// SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ /** @file i915_vm_bind_basic.c * * This is the basic test for VM_BIND functionality. * * The goal is to ensure that basics work. */ #include #include "i915/gem.h" #include "igt.h" #include "igt_syncobj.h" #include #include #include #include #include #include #include #include #include #include #include "drm.h" #include "i915/gem_vm.h" #define PAGE_SIZE 4096 #define PAGE_SHIFT 12 #define GEN9_XY_FAST_COPY_BLT_CMD (2 << 29 | 0x42 << 22) #define BLT_DEPTH_32 (3 << 24) #define DEFAULT_BUFF_SIZE (4 * PAGE_SIZE) #define SZ_64K (16 * PAGE_SIZE) #define SZ_2M (512 * PAGE_SIZE) #define MAX_CTXTS 2 #define MAX_CMDS 4 #define BATCH_FENCE 0 #define SRC_FENCE 1 #define DST_FENCE 2 #define EXEC_FENCE 3 #define NUM_FENCES 4 enum { BATCH_MAP, SRC_MAP, DST_MAP = SRC_MAP + MAX_CMDS, MAX_MAP }; struct mapping { uint32_t obj; uint64_t va; uint64_t offset; uint64_t length; uint64_t flags; }; #define SET_MAP(map, _obj, _va, _offset, _length, _flags) \ { \ (map).obj = _obj; \ (map).va = _va; \ (map).offset = _offset; \ (map).length = _length; \ (map).flags = _flags; \ } #define MAX_BATCH_DWORD 64 #define abs(x) ((x) >= 0 ? (x) : -(x)) #define TEST_SMEM BIT(0) #define TEST_SKIP_UNBIND BIT(1) #define TEST_SHARE_VM BIT(2) #define is_lmem(cfg) (!((cfg)->flags & TEST_SMEM)) #define do_unbind(cfg) (!((cfg)->flags & TEST_SKIP_UNBIND)) #define do_share_vm(cfg) ((cfg)->flags & TEST_SHARE_VM) struct test_cfg { const char *name; uint32_t size; uint8_t num_cmds; uint32_t num_ctxts; uint32_t flags; }; static uint64_t gettime_ns(void) { struct timespec current; clock_gettime(CLOCK_MONOTONIC, ¤t); return (uint64_t)current.tv_sec * NSEC_PER_SEC + current.tv_nsec; } static bool syncobj_busy(int fd, uint32_t handle) { bool result; int sf; sf = syncobj_handle_to_fd(fd, handle, DRM_SYNCOBJ_HANDLE_TO_FD_FLAGS_EXPORT_SYNC_FILE); result = poll(&(struct pollfd){sf, POLLIN}, 1, 0) == 0; close(sf); return result; } static inline void i915_vm_bind(int fd, uint32_t vm_id, struct mapping *m, struct drm_i915_gem_timeline_fence *fence) { struct drm_i915_gem_vm_bind bind; memset(&bind, 0, sizeof(bind)); bind.vm_id = vm_id; bind.handle = m->obj; bind.start = m->va; bind.offset = m->offset; bind.length = m->length; bind.flags = m->flags; if (fence) { bind.fence.flags |= I915_TIMELINE_FENCE_SIGNAL; bind.fence.handle = syncobj_create(fd, 0); bind.fence.value = 0; fence->handle = bind.fence.handle; fence->flags = I915_TIMELINE_FENCE_WAIT; fence->value = bind.fence.value; } igt_info("VM_BIND vm:0x%x h:0x%x v:0x%lx o:0x%lx l:0x%lx f:0x%llx\n", vm_id, m->obj, m->va, m->offset, m->length, bind.flags); gem_vm_bind(fd, &bind); } static inline void i915_vm_unbind(int fd, uint32_t vm_id, struct mapping *m) { struct drm_i915_gem_vm_unbind unbind; /* Object handle is not required during unbind */ igt_info("VM_UNBIND vm:0x%x v:0x%lx l:0x%lx f:0x%lx\n", vm_id, m->va, m->length, m->flags); memset(&unbind, 0, sizeof(unbind)); unbind.vm_id = vm_id; unbind.start = m->va; unbind.length = m->length; unbind.flags = m->flags; gem_vm_unbind(fd, &unbind); } static void print_buffer(void *buf, uint32_t size, const char *str, bool full) { uint32_t i = 0; igt_debug("Printing %s 0x%lx size 0x%x\n", str, (uint64_t)buf, size); while (i < size) { uint32_t *b = buf + i; igt_debug("\t%s[0x%04x]: 0x%08x 0x%08x 0x%08x 0x%08x %s\n", str, i, b[0], b[1], b[2], b[3], full ? "" : "..."); i += full ? 16 : PAGE_SIZE; } } static int gem_linear_fast_blt(uint32_t *batch, uint64_t src, uint64_t dst, uint32_t size) { uint32_t *cmd = batch; uint64_t src_offset = (uint64_t)src; uint64_t dst_offset = (uint64_t)dst; *cmd++ = GEN9_XY_FAST_COPY_BLT_CMD | (10 - 2); *cmd++ = BLT_DEPTH_32 | PAGE_SIZE; *cmd++ = 0; *cmd++ = size >> PAGE_SHIFT << 16 | PAGE_SIZE / 4; *cmd++ = lower_32_bits(dst_offset); *cmd++ = upper_32_bits(dst_offset); *cmd++ = 0; *cmd++ = PAGE_SIZE; *cmd++ = lower_32_bits(src_offset); *cmd++ = upper_32_bits(src_offset); *cmd++ = MI_BATCH_BUFFER_END; *cmd++ = 0; return ALIGN((cmd - batch + 1) * sizeof(uint32_t), 8); } static void __gem_copy(int fd, uint64_t src, uint64_t dst, uint32_t offset, uint32_t size, uint32_t ctx_id, void *batch_addr, unsigned int eb_flags, struct drm_i915_gem_timeline_fence *fence) { uint32_t len, buf[MAX_BATCH_DWORD] = { 0 }; struct drm_i915_gem_execbuffer3 execbuf; len = gem_linear_fast_blt(buf, src + offset, dst + offset, size); memcpy(batch_addr, (void *)buf, len); print_buffer(buf, len, "batch", true); memset(&execbuf, 0, sizeof(execbuf)); execbuf.ctx_id = ctx_id; execbuf.batch_address = (uint64_t)&batch_addr; execbuf.engine_idx = eb_flags; execbuf.fence_count = NUM_FENCES; execbuf.timeline_fences = to_user_pointer(fence); gem_execbuf3(fd, &execbuf); } static void i915_gem_copy(int fd, uint64_t src, uint64_t dst, uint32_t size, const intel_ctx_t **ctx, uint32_t num_ctxts, void **batch_addr, unsigned int eb_flags, struct drm_i915_gem_timeline_fence (*fence)[NUM_FENCES]) { uint32_t i, delta = size / num_ctxts; for (i = 0; i < num_ctxts; i++) { igt_info("Issuing gem copy on ctx 0x%x\n", ctx[i]->id); __gem_copy(fd, src, dst, (i * delta), delta, ctx[i]->id, batch_addr[i], eb_flags, fence[i]); } } static void i915_gem_sync(int fd, const intel_ctx_t **ctx, uint32_t num_ctxts, struct drm_i915_gem_timeline_fence (*fence)[NUM_FENCES]) { uint32_t i; for (i = 0; i < num_ctxts; i++) { uint64_t fence_value = 0; igt_assert(syncobj_timeline_wait(fd, &fence[i][EXEC_FENCE].handle, (uint64_t *)&fence_value, 1, gettime_ns() + (2 * NSEC_PER_SEC), DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT, NULL)); igt_assert(!syncobj_busy(fd, fence[i][EXEC_FENCE].handle)); igt_info("gem copy completed on ctx 0x%x\n", ctx[i]->id); } } static struct igt_collection *get_region_set(int fd, struct test_cfg *cfg) { uint32_t mem_type[] = { I915_SYSTEM_MEMORY, I915_DEVICE_MEMORY }; uint32_t lmem_type[] = { I915_DEVICE_MEMORY }; struct drm_i915_query_memory_regions *query_info; query_info = gem_get_query_memory_regions(fd); igt_assert(query_info); if (is_lmem(cfg)) return __get_memory_region_set(query_info, lmem_type, 1); else return __get_memory_region_set(query_info, mem_type, 2); } static void create_src_objs(int fd, struct test_cfg *cfg, uint32_t src[], uint32_t size, uint32_t num_cmds, void *src_addr[]) { int i; struct igt_collection *set = get_region_set(fd, cfg); uint32_t region; for (i = 0; i < num_cmds; i++) { region = igt_collection_get_value(set, i % set->size); src[i] = gem_create_in_memory_regions(fd, size, region); src_addr[i] = gem_mmap__cpu(fd, src[i], 0, size, PROT_WRITE); } } static void destroy_src_objs(int fd, struct test_cfg *cfg, uint32_t src[], uint32_t size, uint32_t num_cmds, void *src_addr[]) { int i; for (i = 0; i < num_cmds; i++) { igt_assert(gem_munmap(src_addr[i], size) == 0); igt_debug("Closing object 0x%x\n", src[i]); gem_close(fd, src[i]); } } static uint32_t create_dst_obj(int fd, struct test_cfg *cfg, uint32_t size, void **dst_addr) { uint32_t dst; struct igt_collection *set = get_region_set(fd, cfg); dst = gem_create_in_memory_regions(fd, size, igt_collection_get_value(set, 0)); *dst_addr = gem_mmap__cpu(fd, dst, 0, size, PROT_WRITE); return dst; } static void destroy_dst_obj(int fd, struct test_cfg *cfg, uint32_t dst, uint32_t size, void *dst_addr) { igt_assert(gem_munmap(dst_addr, size) == 0); igt_debug("Closing object 0x%x\n", dst); gem_close(fd, dst); } static void pattern_fill_buf(void *src_addr[], uint32_t size, uint32_t num_cmds, uint32_t npages) { uint32_t i, j; void *buf; /* Allocate buffer and fill pattern */ buf = malloc(size); igt_require(buf); for (i = 0; i < num_cmds; i++) { for (j = 0; j < npages; j++) memset(buf + j * PAGE_SIZE, i * npages + j + 1, PAGE_SIZE); memcpy(src_addr[i], buf, size); } free(buf); } static void run_test(int fd, const intel_ctx_t *base_ctx, struct test_cfg *cfg, const struct intel_execution_engine2 *e) { void *src_addr[MAX_CMDS] = { 0 }, *dst_addr = NULL; uint32_t src[MAX_CMDS], dst, i, size = cfg->size; struct drm_i915_gem_timeline_fence exec_fence[MAX_CTXTS][NUM_FENCES]; uint32_t shared_vm_id, vm_id[MAX_CTXTS]; struct mapping map[MAX_CTXTS][MAX_MAP]; uint32_t num_ctxts = cfg->num_ctxts; uint32_t num_cmds = cfg->num_cmds; uint32_t npages = size / PAGE_SIZE; const intel_ctx_t *ctx[MAX_CTXTS]; bool share_vm = do_share_vm(cfg); void *batch_addr[MAX_CTXTS]; uint32_t batch[MAX_CTXTS]; uint64_t src_va, dst_va; uint32_t delta; delta = size / num_ctxts; if (share_vm) shared_vm_id = gem_vm_create_in_vm_bind_mode(fd); /* Create contexts */ num_ctxts = min_t(num_ctxts, MAX_CTXTS, num_ctxts); for (i = 0; i < num_ctxts; i++) { uint32_t vmid; if (share_vm) vmid = shared_vm_id; else vmid = gem_vm_create_in_vm_bind_mode(fd); ctx[i] = intel_ctx_create(fd, &base_ctx->cfg); gem_context_set_vm(fd, ctx[i]->id, vmid); vm_id[i] = gem_context_get_vm(fd, ctx[i]->id); exec_fence[i][EXEC_FENCE].handle = syncobj_create(fd, 0); exec_fence[i][EXEC_FENCE].flags = I915_TIMELINE_FENCE_SIGNAL; exec_fence[i][EXEC_FENCE].value = 0; } /* Create objects */ num_cmds = min_t(num_cmds, MAX_CMDS, num_cmds); create_src_objs(fd, cfg, src, size, num_cmds, src_addr); dst = create_dst_obj(fd, cfg, size, &dst_addr); /* * mmap'ed addresses are not 64K aligned. On platforms requiring * 64K alignment, use static addresses. */ if (size < SZ_2M && num_cmds && !HAS_64K_PAGES(intel_get_drm_devid(fd))) { src_va = (uint64_t)src_addr[0]; dst_va = (uint64_t)dst_addr; } else { src_va = 0xa000000; dst_va = 0xb000000; } pattern_fill_buf(src_addr, size, num_cmds, npages); if (num_cmds) print_buffer(src_addr[num_cmds - 1], size, "src_obj", false); for (i = 0; i < num_ctxts; i++) { batch[i] = gem_create_vm_private_in_memory_regions(fd, PAGE_SIZE, vm_id[i], REGION_SMEM); batch_addr[i] = gem_mmap__cpu(fd, batch[i], 0, PAGE_SIZE, PROT_WRITE); } /* Create mappings */ for (i = 0; i < num_ctxts; i++) { uint64_t offset = i * delta; uint32_t j; for (j = 0; j < num_cmds; j++) SET_MAP(map[i][SRC_MAP + j], src[j], src_va + offset, offset, delta, 0); SET_MAP(map[i][DST_MAP], dst, dst_va + offset, offset, delta, 0); SET_MAP(map[i][BATCH_MAP], batch[i], (uint64_t)batch_addr[i], 0, PAGE_SIZE, 0); } /* Bind the buffers to device page table */ for (i = 0; i < num_ctxts; i++) { i915_vm_bind(fd, vm_id[i], &map[i][BATCH_MAP], &exec_fence[i][BATCH_FENCE]); i915_vm_bind(fd, vm_id[i], &map[i][DST_MAP], &exec_fence[i][DST_FENCE]); } /* Have GPU do the copy */ for (i = 0; i < cfg->num_cmds; i++) { uint32_t j; for (j = 0; j < num_ctxts; j++) i915_vm_bind(fd, vm_id[j], &map[j][SRC_MAP + i], &exec_fence[j][SRC_FENCE]); i915_gem_copy(fd, src_va, dst_va, size, ctx, num_ctxts, batch_addr, e->flags, exec_fence); i915_gem_sync(fd, ctx, num_ctxts, exec_fence); for (j = 0; j < num_ctxts; j++) { syncobj_destroy(fd, exec_fence[j][SRC_FENCE].handle); if (do_unbind(cfg)) i915_vm_unbind(fd, vm_id[j], &map[j][SRC_MAP + i]); } } /* * Unbind buffers from device page table. * If not, it should get unbound while freeing the buffer. */ for (i = 0; i < num_ctxts; i++) { syncobj_destroy(fd, exec_fence[i][BATCH_FENCE].handle); syncobj_destroy(fd, exec_fence[i][DST_FENCE].handle); if (do_unbind(cfg)) { i915_vm_unbind(fd, vm_id[i], &map[i][BATCH_MAP]); i915_vm_unbind(fd, vm_id[i], &map[i][DST_MAP]); } } /* Close batch buffers */ for (i = 0; i < num_ctxts; i++) { syncobj_destroy(fd, exec_fence[i][EXEC_FENCE].handle); gem_close(fd, batch[i]); } /* Accessing the buffer will migrate the pages from device to host */ print_buffer(dst_addr, size, "dst_obj", false); /* Validate by comparing the last SRC with DST */ if (num_cmds) igt_assert(memcmp(src_addr[num_cmds - 1], dst_addr, size) == 0); /* Free the objects */ destroy_src_objs(fd, cfg, src, size, num_cmds, src_addr); destroy_dst_obj(fd, cfg, dst, size, dst_addr); /* Done with the contexts */ for (i = 0; i < num_ctxts; i++) { igt_debug("Destroying context 0x%x\n", ctx[i]->id); gem_vm_destroy(fd, vm_id[i]); intel_ctx_destroy(fd, ctx[i]); } if (share_vm) gem_vm_destroy(fd, shared_vm_id); } static int vm_bind_version(int fd) { struct drm_i915_getparam gp; int value = 0; memset(&gp, 0, sizeof(gp)); gp.param = I915_PARAM_VM_BIND_VERSION; gp.value = &value; ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)); errno = 0; return value; } igt_main { struct test_cfg *t, tests[] = { {"basic", 0, 1, 1, 0}, {"multi_cmds", 0, MAX_CMDS, 1, 0}, {"skip_copy", 0, 0, 1, 0}, {"skip_unbind", 0, 1, 1, TEST_SKIP_UNBIND}, {"multi_ctxts", 0, 1, MAX_CTXTS, 0}, {"share_vm", 0, 1, MAX_CTXTS, TEST_SHARE_VM}, {"64K", (16 * PAGE_SIZE), 1, 1, 0}, {"2M", SZ_2M, 1, 1, 0}, {"smem", 0, 1, 1, TEST_SMEM}, {"smem_multi_cmds", 0, MAX_CMDS, 1, TEST_SMEM}, { } }; int fd; bool has_lmem; uint32_t def_size; struct intel_execution_engine2 *e; const intel_ctx_t *ctx; igt_fixture { fd = drm_open_driver(DRIVER_INTEL); igt_require_gem(fd); igt_require(vm_bind_version(fd) == 1); has_lmem = gem_has_lmem(fd); def_size = HAS_64K_PAGES(intel_get_drm_devid(fd)) ? SZ_64K : DEFAULT_BUFF_SIZE; ctx = intel_ctx_create_all_physical(fd); } /* Adjust test variables */ for (t = tests; t->name; t++) { t->flags |= (has_lmem ? 0 : TEST_SMEM); t->size = t->size ? : (def_size * abs(t->num_ctxts)); } for (t = tests; t->name; t++) igt_subtest_with_dynamic_f("%s", t->name) for_each_ctx_engine(fd, ctx, e) { if (e->class == I915_ENGINE_CLASS_COPY) { igt_dynamic(e->name) { run_test(fd, ctx, t, e); } } } igt_fixture { intel_ctx_destroy(fd, ctx); close(fd); } igt_exit(); }