/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "i915/gem.h" #include "i915/gem_create.h" #include "igt.h" IGT_TEST_DESCRIPTION("Check that we can issue concurrent writes across the engines."); #define SZ_1M (1024 * 1024) static void store_dword(int fd, int id, const intel_ctx_t *ctx, unsigned ring, uint32_t target, uint64_t target_offset, uint32_t offset, uint32_t value) { const unsigned int gen = intel_gen(intel_get_drm_devid(fd)); struct drm_i915_gem_exec_object2 obj[2]; struct drm_i915_gem_relocation_entry reloc; struct drm_i915_gem_execbuffer2 execbuf; uint32_t batch[16]; int i; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(obj); execbuf.buffer_count = 2; execbuf.flags = ring; if (gen < 6) execbuf.flags |= I915_EXEC_SECURE; execbuf.rsvd1 = ctx->id; memset(obj, 0, sizeof(obj)); obj[0].handle = target; obj[0].flags = EXEC_OBJECT_ASYNC; obj[1].handle = gem_create(fd, 4096); if (id) { obj[0].offset = target_offset; obj[0].flags |= EXEC_OBJECT_PINNED | EXEC_OBJECT_WRITE | EXEC_OBJECT_SUPPORTS_48B_ADDRESS; obj[1].offset = (id + 1) * SZ_1M; obj[1].flags |= EXEC_OBJECT_PINNED | EXEC_OBJECT_SUPPORTS_48B_ADDRESS; } memset(&reloc, 0, sizeof(reloc)); reloc.target_handle = obj[0].handle; reloc.presumed_offset = 0; reloc.offset = sizeof(uint32_t); reloc.delta = offset; reloc.read_domains = I915_GEM_DOMAIN_INSTRUCTION; reloc.write_domain = I915_GEM_DOMAIN_INSTRUCTION; obj[1].relocs_ptr = to_user_pointer(&reloc); obj[1].relocation_count = !id ? 1 : 0; i = 0; batch[i] = MI_STORE_DWORD_IMM | (gen < 6 ? 1 << 22 : 0); if (gen >= 8) { batch[++i] = target_offset + offset; batch[++i] = (target_offset + offset) >> 32; } else if (gen >= 4) { batch[++i] = 0; batch[++i] = offset; reloc.offset += sizeof(uint32_t); } else { batch[i]--; batch[++i] = offset; } batch[++i] = value; batch[++i] = MI_BATCH_BUFFER_END; gem_write(fd, obj[1].handle, 0, batch, sizeof(batch)); gem_execbuf(fd, &execbuf); gem_sync(fd, obj[1].handle); gem_close(fd, obj[1].handle); } static void one(int fd, const intel_ctx_t *ctx, unsigned engine, unsigned int flags) #define FORKED (1 << 0) { const struct intel_execution_engine2 *e; uint32_t scratch = gem_create(fd, 4096); igt_spin_t *spin; uint32_t *result; uint64_t ahnd = get_simple_l2h_ahnd(fd, ctx->id); uint64_t scratch_offset = get_offset(ahnd, scratch, 4096, 0); int i; /* * On the target ring, create a looping batch that marks * the scratch for write. Then on the other rings try and * write into that target. If it blocks we hang the GPU... */ spin = igt_spin_new(fd, .ahnd = ahnd, .ctx = ctx, .engine = engine, .dependency = scratch); i = 0; for_each_ctx_engine(fd, ctx, e) { /* * We need to have same scratch_offset within spinner and * store_dword(). That's why simple allocator was chosen. * We can pass ahnd (simple) to store_dword() but it cannot * be used to acquire batch offset, because likely get same * offset for different batches. * * That's why we pass id which allows us calculate distinct * batch offset for each child. */ int id = ahnd ? (i + 1) : 0; if (e->flags == engine) continue; if (!gem_class_can_store_dword(fd, e->class)) continue; if (flags & FORKED) { igt_fork(child, 1) { store_dword(fd, id, ctx, e->flags, scratch, scratch_offset, 4*i, ~i); } } else { store_dword(fd, id, ctx, e->flags, scratch, scratch_offset, 4*i, ~i); } i++; } igt_waitchildren(); result = gem_mmap__device_coherent(fd, scratch, 0, 4096, PROT_READ); while (i--) igt_assert_eq_u32(result[i], ~i); munmap(result, 4096); igt_spin_free(fd, spin); gem_close(fd, scratch); put_ahnd(ahnd); } static bool has_async_execbuf(int fd) { drm_i915_getparam_t gp; int async = -1; gp.param = I915_PARAM_HAS_EXEC_ASYNC; gp.value = &async; drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); return async > 0; } #define test_each_engine(T, i915, ctx, e) \ igt_subtest_with_dynamic(T) for_each_ctx_engine(i915, ctx, e) \ igt_dynamic_f("%s", (e)->name) igt_main { const struct intel_execution_engine2 *e; const intel_ctx_t *ctx; int fd = -1; igt_fixture { fd = drm_open_driver_master(DRIVER_INTEL); igt_require_gem(fd); gem_require_mmap_device_coherent(fd); igt_require(has_async_execbuf(fd)); ctx = intel_ctx_create_all_physical(fd); igt_fork_hang_detector(fd); } test_each_engine("concurrent-writes", fd, ctx, e) one(fd, ctx, e->flags, 0); igt_subtest_group { igt_fixture { intel_allocator_multiprocess_start(); } test_each_engine("forked-writes", fd, ctx, e) one(fd, ctx, e->flags, FORKED); igt_fixture { intel_allocator_multiprocess_stop(); } } igt_fixture { igt_stop_hang_detector(); intel_ctx_destroy(fd, ctx); close(fd); } }