x = delta_y = NULL; } out: // Purge unread characters tcflush(0, TCIFLUSH); // Restore previous terminal settings if (tcsetattr( 0, TCSANOW, &orig_term) != 0) { printf("tcgetattr failure: %s\n", strerror(errno)); return; } drmModeFreeResources(gfx_resources); } static void usage(char *name) { printf("usage: %s -s x [-dhto]\n" "\t-d\t[optional] dump mode information\n" "\t-h\t[optional] output help message\n" "\t-t\t[optional] enable tiling\n" "\t-o\t[optional] x\n\n" "Keyboard control for sprite movement and flip rate ...\n" "\t'q' or 'Q' - Quit the program\n" "\t'n' or 'N' - Switch to next display\n" "\t's' - Slow sprite movement\n" "\t'S' - Speed up sprite movement\n" "\t'f' - Slow sprite surface flipping\n" "\t'F' - Speed up sprite surface flipping\n", name); } int main(int argc, char **argv) { int c; int test_overlay = 0, enable_tiling = 0, dump_info = 0; int plane_width = 0, plane_height = 0, out_width = 0, out_height = 0; static char optstr[] = "ds:o:th"; opterr = 0; while ((c = getopt(argc, argv, optstr)) != -1) { switch (c) { case 'd': // Dump information dump_info = 1; break; case 't': // Tiling enable enable_tiling = 1; break; case 's': // Surface dimensions if (sscanf(optarg, "%dx%d", &plane_width, &plane_height) != 2) usage(argv[0]); test_overlay = 1; break; case 'o': // Output dimensions if (sscanf(optarg, "%dx%d", &out_width, &out_height) != 2) usage(argv[0]); break; default: printf("unknown option %c\n", c); /* fall through */ case 'h': // Help! usage(argv[0]); goto out; } } if (test_overlay) { if (out_width < (plane_width / 2)) out_width = plane_width; if (out_height < (plane_height / 2)) out_height = plane_height; ricochet(enable_tiling, plane_width, plane_height, out_width, out_height, dump_info); } else { printf("Sprite dimensions are required:\n"); usage(argv[0]); } out: exit(0); }