/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Chris Wilson * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm.h" #include "i915/gem.h" #include "i915/gem_create.h" #include "igt.h" #include "igt_sysfs.h" #include "igt_x86.h" #include "sw_sync.h" #ifndef PAGE_SIZE #define PAGE_SIZE 4096 #endif #define abs(x) ((x) >= 0 ? (x) : -(x)) IGT_TEST_DESCRIPTION("Ensure that all operations around MMAP_GTT ioctl works."); static int OBJECT_SIZE = 16*1024*1024; static void set_domain_gtt(int fd, uint32_t handle) { gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); } static void * mmap_bo(int fd, uint32_t handle, uint64_t size) { void *ptr; ptr = gem_mmap__gtt(fd, handle, size, PROT_READ | PROT_WRITE); return ptr; } static void * create_pointer_size(int fd, uint64_t size, int tiling) { uint32_t handle; void *ptr; handle = gem_create(fd, size); if (tiling) gem_set_tiling(fd, handle, tiling, 1024); ptr = mmap_bo(fd, handle, size); gem_close(fd, handle); return ptr; } static void * create_pointer(int fd) { return create_pointer_size(fd, OBJECT_SIZE, I915_TILING_NONE); } static void test_access(int fd) { uint32_t handle, flink, handle2; struct drm_i915_gem_mmap_gtt mmap_arg; int fd2; handle = gem_create(fd, OBJECT_SIZE); igt_assert(handle); fd2 = drm_open_driver(DRIVER_INTEL); /* Check that fd1 can mmap. */ mmap_arg.handle = handle; do_ioctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); igt_assert(mmap64(0, OBJECT_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, mmap_arg.offset)); /* Check that the same offset on the other fd doesn't work. */ igt_assert(mmap64(0, OBJECT_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd2, mmap_arg.offset) == MAP_FAILED); igt_assert(errno == EACCES); flink = gem_flink(fd, handle); igt_assert(flink); handle2 = gem_open(fd2, flink); igt_assert(handle2); /* Recheck that it works after flink. */ /* Check that the same offset on the other fd doesn't work. */ igt_assert(mmap64(0, OBJECT_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd2, mmap_arg.offset)); } static void test_zero_extend(int i915) { struct drm_i915_gem_mmap_gtt arg = {}; uint64_t redzone[16]; memset(redzone, 0xc5, sizeof(redzone)); arg.handle = gem_create(i915, 4096); igt_assert_eq(ioctl(i915, DRM_IOCTL_I915_GEM_MMAP_GTT, &arg), 0); gem_close(i915, arg.handle); } static void test_short(int fd) { struct drm_i915_gem_mmap_gtt mmap_arg; int pages, p; mmap_arg.handle = gem_create(fd, OBJECT_SIZE); igt_assert(mmap_arg.handle); do_ioctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); for (pages = 1; pages <= OBJECT_SIZE / PAGE_SIZE; pages <<= 1) { uint8_t *r, *w; w = mmap64(0, pages * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, mmap_arg.offset); igt_assert(w != MAP_FAILED); r = mmap64(0, pages * PAGE_SIZE, PROT_READ, MAP_SHARED, fd, mmap_arg.offset); igt_assert(r != MAP_FAILED); for (p = 0; p < pages; p++) { w[p*PAGE_SIZE] = r[p*PAGE_SIZE]; w[p*PAGE_SIZE+(PAGE_SIZE-1)] = r[p*PAGE_SIZE+(PAGE_SIZE-1)]; } munmap(r, pages * PAGE_SIZE); munmap(w, pages * PAGE_SIZE); } gem_close(fd, mmap_arg.handle); } static void test_copy(int fd) { void *src, *dst; /* copy from a fresh src to fresh dst to force pagefault on both */ src = create_pointer(fd); dst = create_pointer(fd); memcpy(dst, src, OBJECT_SIZE); memcpy(src, dst, OBJECT_SIZE); munmap(dst, OBJECT_SIZE); munmap(src, OBJECT_SIZE); } enum test_read_write { READ_BEFORE_WRITE, READ_AFTER_WRITE, }; static void test_read_write(int fd, enum test_read_write order) { uint32_t handle; void *ptr; volatile uint32_t val = 0; handle = gem_create(fd, OBJECT_SIZE); ptr = gem_mmap__gtt(fd, handle, OBJECT_SIZE, PROT_READ | PROT_WRITE); gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); if (order == READ_BEFORE_WRITE) { val = *(uint32_t *)ptr; *(uint32_t *)ptr = val; } else { *(uint32_t *)ptr = val; val = *(uint32_t *)ptr; } gem_close(fd, handle); munmap(ptr, OBJECT_SIZE); } static void test_read_write2(int fd, enum test_read_write order) { uint32_t handle; void *r, *w; volatile uint32_t val = 0; handle = gem_create(fd, OBJECT_SIZE); r = gem_mmap__gtt(fd, handle, OBJECT_SIZE, PROT_READ); w = gem_mmap__gtt(fd, handle, OBJECT_SIZE, PROT_READ | PROT_WRITE); gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); if (order == READ_BEFORE_WRITE) { val = *(uint32_t *)r; *(uint32_t *)w = val; } else { *(uint32_t *)w = val; val = *(uint32_t *)r; } gem_close(fd, handle); munmap(r, OBJECT_SIZE); munmap(w, OBJECT_SIZE); } static void test_write(int fd) { void *src; uint32_t dst; /* copy from a fresh src to fresh dst to force pagefault on both */ src = create_pointer(fd); dst = gem_create(fd, OBJECT_SIZE); gem_write(fd, dst, 0, src, OBJECT_SIZE); gem_close(fd, dst); munmap(src, OBJECT_SIZE); } static void test_wc(int fd) { unsigned long gtt_reads, gtt_writes, cpu_writes; uint32_t handle; void *gtt, *cpu; handle = gem_create(fd, 4096); cpu = gem_mmap__cpu(fd, handle, 0, 4096, PROT_READ | PROT_WRITE); gem_set_domain(fd, handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); gem_close(fd, handle); handle = gem_create(fd, 4096); gtt = gem_mmap__gtt(fd, handle, 4096, PROT_READ | PROT_WRITE); gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); gem_close(fd, handle); gtt_reads = 0; igt_for_milliseconds(200) { memcpy(cpu, gtt, 4096); gtt_reads++; } igt_debug("%lu GTT reads in 200us\n", gtt_reads); gtt_writes = 0; igt_for_milliseconds(200) { memcpy(gtt, cpu, 4096); gtt_writes++; } igt_debug("%lu GTT writes in 200us\n", gtt_writes); if (igt_setup_clflush()) { cpu_writes = 0; igt_for_milliseconds(200) { igt_clflush_range(cpu, 4096); cpu_writes++; } igt_debug("%lu CPU writes in 200us\n", cpu_writes); } else cpu_writes = gtt_writes; munmap(cpu, 4096); munmap(gtt, 4096); igt_assert_f(gtt_writes > 2*gtt_reads, "Write-Combined writes are expected to be much faster than reads: read=%.2fMiB/s, write=%.2fMiB/s\n", 5*gtt_reads/256., 5*gtt_writes/256.); igt_assert_f(gtt_writes > cpu_writes/2, "Write-Combined writes are expected to be roughly equivalent to WB writes: WC (gtt)=%.2fMiB/s, WB (cpu)=%.2fMiB/s\n", 5*gtt_writes/256., 5*cpu_writes/256.); } static int mmap_gtt_version(int i915) { int val = 0; struct drm_i915_getparam gp = { gp.param = 40, /* MMAP_GTT_VERSION */ gp.value = &val, }; ioctl(i915, DRM_IOCTL_I915_GETPARAM, &gp); return val; } static void test_pf_nonblock(int i915) { igt_spin_t *spin; uint32_t *ptr; uint64_t ahnd; igt_require(mmap_gtt_version(i915) >= 3); ahnd = get_reloc_ahnd(i915, 0); spin = igt_spin_new(i915, .ahnd = ahnd); igt_set_timeout(1, "initial pagefaulting did not complete within 1s"); ptr = gem_mmap__gtt(i915, spin->handle, 4096, PROT_WRITE); ptr[256] = 0; munmap(ptr, 4096); igt_reset_timeout(); igt_spin_free(i915, spin); put_ahnd(ahnd); } static void test_isolation(int i915) { struct drm_i915_gem_mmap_gtt mmap_arg; int A = gem_reopen_driver(i915); int B = gem_reopen_driver(i915); uint64_t offset_a, offset_b; uint32_t a, b; void *ptr; a = gem_create(A, 4096); b = gem_open(B, gem_flink(A, a)); mmap_arg.handle = a; do_ioctl(A, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); offset_a = mmap_arg.offset; mmap_arg.handle = b; do_ioctl(B, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); offset_b = mmap_arg.offset; igt_info("A: {fd:%d, handle:%d, offset:%"PRIx64"}\n", A, a, offset_a); igt_info("B: {fd:%d, handle:%d, offset:%"PRIx64"}\n", B, b, offset_b); close(B); ptr = mmap64(0, 4096, PROT_READ, MAP_SHARED, A, offset_a); igt_assert(ptr != MAP_FAILED); munmap(ptr, 4096); close(A); ptr = mmap64(0, 4096, PROT_READ, MAP_SHARED, A, offset_a); igt_assert(ptr == MAP_FAILED); } static void test_close_race(int i915) { const int ncpus = sysconf(_SC_NPROCESSORS_ONLN); _Atomic uint32_t *handles; handles = mmap64(0, 4096, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); igt_assert(handles != MAP_FAILED); igt_fork(child, ncpus + 1) { do { struct drm_i915_gem_mmap_gtt mmap_arg = {}; const int i = 1 + random() % ncpus; uint32_t old; mmap_arg.handle = gem_create(i915, 4096); old = atomic_exchange(&handles[i], mmap_arg.handle); ioctl(i915, DRM_IOCTL_GEM_CLOSE, &old); if (ioctl(i915, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg) != -1) { void *ptr; ptr = mmap64(0, 4096, PROT_WRITE, MAP_SHARED, i915, mmap_arg.offset); if (ptr != MAP_FAILED) { *(volatile uint32_t *)ptr = 0; munmap(ptr, 4096); } } } while (!READ_ONCE(handles[0])); } sleep(20); handles[0] = 1; igt_waitchildren(); for (int i = 1; i <= ncpus; i++) ioctl(i915, DRM_IOCTL_GEM_CLOSE, handles[i]); munmap(handles, 4096); } static void test_flink_race(int i915) { const int ncpus = sysconf(_SC_NPROCESSORS_ONLN); _Atomic uint32_t *handles; handles = mmap64(0, 4096, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); igt_assert(handles != MAP_FAILED); igt_fork(child, ncpus + 1) { int fd = gem_reopen_driver(i915); do { struct drm_i915_gem_mmap_gtt mmap_arg = {}; const int i = 1 + random() % ncpus; uint32_t old; old = atomic_exchange(&handles[i], gem_create(i915, 4096)); if (!old) continue; mmap_arg.handle = gem_open(fd, gem_flink(i915, old)); gem_close(i915, old); if (ioctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg) != -1) { void *ptr; ptr = mmap64(0, 4096, PROT_WRITE, MAP_SHARED, fd, mmap_arg.offset); if (ptr != MAP_FAILED) { *(volatile uint32_t *)ptr = 0; munmap(ptr, 4096); } } gem_close(fd, mmap_arg.handle); } while (!READ_ONCE(handles[0])); } sleep(20); handles[0] = 1; igt_waitchildren(); for (int i = 1; i <= ncpus; i++) ioctl(i915, DRM_IOCTL_GEM_CLOSE, handles[i]); munmap(handles, 4096); } static void test_write_gtt(int fd) { uint32_t dst; char *dst_gtt; void *src; dst = gem_create(fd, OBJECT_SIZE); /* prefault object into gtt */ dst_gtt = mmap_bo(fd, dst, OBJECT_SIZE); set_domain_gtt(fd, dst); memset(dst_gtt, 0, OBJECT_SIZE); munmap(dst_gtt, OBJECT_SIZE); src = create_pointer(fd); gem_write(fd, dst, 0, src, OBJECT_SIZE); gem_close(fd, dst); munmap(src, OBJECT_SIZE); } static void *memchr_inv(const void *s, int c, size_t n) { const uint8_t *us = s; const uint8_t uc = c; #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" while (n--) { if (*us != uc) return (void *) us; us++; } #pragma GCC diagnostic pop return NULL; } static void test_ptrace(int fd) { unsigned long sz = 16 * 4096; unsigned long AA, CC; unsigned long *gtt, *cpy; uint32_t bo; pid_t pid; memset(&AA, 0xaa, sizeof(AA)); memset(&CC, 0x55, sizeof(CC)); cpy = malloc(sz); memset(cpy, AA, sz); bo = gem_create(fd, sz); gtt = mmap_bo(fd, bo, sz); memset(gtt, CC, sz); gem_close(fd, bo); igt_assert(!memchr_inv(gtt, CC, sz)); igt_assert(!memchr_inv(cpy, AA, sz)); igt_fork(child, 1) { ptrace(PTRACE_TRACEME, 0, NULL, NULL); raise(SIGSTOP); } /* Wait for the child to ready themselves [SIGSTOP] */ pid = wait(NULL); ptrace(PTRACE_ATTACH, pid, NULL, NULL); for (int i = 0; i < sz / sizeof(long); i++) { long ret; ret = ptrace(PTRACE_PEEKDATA, pid, gtt + i); igt_assert_eq_u64(ret, CC); cpy[i] = ret; ret = ptrace(PTRACE_POKEDATA, pid, gtt + i, AA); igt_assert_eq(ret, 0l); } ptrace(PTRACE_DETACH, pid, NULL, NULL); /* Wakeup the child for it to exit */ kill(SIGCONT, pid); igt_waitchildren(); /* The contents of the two buffers should now be swapped */ igt_assert(!memchr_inv(gtt, AA, sz)); igt_assert(!memchr_inv(cpy, CC, sz)); munmap(gtt, sz); free(cpy); } static bool is_coherent(int i915) { int val = 1; /* by default, we assume GTT is coherent, hence the test */ struct drm_i915_getparam gp = { gp.param = 52, /* GTT_COHERENT */ gp.value = &val, }; ioctl(i915, DRM_IOCTL_I915_GETPARAM, &gp); return val; } static void test_coherency(int fd) { uint32_t handle; uint32_t *gtt, *cpu; int i; igt_require(is_coherent(fd)); igt_require(igt_setup_clflush()); handle = gem_create(fd, OBJECT_SIZE); gtt = gem_mmap__gtt(fd, handle, OBJECT_SIZE, PROT_READ | PROT_WRITE); cpu = gem_mmap__cpu(fd, handle, 0, OBJECT_SIZE, PROT_READ | PROT_WRITE); set_domain_gtt(fd, handle); /* On byt/bsw/bxt this detects an interesting behaviour where the * CPU cannot flush the iobar and so the read may bypass the write. * https://bugs.freedesktop.org/show_bug.cgi?id=94314 */ for (i = 0; i < OBJECT_SIZE / 64; i++) { int x = 16*i + (i%16); gtt[x] = i; igt_clflush_range(&cpu[x], sizeof(cpu[x])); igt_assert_eq(cpu[x], i); } munmap(cpu, OBJECT_SIZE); munmap(gtt, OBJECT_SIZE); gem_close(fd, handle); } static void test_clflush(int fd) { uint32_t handle; uint32_t *gtt; igt_require(igt_setup_clflush()); handle = gem_create(fd, OBJECT_SIZE); gtt = gem_mmap__gtt(fd, handle, OBJECT_SIZE, PROT_READ | PROT_WRITE); set_domain_gtt(fd, handle); igt_clflush_range(gtt, OBJECT_SIZE); munmap(gtt, OBJECT_SIZE); gem_close(fd, handle); } static void test_hang(int fd) { const uint32_t patterns[] = { 0, 0xaaaaaaaa, 0x55555555, 0xcccccccc, }; const int ncpus = sysconf(_SC_NPROCESSORS_ONLN); struct { bool done; bool error; } *control; unsigned long count; igt_hang_t hang; int dir; hang = igt_allow_hang(fd, 0, 0); igt_require(igt_params_set(fd, "reset", "1")); /* global */ control = mmap(NULL, 4096, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); igt_assert(control != MAP_FAILED); igt_fork(child, ncpus) { int last_pattern = 0; int next_pattern = 1; uint32_t *gtt[2]; for (int i = 0; i < ARRAY_SIZE(gtt); i++) { uint32_t handle; handle = gem_create(fd, OBJECT_SIZE); gem_set_tiling(fd, handle, I915_TILING_X + i, 2048); gtt[i] = gem_mmap__gtt(fd, handle, OBJECT_SIZE, PROT_WRITE); set_domain_gtt(fd, handle); gem_close(fd, handle); } while (!READ_ONCE(control->done)) { for (int i = 0; i < OBJECT_SIZE / 64; i++) { const unsigned int x = 16 * i + ( i% 16); uint32_t expected = patterns[last_pattern]; uint32_t found[2]; found[0] = READ_ONCE(gtt[0][x]); found[1] = READ_ONCE(gtt[1][x]); if (found[0] != expected || found[1] != expected) { igt_warn("child[%d] found (%x, %x), expecting %x\n", child, found[0], found[1], expected); control->error = true; exit(0); } gtt[0][x] = patterns[next_pattern]; gtt[1][x] = patterns[next_pattern]; if (READ_ONCE(control->done)) break; } last_pattern = next_pattern; next_pattern = (next_pattern + 1) % ARRAY_SIZE(patterns); } } count = 0; dir = igt_debugfs_dir(fd); igt_until_timeout(5) { igt_sysfs_printf(dir, "i915_wedged", "%llu", -1ull); if (READ_ONCE(control->error)) break; count++; } close(dir); igt_info("%lu resets\n", count); control->done = true; igt_waitchildren_timeout(2, NULL); igt_assert(!control->error); munmap(control, 4096); igt_disallow_hang(fd, hang); } static void test_hang_busy(int i915) { uint32_t *ptr, *tile, *x; const intel_ctx_t *ctx = intel_ctx_create(i915, NULL); igt_spin_t *spin; igt_hang_t hang; uint32_t handle; uint64_t ahnd; hang = igt_allow_hang(i915, ctx->id, 0); igt_require(igt_params_set(i915, "reset", "1")); /* global */ ahnd = get_reloc_ahnd(i915, ctx->id); spin = igt_spin_new(i915, .ctx = ctx, .ahnd = ahnd, .flags = IGT_SPIN_POLL_RUN | IGT_SPIN_FENCE_OUT | IGT_SPIN_NO_PREEMPTION); igt_spin_busywait_until_started(spin); igt_assert(spin->execbuf.buffer_count == 2); handle = gem_create(i915, 2 << 20); gem_set_tiling(i915, handle, I915_TILING_X, 512); spin->obj[0].handle = handle; spin->obj[0].flags = EXEC_OBJECT_WRITE; gem_execbuf(i915, &spin->execbuf); /* Fault in the busy objects */ igt_debug("Faulting in busy batch\n"); ptr = gem_mmap__gtt(i915, spin->handle, 4096, PROT_READ); x = ptr + ((uintptr_t)spin->condition & 4095) / sizeof(*ptr); igt_assert_eq_u32(READ_ONCE(*x), spin->cmd_precondition); igt_debug("Faulting in busy tile\n"); tile = gem_mmap__gtt(i915, handle, 2 << 20, PROT_WRITE); *tile = 0xdeadbeef; igt_debug("Resetting GPU\n"); igt_assert(gem_bo_busy(i915, spin->handle)); igt_assert(gem_bo_busy(i915, handle)); igt_force_gpu_reset(i915); /* Check we reset the busy mmap */ igt_debug("Sync\n"); gem_sync(i915, spin->handle); igt_assert_eq(sync_fence_status(spin->out_fence), -5); igt_debug("Refault and verify\n"); igt_assert_eq_u32(READ_ONCE(*tile), 0xdeadbeef); gem_close(i915, handle); munmap(tile, 2 << 20); igt_assert_eq_u32(READ_ONCE(*x), spin->cmd_precondition); munmap(ptr, 4096); igt_spin_free(i915, spin); put_ahnd(ahnd); igt_disallow_hang(i915, hang); intel_ctx_destroy(i915, ctx); } static void test_hang_user(int i915) { const intel_ctx_t *ctx = intel_ctx_create(i915, NULL); uint32_t *ptr, *mem, *x; igt_spin_t *spin; igt_hang_t hang; uint32_t handle; uint64_t ahnd; hang = igt_allow_hang(i915, ctx->id, 0); igt_require(igt_params_set(i915, "reset", "1")); /* global */ ahnd = get_reloc_ahnd(i915, ctx->id); spin = igt_spin_new(i915, .ctx = ctx, .ahnd = ahnd, .flags = IGT_SPIN_POLL_RUN | IGT_SPIN_FENCE_OUT | IGT_SPIN_NO_PREEMPTION); igt_spin_busywait_until_started(spin); igt_assert(spin->execbuf.buffer_count == 2); igt_assert(posix_memalign((void **)&mem, 4096, 2 << 20) == 0); gem_userptr(i915, mem, 2 << 20, false, 0, &handle); spin->obj[0].handle = handle; spin->obj[0].flags = EXEC_OBJECT_WRITE; gem_execbuf(i915, &spin->execbuf); /* Fault in the busy objects */ igt_debug("Faulting in busy batch\n"); ptr = gem_mmap__gtt(i915, spin->handle, 4096, PROT_READ); x = ptr + ((uintptr_t)spin->condition & 4095) / sizeof(*ptr); igt_assert_eq_u32(READ_ONCE(*x), spin->cmd_precondition); igt_debug("Faulting in busy userptr\n"); *mem = 0xdeadbeef; igt_debug("Resetting GPU\n"); igt_assert(gem_bo_busy(i915, spin->handle)); igt_assert(gem_bo_busy(i915, handle)); igt_force_gpu_reset(i915); /* Check we reset the busy mmap */ igt_debug("Cancelling busy userptr\n"); munmap(mem, 2 << 20); gem_close(i915, handle); gem_sync(i915, spin->handle); igt_assert_eq(sync_fence_status(spin->out_fence), -5); igt_assert_eq_u32(READ_ONCE(*x), spin->cmd_precondition); munmap(ptr, 4096); igt_spin_free(i915, spin); put_ahnd(ahnd); igt_disallow_hang(i915, hang); intel_ctx_destroy(i915, ctx); } static int min_tile_width(uint32_t devid, int tiling) { if (tiling < 0) { if (intel_gen(devid) >= 4) return 4096 - min_tile_width(devid, -tiling); else return 1024; } if (intel_gen(devid) == 2) return 128; else if (tiling == I915_TILING_X) return 512; else if (IS_915(devid)) return 512; else return 128; } static int max_tile_width(uint32_t devid, int tiling) { if (tiling < 0) { if (intel_gen(devid) >= 4) return 4096 + min_tile_width(devid, -tiling); else return 2048; } if (intel_gen(devid) >= 7) return 256 << 10; else if (intel_gen(devid) >= 4) return 128 << 10; else return 8 << 10; } static bool known_swizzling(int fd, uint32_t handle) { struct drm_i915_gem_get_tiling2 { uint32_t handle; uint32_t tiling_mode; uint32_t swizzle_mode; uint32_t phys_swizzle_mode; } arg = { .handle = handle, }; #define DRM_IOCTL_I915_GEM_GET_TILING2 DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling2) if (igt_ioctl(fd, DRM_IOCTL_I915_GEM_GET_TILING2, &arg)) return false; return arg.phys_swizzle_mode == arg.swizzle_mode; } static void test_huge_bo(int fd, int huge, int tiling) { uint32_t bo; char *ptr; char *tiled_pattern; char *linear_pattern; uint64_t size, last_offset; uint32_t devid = intel_get_drm_devid(fd); int pitch = min_tile_width(devid, tiling); int i; switch (huge) { case -1: size = gem_mappable_aperture_size(fd) / 2; /* Power of two fence size, natural fence * alignment, and the guard page at the end * gtt means that if the entire gtt is * mappable, we can't usually fit in a tiled * object half the size of the gtt. Let's use * a quarter size one instead. */ if (tiling && intel_gen(intel_get_drm_devid(fd)) < 4 && size >= gem_global_aperture_size(fd) / 2) size /= 2; break; case 0: size = gem_mappable_aperture_size(fd) + PAGE_SIZE; break; default: size = gem_global_aperture_size(fd) + PAGE_SIZE; break; } igt_require_memory(1, size, CHECK_RAM); last_offset = size - PAGE_SIZE; /* Create pattern */ bo = gem_create(fd, PAGE_SIZE); if (tiling) igt_require(__gem_set_tiling(fd, bo, tiling, pitch) == 0); igt_require(known_swizzling(fd, bo)); linear_pattern = gem_mmap__gtt(fd, bo, PAGE_SIZE, PROT_READ | PROT_WRITE); for (i = 0; i < PAGE_SIZE; i++) linear_pattern[i] = i; tiled_pattern = gem_mmap__cpu(fd, bo, 0, PAGE_SIZE, PROT_READ); gem_set_domain(fd, bo, I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT, 0); gem_close(fd, bo); bo = gem_create(fd, size); if (tiling) igt_require(__gem_set_tiling(fd, bo, tiling, pitch) == 0); /* Initialise first/last page through CPU mmap */ ptr = gem_mmap__cpu(fd, bo, 0, size, PROT_READ | PROT_WRITE); memcpy(ptr, tiled_pattern, PAGE_SIZE); memcpy(ptr + last_offset, tiled_pattern, PAGE_SIZE); munmap(ptr, size); /* Obtain mapping for the object through GTT. */ ptr = __gem_mmap__gtt(fd, bo, size, PROT_READ | PROT_WRITE); igt_require_f(ptr, "Huge BO GTT mapping not supported.\n"); set_domain_gtt(fd, bo); /* Access through GTT should still provide the CPU written values. */ igt_assert(memcmp(ptr , linear_pattern, PAGE_SIZE) == 0); igt_assert(memcmp(ptr + last_offset, linear_pattern, PAGE_SIZE) == 0); gem_set_tiling(fd, bo, I915_TILING_NONE, 0); igt_assert(memcmp(ptr , tiled_pattern, PAGE_SIZE) == 0); igt_assert(memcmp(ptr + last_offset, tiled_pattern, PAGE_SIZE) == 0); munmap(ptr, size); gem_close(fd, bo); munmap(tiled_pattern, PAGE_SIZE); munmap(linear_pattern, PAGE_SIZE); } static void copy_wc_page(void *dst, const void *src) { igt_memcpy_from_wc(dst, src, PAGE_SIZE); } static unsigned int tile_row_size(int tiling, unsigned int stride) { if (tiling < 0) tiling = -tiling; return stride * (tiling == I915_TILING_Y ? 32 : 8); } #define rounddown(x, y) (x - (x%y)) static void test_huge_copy(int fd, int huge, int tiling_a, int tiling_b, int ncpus) { const uint32_t devid = intel_get_drm_devid(fd); uint64_t huge_object_size, i; unsigned mode = CHECK_RAM; switch (huge) { case -2: huge_object_size = gem_mappable_aperture_size(fd) / 4; break; case -1: huge_object_size = gem_mappable_aperture_size(fd) / 2; break; case 0: huge_object_size = gem_mappable_aperture_size(fd) + PAGE_SIZE; break; case 1: huge_object_size = gem_global_aperture_size(fd) + PAGE_SIZE; break; default: huge_object_size = (igt_get_total_ram_mb() << 19) + PAGE_SIZE; mode |= CHECK_SWAP; break; } igt_require_memory(2*ncpus, huge_object_size, mode); igt_fork(child, ncpus) { uint64_t valid_size = huge_object_size; uint32_t bo[2]; char *a, *b; bo[0] = gem_create(fd, huge_object_size); if (tiling_a) { igt_require(__gem_set_tiling(fd, bo[0], abs(tiling_a), min_tile_width(devid, tiling_a)) == 0); valid_size = rounddown(valid_size, tile_row_size(tiling_a, min_tile_width(devid, tiling_a))); } a = __gem_mmap__gtt(fd, bo[0], huge_object_size, PROT_READ | PROT_WRITE); igt_require(a); bo[1] = gem_create(fd, huge_object_size); if (tiling_b) { igt_require(__gem_set_tiling(fd, bo[1], abs(tiling_b), max_tile_width(devid, tiling_b)) == 0); valid_size = rounddown(valid_size, tile_row_size(tiling_b, max_tile_width(devid, tiling_b))); } b = __gem_mmap__gtt(fd, bo[1], huge_object_size, PROT_READ | PROT_WRITE); igt_require(b); gem_set_domain(fd, bo[0], I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); for (i = 0; i < valid_size / PAGE_SIZE; i++) { uint32_t *ptr = (uint32_t *)(a + PAGE_SIZE*i); for (int j = 0; j < PAGE_SIZE/4; j++) ptr[j] = i + j; igt_progress("Writing a ", i, valid_size / PAGE_SIZE); } gem_set_domain(fd, bo[1], I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); for (i = 0; i < valid_size / PAGE_SIZE; i++) { uint32_t *ptr = (uint32_t *)(b + PAGE_SIZE*i); for (int j = 0; j < PAGE_SIZE/4; j++) ptr[j] = ~(i + j); igt_progress("Writing b ", i, valid_size / PAGE_SIZE); } for (i = 0; i < valid_size / PAGE_SIZE; i++) { uint32_t *A = (uint32_t *)(a + PAGE_SIZE*i); uint32_t *B = (uint32_t *)(b + PAGE_SIZE*i); uint32_t A_tmp[PAGE_SIZE/sizeof(uint32_t)]; uint32_t B_tmp[PAGE_SIZE/sizeof(uint32_t)]; copy_wc_page(A_tmp, A); copy_wc_page(B_tmp, B); for (int j = 0; j < PAGE_SIZE/4; j++) if ((i + j) & 1) A_tmp[j] = B_tmp[j]; else B_tmp[j] = A_tmp[j]; gem_set_domain(fd, bo[0], I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); memcpy(A, A_tmp, PAGE_SIZE); gem_set_domain(fd, bo[1], I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); memcpy(B, B_tmp, PAGE_SIZE); igt_progress("Copying a<->b ", i, valid_size / PAGE_SIZE); } gem_close(fd, bo[0]); gem_close(fd, bo[1]); for (i = 0; i < valid_size / PAGE_SIZE; i++) { uint32_t page[PAGE_SIZE/sizeof(uint32_t)]; copy_wc_page(page, a + PAGE_SIZE*i); for (int j = 0; j < PAGE_SIZE/sizeof(uint32_t); j++) if ((i + j) & 1) igt_assert_eq_u32(page[j], ~(i + j)); else igt_assert_eq_u32(page[j], i + j); igt_progress("Checking a ", i, valid_size / PAGE_SIZE); } munmap(a, huge_object_size); for (i = 0; i < valid_size / PAGE_SIZE; i++) { uint32_t page[PAGE_SIZE/sizeof(uint32_t)]; copy_wc_page(page, b + PAGE_SIZE*i); for (int j = 0; j < PAGE_SIZE/sizeof(uint32_t); j++) if ((i + j) & 1) igt_assert_eq_u32(page[j], ~(i + j)); else igt_assert_eq_u32(page[j], i + j); igt_progress("Checking b ", i, valid_size / PAGE_SIZE); } munmap(b, huge_object_size); } igt_waitchildren(); } static void test_read(int fd) { void *dst; uint32_t src; /* copy from a fresh src to fresh dst to force pagefault on both */ dst = create_pointer(fd); src = gem_create(fd, OBJECT_SIZE); gem_read(fd, src, 0, dst, OBJECT_SIZE); gem_close(fd, src); munmap(dst, OBJECT_SIZE); } static void test_write_cpu_read_gtt(int fd) { uint32_t handle; uint32_t *src, *dst; igt_require(gem_has_llc(fd)); handle = gem_create(fd, OBJECT_SIZE); dst = gem_mmap__gtt(fd, handle, OBJECT_SIZE, PROT_READ); src = gem_mmap__cpu(fd, handle, 0, OBJECT_SIZE, PROT_WRITE); gem_close(fd, handle); memset(src, 0xaa, OBJECT_SIZE); igt_assert(memcmp(dst, src, OBJECT_SIZE) == 0); munmap(src, OBJECT_SIZE); munmap(dst, OBJECT_SIZE); } struct thread_fault_concurrent { pthread_t thread; int id; int *ctl; uint32_t **ptr; }; static void * thread_fault_concurrent(void *closure) { struct thread_fault_concurrent *t = closure; uint32_t val = 0; int n; for (n = 0; READ_ONCE(*t->ctl); n++) { unsigned int id = (n + t->id) % 32; uint32_t sz = *t->ptr[id] - 1; int idx = rand() % sz + 1; igt_assert(t->ptr[id][0]); igt_assert(idx); /* avoid overwriting the size */ if (n & 1) t->ptr[id][idx] = val; else val = t->ptr[id][idx]; val++; } return NULL; } static void test_fault_concurrent(int fd, int tiling) { uint32_t *ptr[32]; struct thread_fault_concurrent thread[64]; int *ctl; int n; if (tiling != I915_TILING_NONE) igt_require(gem_available_fences(fd) > 0); ctl = create_pointer_size(fd, 4096, I915_TILING_NONE); *ctl = 1; for (n = 0; n < 32; n++) { uint32_t sz = (n + 1) << 19; /* 512KiB increments */ ptr[n] = create_pointer_size(fd, sz, tiling); *ptr[n] = sz / sizeof(uint32_t); /* num_elems for convenience */ } __sync_synchronize(); for (n = 0; n < 64; n++) { thread[n].ptr = ptr; thread[n].id = n; thread[n].ctl = ctl; pthread_create(&thread[n].thread, NULL, thread_fault_concurrent, &thread[n]); } sleep(2); *ctl = 0; __sync_synchronize(); for (n = 0; n < 64; n++) pthread_join(thread[n].thread, NULL); for (n = 0; n < 32; n++) munmap(ptr[n], *ptr[n] * sizeof(uint32_t)); munmap(ctl, 4096); } static int mmap_ioctl(int i915, struct drm_i915_gem_mmap_gtt *arg) { int err = 0; if (igt_ioctl(i915, DRM_IOCTL_I915_GEM_MMAP_GTT, arg)) err = -errno; errno = 0; return err; } int fd; igt_main { if (igt_run_in_simulation()) OBJECT_SIZE = 1 * 1024 * 1024; igt_fixture { fd = drm_open_driver(DRIVER_INTEL); /* * If the HW lacks or does not expose an aperture for indirect * detiling access from untrusted userspace to the objects, * the kernel does an early rejection of the mmap_gtt ioctl. */ gem_require_mappable_ggtt(fd); } igt_describe("Verify mapping to invalid gem objects fails."); igt_subtest("bad-object") { uint32_t real_handle = gem_create(fd, 4096); uint32_t handles[20]; size_t i = 0, len; handles[i++] = 0xdeadbeef; for(int bit = 0; bit < 16; bit++) handles[i++] = real_handle | (1 << (bit + 16)); handles[i++] = real_handle + 1; len = i; for (i = 0; i < len; ++i) { struct drm_i915_gem_mmap_gtt arg = { .handle = handles[i], }; igt_assert_eq(mmap_ioctl(fd, &arg), -ENOENT); } gem_close(fd, real_handle); } igt_describe("Basic checks of GEM_MMAP_GTT ioctl."); igt_subtest("basic") test_access(fd); igt_describe("Test mmaping less than the full object."); igt_subtest("basic-short") test_short(fd); igt_describe("Test copy between two GTT mmappings."); igt_subtest("basic-copy") test_copy(fd); igt_describe("Test to read content from GTT mmapped object."); igt_subtest("basic-read") test_read(fd); igt_describe("Test to write content to GTT mmapped object."); igt_subtest("basic-write") test_write(fd); igt_describe("Test creates a prefault object into GTT and " "writes into it from another GTT mmapped."); igt_subtest("basic-write-gtt") test_write_gtt(fd); igt_describe("Inspect a GTT mmap using ptrace()."); igt_subtest("ptrace") test_ptrace(fd); igt_describe("Check whether a write through the GTT is immediately visible to the CPU."); igt_subtest("coherency") test_coherency(fd); igt_describe("Check the userspace clflushing of the GTT mmap."); igt_subtest("clflush") test_clflush(fd); igt_describe("Check read/writes across a GPU reset."); igt_subtest("hang") test_hang(fd); igt_describe("Exercise the GTT mmap revocation for a reset on a busy object."); igt_subtest("hang-busy") test_hang_busy(fd); igt_describe("Mix a busy hang with GTT and userptr."); igt_subtest("hang-user") test_hang_user(fd); igt_describe("Check basic read->write order of a GTT mmapped bo."); igt_subtest("basic-read-write") test_read_write(fd, READ_BEFORE_WRITE); igt_describe("Check basic write->read order of a GTT mmapped bo."); igt_subtest("basic-write-read") test_read_write(fd, READ_AFTER_WRITE); igt_describe("Check distinct read->write order of a GTT mmapped bo."); igt_subtest("basic-read-write-distinct") test_read_write2(fd, READ_BEFORE_WRITE); igt_describe("Check distinct write->read order of a GTT mmapped bo."); igt_subtest("basic-write-read-distinct") test_read_write2(fd, READ_AFTER_WRITE); igt_describe("Excercise concurrent pagefaulting of a GTT mmaped bo."); igt_subtest("fault-concurrent") test_fault_concurrent(fd, I915_TILING_NONE); igt_describe("Excercise concurrent pagefaulting of a X-tiled GTT mmaped bo."); igt_subtest("fault-concurrent-X") test_fault_concurrent(fd, I915_TILING_X); igt_describe("Excercise concurrent pagefaulting of a Y-tiled GTT mmaped bo."); igt_subtest("fault-concurrent-Y") test_fault_concurrent(fd, I915_TILING_Y); igt_describe("Check coherency between GTT and CPU mmappings with LLC."); igt_subtest("basic-write-cpu-read-gtt") test_write_cpu_read_gtt(fd); igt_describe("Check the performance of WC writes with WC reads of GTT " "and WC writes of GTT with WB writes of CPU."); igt_subtest("basic-wc") test_wc(fd); igt_describe("Test mmap_offset lifetime, closing the object on" " another file should not affect the local mmap_offset."); igt_subtest("isolation") test_isolation(fd); igt_describe("Test MMAP_GTT extension validity."); igt_subtest("zero-extend") test_zero_extend(fd); igt_describe("Test to check that a few threads opening and closing handles" " cause explosion in other threads in the process of mmaping that handle."); igt_subtest("close-race") test_close_race(fd); igt_describe("Test to check that a few threads opening and closing flink handles" " cause explosion in other threads in the process of mmaping that handle."); igt_subtest("flink-race") test_flink_race(fd); igt_describe("Check that the initial pagefault is non-blocking."); igt_subtest("pf-nonblock") test_pf_nonblock(fd); igt_describe("Check mmap access to a small buffer object by CPU directly" " and through GTT in sequence."); igt_subtest("basic-small-bo") test_huge_bo(fd, -1, I915_TILING_NONE); igt_describe("Check mmap access to a small X-tiled buffer object by CPU " "directly and through GTT in sequence."); igt_subtest("basic-small-bo-tiledX") test_huge_bo(fd, -1, I915_TILING_X); igt_describe("Check mmap access to a small Y-tiled buffer object by CPU " "directly and through GTT in sequence."); igt_subtest("basic-small-bo-tiledY") test_huge_bo(fd, -1, I915_TILING_Y); igt_describe("Check mmap access to a big buffer object by CPU directly " "and through GTT in sequence."); igt_subtest("big-bo") test_huge_bo(fd, 0, I915_TILING_NONE); igt_describe("Check mmap access to a big X-tiled buffer object by CPU " "directly and through GTT in sequence."); igt_subtest("big-bo-tiledX") test_huge_bo(fd, 0, I915_TILING_X); igt_describe("Check mmap access to a big Y-tiled buffer object by CPU " "directly and through GTT in sequence."); igt_subtest("big-bo-tiledY") test_huge_bo(fd, 0, I915_TILING_Y); igt_describe("Check mmap access to a huge buffer object by CPU directly " "and through GTT in sequence."); igt_subtest("huge-bo") test_huge_bo(fd, 1, I915_TILING_NONE); igt_describe("Check mmap access to a huge X-tiled buffer object by CPU " "directly and through GTT in sequence."); igt_subtest("huge-bo-tiledX") test_huge_bo(fd, 1, I915_TILING_X); igt_describe("Check mmap access to a huge Y-tiled buffer object by CPU " "directly and through GTT in sequence."); igt_subtest("huge-bo-tiledY") test_huge_bo(fd, 1, I915_TILING_Y); igt_subtest_group { const struct copy_size { const char *prefix; int size; const char *description; } copy_sizes[] = { { "basic-small", -2, "small bo's." }, { "medium", -1, "medium bo's." }, { "big", 0, "big bo's." }, { "huge", 1, "huge bo's." }, { "swap", 2, "huge bo's larger than physical memory" " and resulting in thrashing of swap space." }, { } }; const struct copy_mode { const char *suffix; int tiling_x, tiling_y; const char *description; } copy_modes[] = { { "", I915_TILING_NONE, I915_TILING_NONE, "normal"}, { "-XY", I915_TILING_X, I915_TILING_Y, "tiled"}, { "-odd", -I915_TILING_X, -I915_TILING_Y, "odd tiled"}, {} }; const int ncpus = sysconf(_SC_NPROCESSORS_ONLN); for (const struct copy_size *s = copy_sizes; s->prefix; s++) for (const struct copy_mode *m = copy_modes; m->suffix; m++) { igt_describe_f("Check page by page copying between two GTT" " mmapped %s-%s", m->description, s->description); igt_subtest_f("%s-copy%s", s->prefix, m->suffix) test_huge_copy(fd, s->size, m->tiling_x, m->tiling_y, 1); igt_describe_f("Add forked contention with lighter variant" " (single cpu) and check page by page copying" " between two GTT mmapped %s-%s", m->description, s->description); igt_subtest_f("cpuset-%s-copy%s", s->prefix, m->suffix) { cpu_set_t cpu, old; sched_getaffinity(0, sizeof(old), &old); CPU_ZERO(&cpu); CPU_SET(0, &cpu); igt_assert(sched_setaffinity(0, sizeof(cpu), &cpu) == 0); test_huge_copy(fd, s->size, m->tiling_x, m->tiling_y, 2); igt_assert(sched_setaffinity(0, sizeof(old), &old) == 0); } igt_describe_f("Add forked contention and check page by page" " copying between two GTT mmapped %s-%s", m->description, s->description); igt_subtest_f("forked-%s-copy%s", s->prefix, m->suffix) test_huge_copy(fd, s->size, m->tiling_x, m->tiling_y, ncpus); } } igt_fixture close(fd); }