/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm.h" #include "igt.h" #include "igt_device.h" #include "igt_sysfs.h" #include "igt_vgem.h" #include "igt_dummyload.h" #include "igt_stats.h" #include "i915/gem.h" #include "i915/gem_create.h" #define ENGINE_FLAGS (I915_EXEC_RING_MASK | I915_EXEC_BSD_MASK) #define LIVE 0x1 #define CORK 0x2 #define PREEMPT 0x4 static unsigned int ring_size; static double rcs_clock; static struct intel_mmio_data mmio_data; static void poll_ring(int fd, const intel_ctx_t *ctx, const struct intel_execution_engine2 *e) { const struct igt_spin_factory opts = { .ctx = ctx, .engine = e->flags, .flags = IGT_SPIN_POLL_RUN | IGT_SPIN_FAST, }; struct timespec tv = {}; unsigned long cycles; igt_spin_t *spin[2]; uint64_t elapsed; spin[0] = __igt_spin_factory(fd, &opts); igt_assert(igt_spin_has_poll(spin[0])); spin[1] = __igt_spin_factory(fd, &opts); igt_assert(igt_spin_has_poll(spin[1])); igt_spin_end(spin[0]); igt_spin_busywait_until_started(spin[1]); igt_assert(!gem_bo_busy(fd, spin[0]->handle)); cycles = 0; while ((elapsed = igt_nsec_elapsed(&tv)) < 2ull << 30) { const unsigned int idx = cycles++ & 1; igt_spin_reset(spin[idx]); gem_execbuf(fd, &spin[idx]->execbuf); igt_spin_end(spin[!idx]); igt_spin_busywait_until_started(spin[idx]); } igt_info("%s completed %ld cycles: %.3f us\n", e->name, cycles, elapsed*1e-3/cycles); igt_spin_free(fd, spin[1]); igt_spin_free(fd, spin[0]); } #define TIMESTAMP (0x358) static void latency_on_ring(int fd, const intel_ctx_t *ctx, const struct intel_execution_engine2 *e, unsigned flags) { const unsigned int gen = intel_gen(intel_get_drm_devid(fd)); const int has_64bit_reloc = gen >= 8; struct drm_i915_gem_exec_object2 obj[3]; struct drm_i915_gem_relocation_entry reloc; struct drm_i915_gem_execbuffer2 execbuf; const uint32_t mmio_base = gem_engine_mmio_base(fd, e->name); igt_spin_t *spin = NULL; IGT_CORK_HANDLE(c); volatile uint32_t *reg; unsigned repeats = ring_size; uint32_t start, end, *map, *results; uint64_t offset; double gpu_latency; int i, j; igt_require(mmio_base); reg = (volatile uint32_t *)((volatile char *)igt_global_mmio + mmio_base + TIMESTAMP); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj[1]); execbuf.buffer_count = 2; execbuf.flags = e->flags; execbuf.flags |= I915_EXEC_NO_RELOC | I915_EXEC_HANDLE_LUT; execbuf.rsvd1 = ctx->id; memset(obj, 0, sizeof(obj)); obj[1].handle = gem_create(fd, 4096); obj[1].flags = EXEC_OBJECT_WRITE; results = gem_mmap__wc(fd, obj[1].handle, 0, 4096, PROT_READ); obj[2].handle = gem_create(fd, 64*1024); map = gem_mmap__wc(fd, obj[2].handle, 0, 64*1024, PROT_WRITE); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); map[0] = MI_BATCH_BUFFER_END; gem_execbuf(fd, &execbuf); memset(&reloc,0, sizeof(reloc)); obj[2].relocation_count = 1; obj[2].relocs_ptr = to_user_pointer(&reloc); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); reloc.target_handle = flags & CORK ? 1 : 0; reloc.read_domains = I915_GEM_DOMAIN_INSTRUCTION; reloc.write_domain = I915_GEM_DOMAIN_INSTRUCTION; reloc.presumed_offset = obj[1].offset; for (j = 0; j < repeats; j++) { execbuf.batch_start_offset = 64 * j; reloc.offset = execbuf.batch_start_offset + sizeof(uint32_t); reloc.delta = sizeof(uint32_t) * j; offset = reloc.presumed_offset; offset += reloc.delta; i = 16 * j; /* MI_STORE_REG_MEM */ map[i++] = 0x24 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = mmio_base + TIMESTAMP; map[i++] = offset; if (has_64bit_reloc) map[i++] = offset >> 32; map[i++] = MI_BATCH_BUFFER_END; } if (flags & CORK) { obj[0].handle = igt_cork_plug(&c, fd); execbuf.buffers_ptr = to_user_pointer(&obj[0]); execbuf.buffer_count = 3; } if (flags & LIVE) spin = igt_spin_new(fd, .engine = e->flags); start = *reg; for (j = 0; j < repeats; j++) { uint64_t presumed_offset = reloc.presumed_offset; execbuf.batch_start_offset = 64 * j; reloc.offset = execbuf.batch_start_offset + sizeof(uint32_t); reloc.delta = sizeof(uint32_t) * j; gem_execbuf(fd, &execbuf); igt_assert(reloc.presumed_offset == presumed_offset); } end = *reg; igt_assert(reloc.presumed_offset == obj[1].offset); igt_spin_free(fd, spin); if (flags & CORK) igt_cork_unplug(&c); gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_GTT, 0); gpu_latency = (results[repeats-1] - results[0]) / (double)(repeats-1); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); execbuf.batch_start_offset = 0; for (j = 0; j < repeats - 1; j++) { offset = obj[2].offset; offset += 64 * (j + 1); i = 16 * j + (has_64bit_reloc ? 4 : 3); map[i] = MI_BATCH_BUFFER_START; if (gen >= 8) { map[i] |= 1 << 8 | 1; map[i + 1] = offset; map[i + 2] = offset >> 32; } else if (gen >= 6) { map[i] |= 1 << 8; map[i + 1] = offset; } else { map[i] |= 2 << 6; map[i + 1] = offset; if (gen < 4) map[i] |= 1; } } offset = obj[2].offset; gem_execbuf(fd, &execbuf); igt_assert(offset == obj[2].offset); gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_GTT, 0); igt_info("%s: dispatch latency: %.1fns, execution latency: %.1fns (target %.1fns)\n", e->name, (end - start) / (double)repeats * rcs_clock, gpu_latency * rcs_clock, (results[repeats - 1] - results[0]) / (double)(repeats - 1) * rcs_clock); munmap(map, 64*1024); munmap(results, 4096); if (flags & CORK) gem_close(fd, obj[0].handle); gem_close(fd, obj[1].handle); gem_close(fd, obj[2].handle); } static void latency_from_ring(int fd, const intel_ctx_t *base_ctx, const struct intel_execution_engine2 *e, unsigned flags) { const unsigned int gen = intel_gen(intel_get_drm_devid(fd)); const int has_64bit_reloc = gen >= 8; struct drm_i915_gem_exec_object2 obj[3]; struct drm_i915_gem_relocation_entry reloc; struct drm_i915_gem_execbuffer2 execbuf; const uint32_t mmio_base = gem_engine_mmio_base(fd, e->name); const unsigned int repeats = ring_size / 2; const struct intel_execution_engine2 *other; uint32_t *map, *results; const intel_ctx_t *ctx[2] = {base_ctx, base_ctx}; int i, j; igt_require(mmio_base); if (flags & PREEMPT) { ctx[0] = intel_ctx_create(fd, &base_ctx->cfg); gem_context_set_priority(fd, ctx[0]->id, -1023); ctx[1] = intel_ctx_create(fd, &base_ctx->cfg); gem_context_set_priority(fd, ctx[1]->id, 1023); } memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj[1]); execbuf.buffer_count = 2; execbuf.flags = e->flags; execbuf.flags |= I915_EXEC_NO_RELOC | I915_EXEC_HANDLE_LUT; execbuf.rsvd1 = ctx[1]->id; memset(obj, 0, sizeof(obj)); obj[1].handle = gem_create(fd, 4096); obj[1].flags = EXEC_OBJECT_WRITE; results = gem_mmap__wc(fd, obj[1].handle, 0, 4096, PROT_READ); obj[2].handle = gem_create(fd, 64*1024); map = gem_mmap__wc(fd, obj[2].handle, 0, 64*1024, PROT_WRITE); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); map[0] = MI_BATCH_BUFFER_END; gem_execbuf(fd, &execbuf); memset(&reloc,0, sizeof(reloc)); obj[2].relocation_count = 1; obj[2].relocs_ptr = to_user_pointer(&reloc); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); reloc.read_domains = I915_GEM_DOMAIN_INSTRUCTION; reloc.write_domain = I915_GEM_DOMAIN_INSTRUCTION; reloc.presumed_offset = obj[1].offset; reloc.target_handle = flags & CORK ? 1 : 0; for_each_ctx_engine(fd, base_ctx, other) { igt_spin_t *spin = NULL; IGT_CORK_HANDLE(c); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); if (flags & PREEMPT) spin = __igt_spin_new(fd, .ctx = ctx[0], .engine = e->flags); if (flags & CORK) { obj[0].handle = igt_cork_plug(&c, fd); execbuf.buffers_ptr = to_user_pointer(&obj[0]); execbuf.buffer_count = 3; } for (j = 0; j < repeats; j++) { uint64_t offset; execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= e->flags; execbuf.batch_start_offset = 64 * j; reloc.offset = execbuf.batch_start_offset + sizeof(uint32_t); reloc.delta = sizeof(uint32_t) * j; reloc.presumed_offset = obj[1].offset; offset = reloc.presumed_offset; offset += reloc.delta; i = 16 * j; /* MI_STORE_REG_MEM */ map[i++] = 0x24 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = mmio_base + TIMESTAMP; map[i++] = offset; if (has_64bit_reloc) map[i++] = offset >> 32; map[i++] = MI_BATCH_BUFFER_END; gem_execbuf(fd, &execbuf); execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= other->flags; execbuf.batch_start_offset = 64 * (j + repeats); reloc.offset = execbuf.batch_start_offset + sizeof(uint32_t); reloc.delta = sizeof(uint32_t) * (j + repeats); reloc.presumed_offset = obj[1].offset; offset = reloc.presumed_offset; offset += reloc.delta; i = 16 * (j + repeats); /* MI_STORE_REG_MEM */ map[i++] = 0x24 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = mmio_base + TIMESTAMP; map[i++] = offset; if (has_64bit_reloc) map[i++] = offset >> 32; map[i++] = MI_BATCH_BUFFER_END; gem_execbuf(fd, &execbuf); } if (flags & CORK) igt_cork_unplug(&c); gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); igt_spin_free(fd, spin); igt_info("%s-%s delay: %.2fns\n", e->name, other->name, (results[2*repeats-1] - results[0]) / (double)repeats * rcs_clock); } munmap(map, 64*1024); munmap(results, 4096); if (flags & CORK) gem_close(fd, obj[0].handle); gem_close(fd, obj[1].handle); gem_close(fd, obj[2].handle); if (flags & PREEMPT) { intel_ctx_destroy(fd, ctx[1]); intel_ctx_destroy(fd, ctx[0]); } } static void execution_latency(int i915, const intel_ctx_t *ctx, const struct intel_execution_engine2 *e) { struct drm_i915_gem_exec_object2 obj = { .handle = gem_create(i915, 4095), }; struct drm_i915_gem_execbuffer2 execbuf = { .buffers_ptr = to_user_pointer(&obj), .buffer_count = 1, .flags = e->flags | I915_EXEC_NO_RELOC | I915_EXEC_HANDLE_LUT, .rsvd1 = ctx->id, }; const uint32_t mmio_base = gem_engine_mmio_base(i915, e->name); const unsigned int cs_timestamp = mmio_base + 0x358; volatile uint32_t *timestamp; uint32_t *cs, *result; igt_require(mmio_base); timestamp = (volatile uint32_t *)((volatile char *)igt_global_mmio + cs_timestamp); obj.handle = gem_create(i915, 4096); obj.flags = EXEC_OBJECT_PINNED; result = gem_mmap__wc(i915, obj.handle, 0, 4096, PROT_WRITE); for (int i = 0; i < 16; i++) { cs = result + 16 * i; *cs++ = 0x24 << 23 | 2; /* SRM */ *cs++ = cs_timestamp; *cs++ = 4096 - 16 * 4 + i * 4; *cs++ = 0; *cs++ = 0xa << 23; } cs = result + 1024 - 16; for (int length = 2; length <= 16; length <<= 1) { struct igt_mean submit, batch, total; int last = length - 1; igt_mean_init(&submit); igt_mean_init(&batch); igt_mean_init(&total); igt_until_timeout(2) { uint32_t now, end; cs[last] = 0; now = *timestamp; for (int i = 0; i < length; i++) { execbuf.batch_start_offset = 64 * i; gem_execbuf(i915, &execbuf); } while (!((volatile uint32_t *)cs)[last]) ; end = *timestamp; igt_mean_add(&submit, (cs[0] - now) * rcs_clock); igt_mean_add(&batch, (cs[last] - cs[0]) * rcs_clock / last); igt_mean_add(&total, (end - now) * rcs_clock); } igt_info("%sx%d Submission latency: %.2f±%.2fus\n", e->name, length, 1e-3 * igt_mean_get(&submit), 1e-3 * sqrt(igt_mean_get_variance(&submit))); igt_info("%sx%d Inter-batch latency: %.2f±%.2fus\n", e->name, length, 1e-3 * igt_mean_get(&batch), 1e-3 * sqrt(igt_mean_get_variance(&batch))); igt_info("%sx%d End-to-end latency: %.2f±%.2fus\n", e->name, length, 1e-3 * igt_mean_get(&total), 1e-3 * sqrt(igt_mean_get_variance(&total))); } munmap(result, 4096); gem_close(i915, obj.handle); } static void wakeup_latency(int i915, const intel_ctx_t *ctx, const struct intel_execution_engine2 *e) { struct drm_i915_gem_exec_object2 obj = { .handle = gem_create(i915, 4095), }; struct drm_i915_gem_execbuffer2 execbuf = { .buffers_ptr = to_user_pointer(&obj), .buffer_count = 1, .flags = e->flags | I915_EXEC_NO_RELOC | I915_EXEC_HANDLE_LUT, .rsvd1 = ctx->id, }; const uint32_t mmio_base = gem_engine_mmio_base(i915, e->name); const unsigned int cs_timestamp = mmio_base + 0x358; volatile uint32_t *timestamp; struct igt_mean wakeup; uint32_t *cs, *result; igt_require(gem_class_has_mutable_submission(i915, e->class)); timestamp = (volatile uint32_t *)((volatile char *)igt_global_mmio + cs_timestamp); obj.handle = gem_create(i915, 4096); obj.flags = EXEC_OBJECT_PINNED; result = gem_mmap__wc(i915, obj.handle, 0, 4096, PROT_WRITE); cs = result; *cs++ = 0x24 << 23 | 2; /* SRM */ *cs++ = cs_timestamp; *cs++ = 4096 - 16 * 4; *cs++ = 0; *cs++ = MI_BATCH_BUFFER_START | 1; *cs++ = 0; *cs++ = 0; *cs++ = 0x24 << 23 | 2; /* SRM */ *cs++ = cs_timestamp; *cs++ = 4096 - 16 * 4 + 4; *cs++ = 0; *cs++ = 0xa << 23; cs = result + 1024 - 16; { struct sched_param p = { .sched_priority = 99 }; sched_setscheduler(0, SCHED_FIFO | SCHED_RESET_ON_FORK, &p); } igt_mean_init(&wakeup); igt_until_timeout(2) { uint32_t end; igt_fork(child, 1) { result[4] = MI_BATCH_BUFFER_START | 1; cs[0] = 0; gem_execbuf(i915, &execbuf); while (!READ_ONCE(cs[0])) ; result[4] = 0; __sync_synchronize(); } gem_sync(i915, obj.handle); end = *timestamp; igt_mean_add(&wakeup, (end - cs[1]) * rcs_clock); igt_waitchildren(); } igt_info("%s Wakeup latency: %.2f±%.2fms [%.2f, %.2f]\n", e->name, 1e-6 * igt_mean_get(&wakeup), 1e-6 * sqrt(igt_mean_get_variance(&wakeup)), 1e-6 * wakeup.min, 1e-6 * wakeup.max); munmap(result, 4096); gem_close(i915, obj.handle); } static void __submit_spin(int fd, igt_spin_t *spin, unsigned int flags) { struct drm_i915_gem_execbuffer2 eb = spin->execbuf; eb.flags &= ~(0x3f | I915_EXEC_BSD_MASK); eb.flags |= flags | I915_EXEC_NO_RELOC; gem_execbuf(fd, &eb); } struct rt_pkt { struct igt_mean mean; double min, max; }; static bool __spin_wait(int fd, igt_spin_t *spin) { while (!igt_spin_has_started(spin)) { if (!gem_bo_busy(fd, spin->handle)) return false; } return true; } /* * Test whether RT thread which hogs the CPU a lot can submit work with * reasonable latency. */ static void rthog_latency_on_ring(int fd, const intel_ctx_t *ctx, const struct intel_execution_engine2 *e) { const char *passname[] = { "warmup", "normal", "rt[0]", "rt[1]", "rt[2]", "rt[3]", "rt[4]", "rt[5]", "rt[6]", }; #define NPASS ARRAY_SIZE(passname) #define MMAP_SZ (64 << 10) const struct igt_spin_factory opts = { .ctx = ctx, .engine = e->flags, .flags = IGT_SPIN_POLL_RUN | IGT_SPIN_FAST, }; struct rt_pkt *results; int ret; igt_assert(NPASS * sizeof(*results) <= MMAP_SZ); results = mmap(NULL, MMAP_SZ, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); igt_assert(results != MAP_FAILED); igt_fork(child, 1) { unsigned int pass = 0; /* Three phases: warmup, normal, rt. */ do { struct igt_mean mean; double min = HUGE_VAL; double max = -HUGE_VAL; igt_spin_t *spin; igt_mean_init(&mean); if (pass == 2) { struct sched_param rt = { .sched_priority = 99 }; ret = sched_setscheduler(0, SCHED_FIFO | SCHED_RESET_ON_FORK, &rt); if (ret) { igt_warn("Failed to set scheduling policy!\n"); break; } } usleep(250); spin = __igt_spin_factory(fd, &opts); if (!spin) { igt_warn("Failed to create spinner! (%s)\n", passname[pass]); break; } igt_spin_busywait_until_started(spin); igt_until_timeout(pass > 0 ? 5 : 2) { struct timespec ts = { }; double t; igt_spin_end(spin); gem_sync(fd, spin->handle); igt_spin_reset(spin); igt_nsec_elapsed(&ts); __submit_spin(fd, spin, e->flags); if (!__spin_wait(fd, spin)) { igt_warn("Wait timeout! (%s)\n", passname[pass]); break; } t = igt_nsec_elapsed(&ts) * 1e-9; if (t > max) max = t; if (t < min) min = t; igt_mean_add(&mean, t); } igt_spin_free(fd, spin); igt_info("%8s %10s: mean=%.2fus stddev=%.3fus [%.2fus, %.2fus] (n=%lu)\n", e->name, passname[pass], igt_mean_get(&mean) * 1e6, sqrt(igt_mean_get_variance(&mean)) * 1e6, min * 1e6, max * 1e6, mean.count); results[pass].mean = mean; results[pass].min = min; results[pass].max = max; } while (++pass < NPASS); } igt_waitchildren(); { struct rt_pkt normal = results[1]; igt_stats_t stats; double variance; igt_stats_init_with_size(&stats, NPASS); variance = 0; for (unsigned int pass = 2; pass < NPASS; pass++) { struct rt_pkt *rt = &results[pass]; igt_assert(rt->max); igt_stats_push_float(&stats, igt_mean_get(&rt->mean)); variance += igt_mean_get_variance(&rt->mean); } variance /= NPASS - 2; igt_info("%8s: normal latency=%.2f±%.3fus, rt latency=%.2f±%.3fus\n", e->name, igt_mean_get(&normal.mean) * 1e6, sqrt(igt_mean_get_variance(&normal.mean)) * 1e6, igt_stats_get_median(&stats) * 1e6, sqrt(variance) * 1e6); igt_assert(igt_stats_get_median(&stats) < igt_mean_get(&normal.mean) * 2); /* The system is noisy; be conservative when declaring fail. */ igt_assert(variance < igt_mean_get_variance(&normal.mean) * 10); } munmap(results, MMAP_SZ); } static void context_switch(int i915, const intel_ctx_t *ctx, const struct intel_execution_engine2 *e, unsigned int flags) { struct drm_i915_gem_exec_object2 obj[2]; struct drm_i915_gem_relocation_entry reloc[5]; struct drm_i915_gem_execbuffer2 eb; uint32_t *cs, *bbe, *results, v; const uint32_t mmio_base = gem_engine_mmio_base(i915, e->name); struct igt_mean mean; const intel_ctx_t *tmp_ctx[2]; igt_require(mmio_base); igt_require(gem_class_has_mutable_submission(i915, e->class)); for (int i = 0; i < ARRAY_SIZE(tmp_ctx); i++) tmp_ctx[i] = intel_ctx_create(i915, &ctx->cfg); if (flags & PREEMPT) { gem_context_set_priority(i915, tmp_ctx[0]->id, -1023); gem_context_set_priority(i915, tmp_ctx[1]->id, +1023); } memset(obj, 0, sizeof(obj)); obj[0].handle = gem_create(i915, 4096); gem_set_caching(i915, obj[0].handle, 1); results = gem_mmap__cpu(i915, obj[0].handle, 0, 4096, PROT_READ); gem_set_domain(i915, obj[0].handle, I915_GEM_DOMAIN_CPU, 0); obj[1].handle = gem_create(i915, 4096); memset(reloc,0, sizeof(reloc)); obj[1].relocation_count = ARRAY_SIZE(reloc); obj[1].relocs_ptr = to_user_pointer(reloc); bbe = gem_mmap__wc(i915, obj[1].handle, 0, 4096, PROT_WRITE); gem_set_domain(i915, obj[1].handle, I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC); cs = bbe; *cs++ = 0x5 << 23; *cs++ = 0x24 << 23 | 2; /* SRM */ *cs++ = mmio_base + 0x358; /* TIMESTAMP */ reloc[0].target_handle = obj[0].handle; reloc[0].offset = (cs - bbe) * sizeof(*cs); *cs++ = 0; *cs++ = 0; *cs++ = MI_BATCH_BUFFER_START | 1; reloc[1].target_handle = obj[1].handle; reloc[1].offset = (cs - bbe) * sizeof(*cs); *cs++ = 0; *cs++ = 0; cs = bbe + 64; *cs++ = 0x24 << 23 | 2; /* SRM */ *cs++ = mmio_base + 0x358; /* TIMESTAMP */ reloc[2].target_handle = obj[0].handle; reloc[2].offset = (cs - bbe) * sizeof(*cs); *cs++ = reloc[2].delta = 4; *cs++ = 0; *cs++ = 0x29 << 23 | 2; /* LRM */ *cs++ = mmio_base + 0x600; /* GPR0 */ reloc[3].target_handle = obj[0].handle; reloc[3].offset = (cs - bbe) * sizeof(*cs); *cs++ = 0; *cs++ = 0; *cs++ = 0x24 << 23 | 2; /* SRM */ *cs++ = mmio_base + 0x600; /* GPR0 */ reloc[4].target_handle = obj[0].handle; reloc[4].offset = (cs - bbe) * sizeof(*cs); *cs++ = reloc[4].delta = 8; *cs++ = 0; *cs++ = 0xa << 23; memset(&eb, 0, sizeof(eb)); eb.buffers_ptr = to_user_pointer(obj); eb.buffer_count = ARRAY_SIZE(obj); eb.flags = e->flags | I915_EXEC_NO_RELOC; v = 0; igt_mean_init(&mean); igt_until_timeout(5) { eb.rsvd1 = tmp_ctx[0]->id; eb.batch_start_offset = 0; gem_execbuf(i915, &eb); while (results[0] == v) igt_assert(gem_bo_busy(i915, obj[1].handle)); eb.rsvd1 = tmp_ctx[1]->id; eb.batch_start_offset = 64 * sizeof(*cs); gem_execbuf(i915, &eb); *bbe = 0xa << 23; gem_sync(i915, obj[1].handle); *bbe = 0x5 << 23; v = results[0]; igt_mean_add(&mean, (results[1] - results[2]) * rcs_clock); } igt_info("%s context switch latency%s: %.2f±%.2fus\n", e->name, flags & PREEMPT ? " (preempt)" : "", 1e-3 * igt_mean_get(&mean), 1e-3 * sqrt(igt_mean_get_variance(&mean))); munmap(results, 4096); munmap(bbe, 4096); for (int i = 0; i < ARRAY_SIZE(obj); i++) gem_close(i915, obj[i].handle); for (int i = 0; i < ARRAY_SIZE(tmp_ctx); i++) intel_ctx_destroy(i915, tmp_ctx[i]); } static double clockrate(int i915, int reg) { volatile uint32_t *mmio; uint32_t r_start, r_end; struct timespec tv; uint64_t t_start, t_end; uint64_t elapsed; int cs_timestamp_freq; drm_i915_getparam_t gp = { .value = &cs_timestamp_freq, .param = I915_PARAM_CS_TIMESTAMP_FREQUENCY, }; if (igt_ioctl(i915, DRM_IOCTL_I915_GETPARAM, &gp) == 0) return cs_timestamp_freq; mmio = (volatile uint32_t *)((volatile char *)igt_global_mmio + reg); t_start = igt_nsec_elapsed(&tv); r_start = *mmio; elapsed = igt_nsec_elapsed(&tv) - t_start; usleep(1000); t_end = igt_nsec_elapsed(&tv); r_end = *mmio; elapsed += igt_nsec_elapsed(&tv) - t_end; elapsed = (t_end - t_start) + elapsed / 2; return (r_end - r_start) * 1e9 / elapsed; } #define test_each_engine(T, i915, ctx, e) \ igt_subtest_with_dynamic(T) for_each_ctx_engine(i915, ctx, e) \ for_each_if(gem_class_can_store_dword(i915, (e)->class)) \ igt_dynamic_f("%s", (e)->name) igt_main { const struct intel_execution_engine2 *e; const intel_ctx_t *ctx; int device = -1; igt_fixture { device = drm_open_driver(DRIVER_INTEL); igt_require_gem(device); gem_require_mmap_wc(device); ctx = intel_ctx_create_all_physical(device); gem_submission_print_method(device); ring_size = gem_submission_measure(device, &ctx->cfg, ALL_ENGINES); igt_info("Ring size: %d batches\n", ring_size); igt_require(ring_size > 8); ring_size -= 8; /* leave some spare */ if (ring_size > 1024) ring_size = 1024; intel_register_access_init(&mmio_data, igt_device_get_pci_device(device), false, device); rcs_clock = clockrate(device, 0x2000 + TIMESTAMP); igt_info("RCS timestamp clock: %.0fKHz, %.1fns\n", rcs_clock / 1e3, 1e9 / rcs_clock); rcs_clock = 1e9 / rcs_clock; } igt_subtest_group { igt_fixture igt_require(intel_gen(intel_get_drm_devid(device)) >= 7); test_each_engine("rthog-submit", device, ctx, e) rthog_latency_on_ring(device, ctx, e); test_each_engine("dispatch", device, ctx, e) latency_on_ring(device, ctx, e, 0); test_each_engine("dispatch-queued", device, ctx, e) latency_on_ring(device, ctx, e, CORK); test_each_engine("live-dispatch", device, ctx, e) latency_on_ring(device, ctx, e, LIVE); test_each_engine("live-dispatch-queued", device, ctx, e) latency_on_ring(device, ctx, e, LIVE | CORK); test_each_engine("poll", device, ctx, e) poll_ring(device, ctx, e); test_each_engine("synchronisation", device, ctx, e) latency_from_ring(device, ctx, e, 0); test_each_engine("synchronisation-queued", device, ctx, e) latency_from_ring(device, ctx, e, CORK); test_each_engine("execution-latency", device, ctx, e) execution_latency(device, ctx, e); test_each_engine("wakeup-latency", device, ctx, e) wakeup_latency(device, ctx, e); igt_subtest_group { igt_fixture { gem_require_contexts(device); igt_require(gem_scheduler_has_preemption(device)); } test_each_engine("preemption", device, ctx, e) latency_from_ring(device, ctx, e, PREEMPT); test_each_engine("context-switch", device, ctx, e) context_switch(device, ctx, e, 0); test_each_engine("context-preempt", device, ctx, e) context_switch(device, ctx, e, PREEMPT); } } igt_fixture { intel_register_access_fini(&mmio_data); intel_ctx_destroy(device, ctx); close(device); } }