/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include #include #include #include #include #include #include "intel_bios.h" #include "intel_io.h" #include "intel_chipset.h" #include "drmtest.h" static uint32_t devid = -1; /* no bother to include "edid.h" */ #define _H_ACTIVE(x) (x[2] + ((x[4] & 0xF0) << 4)) #define _H_SYNC_OFF(x) (x[8] + ((x[11] & 0xC0) << 2)) #define _H_SYNC_WIDTH(x) (x[9] + ((x[11] & 0x30) << 4)) #define _H_BLANK(x) (x[3] + ((x[4] & 0x0F) << 8)) #define _V_ACTIVE(x) (x[5] + ((x[7] & 0xF0) << 4)) #define _V_SYNC_OFF(x) ((x[10] >> 4) + ((x[11] & 0x0C) << 2)) #define _V_SYNC_WIDTH(x) ((x[10] & 0x0F) + ((x[11] & 0x03) << 4)) #define _V_BLANK(x) (x[6] + ((x[7] & 0x0F) << 8)) #define _PIXEL_CLOCK(x) (x[0] + (x[1] << 8)) * 10000 uint8_t *VBIOS; #define INTEL_BIOS_8(_addr) (VBIOS[_addr]) #define INTEL_BIOS_16(_addr) (VBIOS[_addr] | \ (VBIOS[_addr + 1] << 8)) #define INTEL_BIOS_32(_addr) (VBIOS[_addr] | \ (VBIOS[_addr + 1] << 8) | \ (VBIOS[_addr + 2] << 16) | \ (VBIOS[_addr + 3] << 24)) #define YESNO(val) ((val) ? "yes" : "no") struct bdb_block { uint8_t id; uint16_t size; void *data; }; static const char * const seq_name[] = { "UNDEFINED", "MIPI_SEQ_ASSERT_RESET", "MIPI_SEQ_INIT_OTP", "MIPI_SEQ_DISPLAY_ON", "MIPI_SEQ_DISPLAY_OFF", "MIPI_SEQ_DEASSERT_RESET", }; struct bdb_header *bdb; struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs; static int tv_present; static int lvds_present; static int panel_type; static struct bdb_block *find_section(int section_id, int length) { struct bdb_block *block; unsigned char *base = (unsigned char *)bdb; int idx = 0; uint16_t total, current_size; unsigned char current_id; /* skip to first section */ idx += bdb->header_size; total = bdb->bdb_size; if (total > length) total = length; block = malloc(sizeof(*block)); if (!block) { fprintf(stderr, "out of memory\n"); exit(-1); } /* walk the sections looking for section_id */ while (idx + 3 < total) { current_id = *(base + idx); current_size = *(uint16_t *)(base + idx + 1); if (idx + current_size > total) return NULL; if (current_id == section_id) { block->id = current_id; block->size = current_size; block->data = base + idx + 3; return block; } idx += current_size + 3; } free(block); return NULL; } static void dump_general_features(const struct bdb_block *block) { struct bdb_general_features *features = block->data; printf("\tPanel fitting: "); switch (features->panel_fitting) { case 0: printf("disabled\n"); break; case 1: printf("text only\n"); break; case 2: printf("graphics only\n"); break; case 3: printf("text & graphics\n"); break; } printf("\tFlexaim: %s\n", YESNO(features->flexaim)); printf("\tMessage: %s\n", YESNO(features->msg_enable)); printf("\tClear screen: %d\n", features->clear_screen); printf("\tDVO color flip required: %s\n", YESNO(features->color_flip)); printf("\tExternal VBT: %s\n", YESNO(features->download_ext_vbt)); printf("\tEnable SSC: %s\n", YESNO(features->enable_ssc)); if (features->enable_ssc) { if (IS_VALLEYVIEW(devid) || IS_CHERRYVIEW(devid) || IS_BROXTON(devid)) printf("\tSSC frequency: 100 MHz\n"); else if (HAS_PCH_SPLIT(devid)) printf("\tSSC frequency: %s\n", features->ssc_freq ? "100 MHz" : "120 MHz"); else printf("\tSSC frequency: %s\n", features->ssc_freq ? "100 MHz (66 MHz on 855)" : "96 MHz (48 MHz on 855)"); } printf("\tLFP on override: %s\n", YESNO(features->enable_lfp_on_override)); printf("\tDisable SSC on clone: %s\n", YESNO(features->disable_ssc_ddt)); printf("\tDisable smooth vision: %s\n", YESNO(features->disable_smooth_vision)); printf("\tSingle DVI for CRT/DVI: %s\n", YESNO(features->single_dvi)); printf("\tLegacy monitor detect: %s\n", YESNO(features->legacy_monitor_detect)); printf("\tIntegrated CRT: %s\n", YESNO(features->int_crt_support)); printf("\tIntegrated TV: %s\n", YESNO(features->int_tv_support)); tv_present = 1; /* should be based on whether TV DAC exists */ lvds_present = 1; /* should be based on IS_MOBILE() */ } static void dump_backlight_info(const struct bdb_block *block) { struct bdb_lvds_backlight *backlight = block->data; struct blc_struct *blc; if (sizeof(struct blc_struct) != backlight->blcstruct_size) { printf("\tBacklight struct sizes don't match (expected %zu, got %u), skipping\n", sizeof(struct blc_struct), backlight->blcstruct_size); return; } blc = &backlight->panels[panel_type]; printf("\tInverter type: %d\n", blc->inverter_type); printf("\t polarity: %d\n", blc->inverter_polarity); printf("\t GPIO pins: %d\n", blc->gpio_pins); printf("\t GMBUS speed: %d\n", blc->gmbus_speed); printf("\t PWM freq: %d\n", blc->pwm_freq); printf("\tMinimum brightness: %d\n", blc->min_brightness); printf("\tI2C slave addr: 0x%02x\n", blc->i2c_slave_addr); printf("\tI2C command: 0x%02x\n", blc->i2c_cmd); } static const struct { unsigned short type; const char *name; } child_device_types[] = { { DEVICE_TYPE_NONE, "none" }, { DEVICE_TYPE_CRT, "CRT" }, { DEVICE_TYPE_TV, "TV" }, { DEVICE_TYPE_EFP, "EFP" }, { DEVICE_TYPE_LFP, "LFP" }, { DEVICE_TYPE_CRT_DPMS, "CRT" }, { DEVICE_TYPE_CRT_DPMS_HOTPLUG, "CRT" }, { DEVICE_TYPE_TV_COMPOSITE, "TV composite" }, { DEVICE_TYPE_TV_MACROVISION, "TV" }, { DEVICE_TYPE_TV_RF_COMPOSITE, "TV" }, { DEVICE_TYPE_TV_SVIDEO_COMPOSITE, "TV S-Video" }, { DEVICE_TYPE_TV_SCART, "TV SCART" }, { DEVICE_TYPE_TV_CODEC_HOTPLUG_PWR, "TV" }, { DEVICE_TYPE_EFP_HOTPLUG_PWR, "EFP" }, { DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR, "DVI" }, { DEVICE_TYPE_EFP_DVI_I, "DVI-I" }, { DEVICE_TYPE_EFP_DVI_D_DUAL, "DL-DVI-D" }, { DEVICE_TYPE_EFP_DVI_D_HDCP, "DVI-D" }, { DEVICE_TYPE_OPENLDI_HOTPLUG_PWR, "OpenLDI" }, { DEVICE_TYPE_OPENLDI_DUALPIX, "OpenLDI" }, { DEVICE_TYPE_LFP_PANELLINK, "PanelLink" }, { DEVICE_TYPE_LFP_CMOS_PWR, "CMOS LFP" }, { DEVICE_TYPE_LFP_LVDS_PWR, "LVDS" }, { DEVICE_TYPE_LFP_LVDS_DUAL, "LVDS" }, { DEVICE_TYPE_LFP_LVDS_DUAL_HDCP, "LVDS" }, { DEVICE_TYPE_INT_LFP, "LFP" }, { DEVICE_TYPE_INT_TV, "TV" }, { DEVICE_TYPE_DP, "DisplayPort" }, { DEVICE_TYPE_DP_HDMI_DVI, "DisplayPort/HDMI/DVI" }, { DEVICE_TYPE_DP_DVI, "DisplayPort/DVI" }, { DEVICE_TYPE_HDMI_DVI, "HDMI/DVI" }, { DEVICE_TYPE_DVI, "DVI" }, { DEVICE_TYPE_eDP, "eDP" }, }; static const int num_child_device_types = sizeof(child_device_types) / sizeof(child_device_types[0]); static const char *child_device_type(unsigned short type) { int i; for (i = 0; i < num_child_device_types; i++) if (child_device_types[i].type == type) return child_device_types[i].name; return "unknown"; } static const struct { unsigned short type; const char *name; } efp_ports[] = { { DEVICE_PORT_NONE, "N/A" }, { DEVICE_PORT_HDMIB, "HDMI-B" }, { DEVICE_PORT_HDMIC, "HDMI-C" }, { DEVICE_PORT_HDMID, "HDMI-D" }, { DEVICE_PORT_DPB, "DP-B" }, { DEVICE_PORT_DPC, "DP-C" }, { DEVICE_PORT_DPD, "DP-D" }, }; static const int num_efp_ports = sizeof(efp_ports) / sizeof(efp_ports[0]); static const char *efp_port(uint8_t type) { int i; for (i = 0; i < num_efp_ports; i++) if (efp_ports[i].type == type) return efp_ports[i].name; return "unknown"; } static const struct { unsigned short type; const char *name; } efp_conn_info[] = { { DEVICE_INFO_NONE, "N/A" }, { DEVICE_INFO_HDMI_CERT, "HDMI certified" }, { DEVICE_INFO_DP, "DisplayPort" }, { DEVICE_INFO_DVI, "DVI" }, }; static const int num_efp_conn_info = sizeof(efp_conn_info) / sizeof(efp_conn_info[0]); static const char *efp_conn(uint8_t type) { int i; for (i = 0; i < num_efp_conn_info; i++) if (efp_conn_info[i].type == type) return efp_conn_info[i].name; return "unknown"; } static void dump_child_device(struct child_device_config *child) { char child_id[11]; if (!child->device_type) return; if (bdb->version < 152) { strncpy(child_id, (char *)child->device_id, 10); child_id[10] = 0; printf("\tChild device info:\n"); printf("\t\tDevice type: %04x (%s)\n", child->device_type, child_device_type(child->device_type)); printf("\t\tSignature: %s\n", child_id); printf("\t\tAIM offset: %d\n", child->addin_offset); printf("\t\tDVO port: 0x%02x\n", child->dvo_port); } else { /* 152+ have EFP blocks here */ struct efp_child_device_config *efp = (struct efp_child_device_config *)child; printf("\tEFP device info:\n"); printf("\t\tDevice type: 0x%04x (%s)\n", efp->device_type, child_device_type(efp->device_type)); printf("\t\tPort: 0x%02x (%s)\n", efp->port, efp_port(efp->port)); printf("\t\tDDC pin: 0x%02x\n", efp->ddc_pin); printf("\t\tDock port: 0x%02x (%s)\n", efp->docked_port, efp_port(efp->docked_port)); printf("\t\tHDMI compatible? %s\n", efp->hdmi_compat ? "Yes" : "No"); printf("\t\tInfo: %s\n", efp_conn(efp->conn_info)); printf("\t\tAux channel: 0x%02x\n", efp->aux_chan); printf("\t\tDongle detect: 0x%02x\n", efp->dongle_detect); } } static void dump_general_definitions(const struct bdb_block *block) { struct bdb_general_definitions *defs = block->data; struct child_device_config *child; int i; int child_device_num; printf("\tCRT DDC GMBUS addr: 0x%02x\n", defs->crt_ddc_gmbus_pin); printf("\tUse ACPI DPMS CRT power states: %s\n", YESNO(defs->dpms_acpi)); printf("\tSkip CRT detect at boot: %s\n", YESNO(defs->skip_boot_crt_detect)); printf("\tUse DPMS on AIM devices: %s\n", YESNO(defs->dpms_aim)); printf("\tBoot display type: 0x%02x%02x\n", defs->boot_display[1], defs->boot_display[0]); printf("\tTV data block present: %s\n", YESNO(tv_present)); child_device_num = (block->size - sizeof(*defs)) / sizeof(*child); for (i = 0; i < child_device_num; i++) dump_child_device(&defs->devices[i]); } static void dump_child_devices(const struct bdb_block *block) { struct bdb_child_devices *child_devs = block->data; struct child_device_config *child; int i; for (i = 0; i < DEVICE_CHILD_SIZE; i++) { child = &child_devs->children[i]; /* Skip nonexistent children */ if (!child->device_type) continue; printf("\tChild device %d\n", i); printf("\t\tType: 0x%04x (%s)\n", child->device_type, child_device_type(child->device_type)); printf("\t\tDVO port: 0x%02x\n", child->dvo_port); printf("\t\tI2C pin: 0x%02x\n", child->i2c_pin); printf("\t\tSlave addr: 0x%02x\n", child->slave_addr); printf("\t\tDDC pin: 0x%02x\n", child->ddc_pin); printf("\t\tDVO config: 0x%02x\n", child->dvo_cfg); printf("\t\tDVO wiring: 0x%02x\n", child->dvo_wiring); } } static void dump_lvds_options(const struct bdb_block *block) { struct bdb_lvds_options *options = block->data; panel_type = options->panel_type; printf("\tPanel type: %d\n", panel_type); printf("\tLVDS EDID available: %s\n", YESNO(options->lvds_edid)); printf("\tPixel dither: %s\n", YESNO(options->pixel_dither)); printf("\tPFIT auto ratio: %s\n", YESNO(options->pfit_ratio_auto)); printf("\tPFIT enhanced graphics mode: %s\n", YESNO(options->pfit_gfx_mode_enhanced)); printf("\tPFIT enhanced text mode: %s\n", YESNO(options->pfit_text_mode_enhanced)); printf("\tPFIT mode: %d\n", options->pfit_mode); } static void dump_lvds_ptr_data(const struct bdb_block *block) { struct bdb_lvds_lfp_data_ptrs *ptrs = block->data; printf("\tNumber of entries: %d\n", ptrs->lvds_entries); /* save for use by dump_lvds_data() */ lvds_lfp_data_ptrs = ptrs; } static void dump_lvds_data(const struct bdb_block *block) { struct bdb_lvds_lfp_data *lvds_data = block->data; struct bdb_lvds_lfp_data_ptrs *ptrs = lvds_lfp_data_ptrs; int num_entries; int i; int hdisplay, hsyncstart, hsyncend, htotal; int vdisplay, vsyncstart, vsyncend, vtotal; float clock; int lfp_data_size, dvo_offset; if (!ptrs) { printf("No LVDS ptr block\n"); return; } lfp_data_size = ptrs->ptr[1].fp_timing_offset - ptrs->ptr[0].fp_timing_offset; dvo_offset = ptrs->ptr[0].dvo_timing_offset - ptrs->ptr[0].fp_timing_offset; num_entries = block->size / lfp_data_size; printf(" Number of entries: %d (preferred block marked with '*')\n", num_entries); for (i = 0; i < num_entries; i++) { uint8_t *lfp_data_ptr = (uint8_t *) lvds_data->data + lfp_data_size * i; uint8_t *timing_data = lfp_data_ptr + dvo_offset; struct bdb_lvds_lfp_data_entry *lfp_data = (struct bdb_lvds_lfp_data_entry *)lfp_data_ptr; char marker; if (i == panel_type) marker = '*'; else marker = ' '; hdisplay = _H_ACTIVE(timing_data); hsyncstart = hdisplay + _H_SYNC_OFF(timing_data); hsyncend = hsyncstart + _H_SYNC_WIDTH(timing_data); htotal = hdisplay + _H_BLANK(timing_data); vdisplay = _V_ACTIVE(timing_data); vsyncstart = vdisplay + _V_SYNC_OFF(timing_data); vsyncend = vsyncstart + _V_SYNC_WIDTH(timing_data); vtotal = vdisplay + _V_BLANK(timing_data); clock = _PIXEL_CLOCK(timing_data) / 1000; printf("%c\tpanel type %02i: %dx%d clock %d\n", marker, i, lfp_data->fp_timing.x_res, lfp_data->fp_timing.y_res, _PIXEL_CLOCK(timing_data)); printf("\t\tinfo:\n"); printf("\t\t LVDS: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.lvds_reg_val); printf("\t\t PP_ON_DELAYS: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.pp_on_reg_val); printf("\t\t PP_OFF_DELAYS: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.pp_off_reg_val); printf("\t\t PP_DIVISOR: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.pp_cycle_reg_val); printf("\t\t PFIT: 0x%08lx\n", (unsigned long)lfp_data->fp_timing.pfit_reg_val); printf("\t\ttimings: %d %d %d %d %d %d %d %d %.2f (%s)\n", hdisplay, hsyncstart, hsyncend, htotal, vdisplay, vsyncstart, vsyncend, vtotal, clock, (hsyncend > htotal || vsyncend > vtotal) ? "BAD!" : "good"); } } static void dump_driver_feature(const struct bdb_block *block) { struct bdb_driver_feature *feature = block->data; printf("\tBoot Device Algorithm: %s\n", feature->boot_dev_algorithm ? "driver default" : "os default"); printf("\tBlock display switching when DVD active: %s\n", YESNO(feature->block_display_switch)); printf("\tAllow display switching when in Full Screen DOS: %s\n", YESNO(feature->allow_display_switch)); printf("\tHot Plug DVO: %s\n", YESNO(feature->hotplug_dvo)); printf("\tDual View Zoom: %s\n", YESNO(feature->dual_view_zoom)); printf("\tDriver INT 15h hook: %s\n", YESNO(feature->int15h_hook)); printf("\tEnable Sprite in Clone Mode: %s\n", YESNO(feature->sprite_in_clone)); printf("\tUse 00000110h ID for Primary LFP: %s\n", YESNO(feature->primary_lfp_id)); printf("\tBoot Mode X: %u\n", feature->boot_mode_x); printf("\tBoot Mode Y: %u\n", feature->boot_mode_y); printf("\tBoot Mode Bpp: %u\n", feature->boot_mode_bpp); printf("\tBoot Mode Refresh: %u\n", feature->boot_mode_refresh); printf("\tEnable LFP as primary: %s\n", YESNO(feature->enable_lfp_primary)); printf("\tSelective Mode Pruning: %s\n", YESNO(feature->selective_mode_pruning)); printf("\tDual-Frequency Graphics Technology: %s\n", YESNO(feature->dual_frequency)); printf("\tDefault Render Clock Frequency: %s\n", feature->render_clock_freq ? "low" : "high"); printf("\tNT 4.0 Dual Display Clone Support: %s\n", YESNO(feature->nt_clone_support)); printf("\tDefault Power Scheme user interface: %s\n", feature->power_scheme_ui ? "3rd party" : "CUI"); printf ("\tSprite Display Assignment when Overlay is Active in Clone Mode: %s\n", feature->sprite_display_assign ? "primary" : "secondary"); printf("\tDisplay Maintain Aspect Scaling via CUI: %s\n", YESNO(feature->cui_aspect_scaling)); printf("\tPreserve Aspect Ratio: %s\n", YESNO(feature->preserve_aspect_ratio)); printf("\tEnable SDVO device power down: %s\n", YESNO(feature->sdvo_device_power_down)); printf("\tCRT hotplug: %s\n", YESNO(feature->crt_hotplug)); printf("\tLVDS config: "); switch (feature->lvds_config) { case BDB_DRIVER_NO_LVDS: printf("No LVDS\n"); break; case BDB_DRIVER_INT_LVDS: printf("Integrated LVDS\n"); break; case BDB_DRIVER_SDVO_LVDS: printf("SDVO LVDS\n"); break; case BDB_DRIVER_EDP: printf("Embedded DisplayPort\n"); break; } printf("\tDefine Display statically: %s\n", YESNO(feature->static_display)); printf("\tLegacy CRT max X: %d\n", feature->legacy_crt_max_x); printf("\tLegacy CRT max Y: %d\n", feature->legacy_crt_max_y); printf("\tLegacy CRT max refresh: %d\n", feature->legacy_crt_max_refresh); } static void dump_edp(const struct bdb_block *block) { struct bdb_edp *edp = block->data; int bpp, msa; int i; for (i = 0; i < 16; i++) { printf("\tPanel %d%s\n", i, panel_type == i ? " *" : ""); printf("\t\tPower Sequence: T3 %d T7 %d T9 %d T10 %d T12 %d\n", edp->power_seqs[i].t3, edp->power_seqs[i].t7, edp->power_seqs[i].t9, edp->power_seqs[i].t10, edp->power_seqs[i].t12); bpp = (edp->color_depth >> (i * 2)) & 3; printf("\t\tPanel color depth: "); switch (bpp) { case EDP_18BPP: printf("18 bpp\n"); break; case EDP_24BPP: printf("24 bpp\n"); break; case EDP_30BPP: printf("30 bpp\n"); break; default: printf("(unknown value %d)\n", bpp); break; } msa = (edp->sdrrs_msa_timing_delay >> (i * 2)) & 3; printf("\t\teDP sDRRS MSA Delay: Lane %d\n", msa + 1); printf("\t\tLink params:\n"); printf("\t\t\trate: "); if (edp->link_params[i].rate == EDP_RATE_1_62) printf("1.62G\n"); else if (edp->link_params[i].rate == EDP_RATE_2_7) printf("2.7G\n"); printf("\t\t\tlanes: "); switch (edp->link_params[i].lanes) { case EDP_LANE_1: printf("x1 mode\n"); break; case EDP_LANE_2: printf("x2 mode\n"); break; case EDP_LANE_4: printf("x4 mode\n"); break; default: printf("(unknown value %d)\n", edp->link_params[i].lanes); break; } printf("\t\t\tpre-emphasis: "); switch (edp->link_params[i].preemphasis) { case EDP_PREEMPHASIS_NONE: printf("none\n"); break; case EDP_PREEMPHASIS_3_5dB: printf("3.5dB\n"); break; case EDP_PREEMPHASIS_6dB: printf("6dB\n"); break; case EDP_PREEMPHASIS_9_5dB: printf("9.5dB\n"); break; default: printf("(unknown value %d)\n", edp->link_params[i].preemphasis); break; } printf("\t\t\tvswing: "); switch (edp->link_params[i].vswing) { case EDP_VSWING_0_4V: printf("0.4V\n"); break; case EDP_VSWING_0_6V: printf("0.6V\n"); break; case EDP_VSWING_0_8V: printf("0.8V\n"); break; case EDP_VSWING_1_2V: printf("1.2V\n"); break; default: printf("(unknown value %d)\n", edp->link_params[i].vswing); break; } } } static void print_detail_timing_data(struct lvds_dvo_timing2 *dvo_timing) { int display, sync_start, sync_end, total; display = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo; sync_start = display + ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); sync_end = sync_start + dvo_timing->hsync_pulse_width; total = display + ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); printf("\thdisplay: %d\n", display); printf("\thsync [%d, %d] %s\n", sync_start, sync_end, dvo_timing->hsync_positive ? "+sync" : "-sync"); printf("\thtotal: %d\n", total); display = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo; sync_start = display + dvo_timing->vsync_off; sync_end = sync_start + dvo_timing->vsync_pulse_width; total = display + ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); printf("\tvdisplay: %d\n", display); printf("\tvsync [%d, %d] %s\n", sync_start, sync_end, dvo_timing->vsync_positive ? "+sync" : "-sync"); printf("\tvtotal: %d\n", total); printf("\tclock: %d\n", dvo_timing->clock * 10); } static void dump_sdvo_panel_dtds(const struct bdb_block *block) { struct lvds_dvo_timing2 *dvo_timing = block->data; int n, count; count = block->size / sizeof(struct lvds_dvo_timing2); for (n = 0; n < count; n++) { printf("%d:\n", n); print_detail_timing_data(dvo_timing++); } } static void dump_sdvo_lvds_options(const struct bdb_block *block) { struct bdb_sdvo_lvds_options *options = block->data; printf("\tbacklight: %d\n", options->panel_backlight); printf("\th40 type: %d\n", options->h40_set_panel_type); printf("\ttype: %d\n", options->panel_type); printf("\tssc_clk_freq: %d\n", options->ssc_clk_freq); printf("\tals_low_trip: %d\n", options->als_low_trip); printf("\tals_high_trip: %d\n", options->als_high_trip); /* u8 sclalarcoeff_tab_row_num; u8 sclalarcoeff_tab_row_size; u8 coefficient[8]; */ printf("\tmisc[0]: %x\n", options->panel_misc_bits_1); printf("\tmisc[1]: %x\n", options->panel_misc_bits_2); printf("\tmisc[2]: %x\n", options->panel_misc_bits_3); printf("\tmisc[3]: %x\n", options->panel_misc_bits_4); } static void dump_mipi_config(const struct bdb_block *block) { struct bdb_mipi_config *start = block->data; struct mipi_config *config; struct mipi_pps_data *pps; config = &start->config[panel_type]; pps = &start->pps[panel_type]; printf("\tGeneral Param\n"); printf("\t\t BTA disable: %s\n", config->bta ? "Disabled" : "Enabled"); printf("\t\t Video Mode Color Format: "); if (config->videomode_color_format == 0) printf("Not supported\n"); else if (config->videomode_color_format == 1) printf("RGB565\n"); else if (config->videomode_color_format == 2) printf("RGB666\n"); else if (config->videomode_color_format == 3) printf("RGB666 Loosely Packed\n"); else if (config->videomode_color_format == 4) printf("RGB888\n"); printf("\t\t PPS GPIO Pins: %s \n", config->pwm_blc ? "Using SOC" : "Using PMIC"); printf("\t\t CABC Support: %s\n", config->cabc ? "supported" : "not supported"); //insert video mode type printf("\t\t Mode: %s\n", config->cmd_mode ? "COMMAND" : "VIDEO"); printf("\t\t Dithering: %s\n", config->dithering ? "done in Display Controller" : "done in Panel Controller"); printf("\tPort Desc\n"); //insert pixel overlap count printf("\t\t Lane Count: %d\n", config->lane_cnt + 1); printf("\t\t Dual Link Support: "); if (config->dual_link == 0) printf("not supported\n"); else if (config->dual_link == 1) printf("Front Back mode\n"); else printf("Pixel Alternative Mode\n"); printf("\tDphy Flags\n"); printf("\t\t Clock Stop: %s\n", config->clk_stop ? "ENABLED" : "DISABLED"); printf("\t\t EOT disabled: %s\n\n", config->eot_disabled ? "EOT not to be sent" : "EOT to be sent"); printf("\tHSTxTimeOut: 0x%x\n", config->hs_tx_timeout); printf("\tLPRXTimeOut: 0x%x\n", config->lp_rx_timeout); printf("\tTurnAroundTimeOut: 0x%x\n", config->turn_around_timeout); printf("\tDeviceResetTimer: 0x%x\n", config->device_reset_timer); printf("\tMasterinitTimer: 0x%x\n", config->master_init_timer); printf("\tDBIBandwidthTimer: 0x%x\n", config->dbi_bw_timer); printf("\tLpByteClkValue: 0x%x\n\n", config->lp_byte_clk_val); printf("\tDphy Params\n"); printf("\t\tExit to zero Count: 0x%x\n", config->exit_zero_cnt); printf("\t\tTrail Count: 0x%X\n", config->trail_cnt); printf("\t\tClk zero count: 0x%x\n", config->clk_zero_cnt); printf("\t\tPrepare count:0x%x\n\n", config->prepare_cnt); printf("\tClockLaneSwitchingCount: 0x%x\n", config->clk_lane_switch_cnt); printf("\tHighToLowSwitchingCount: 0x%x\n\n", config->hl_switch_cnt); printf("\tTimings based on Dphy spec\n"); printf("\t\tTClkMiss: 0x%x\n", config->tclk_miss); printf("\t\tTClkPost: 0x%x\n", config->tclk_post); printf("\t\tTClkPre: 0x%x\n", config->tclk_pre); printf("\t\tTClkPrepare: 0x%x\n", config->tclk_prepare); printf("\t\tTClkSettle: 0x%x\n", config->tclk_settle); printf("\t\tTClkTermEnable: 0x%x\n\n", config->tclk_term_enable); printf("\tTClkTrail: 0x%x\n", config->tclk_trail); printf("\tTClkPrepareTClkZero: 0x%x\n", config->tclk_prepare_clkzero); printf("\tTHSExit: 0x%x\n", config->ths_exit); printf("\tTHsPrepare: 0x%x\n", config->ths_prepare); printf("\tTHsPrepareTHsZero: 0x%x\n", config->ths_prepare_hszero); printf("\tTHSSettle: 0x%x\n", config->ths_settle); printf("\tTHSSkip: 0x%x\n", config->ths_skip); printf("\tTHsTrail: 0x%x\n", config->ths_trail); printf("\tTInit: 0x%x\n", config->tinit); printf("\tTLPX: 0x%x\n", config->tlpx); printf("\tMIPI PPS\n"); printf("\t\tPanel power ON delay: %d\n", pps->panel_on_delay); printf("\t\tPanel power on to Baklight enable delay: %d\n", pps->bl_enable_delay); printf("\t\tBacklight disable to Panel power OFF delay: %d\n", pps->bl_disable_delay); printf("\t\tPanel power OFF delay: %d\n", pps->panel_off_delay); printf("\t\tPanel power cycle delay: %d\n", pps->panel_power_cycle_delay); } static uint8_t *mipi_dump_send_packet(uint8_t *data) { uint8_t type, byte, count; uint16_t len; byte = *data++; /* get packet type and increment the pointer */ type = *data++; len = *((uint16_t *) data); data += 2; printf("\t\t SEND COMMAND: "); printf("0x%x 0x%x 0x%x", byte, type, len); for (count = 0; count < len; count++) printf(" 0x%x",*(data+count)); printf("\n"); data += len; return data; } static uint8_t *mipi_dump_delay(uint8_t *data) { printf("\t\t Delay : 0x%x 0x%x 0x%x 0x%x\n", data[0], data[1], data[2], data[3]); data += 4; return data; } static uint8_t *mipi_dump_gpio(uint8_t *data) { uint8_t gpio, action; printf("\t\t GPIO value:"); gpio = *data++; /* pull up/down */ action = *data++; printf(" 0x%x 0x%x\n", gpio, action); return data; } typedef uint8_t * (*fn_mipi_elem_dump)(uint8_t *data); static const fn_mipi_elem_dump dump_elem[] = { NULL, /* reserved */ mipi_dump_send_packet, mipi_dump_delay, mipi_dump_gpio, NULL, /* status read; later */ }; static void dump_sequence(uint8_t *sequence) { uint8_t *data = sequence; fn_mipi_elem_dump mipi_elem_dump; int index_no; if (!sequence) return; printf("\tSequence Name: %s\n", seq_name[*data]); /* go to the first element of the sequence */ data++; /* parse each byte till we reach end of sequence byte - 0x00 */ while (1) { index_no = *data; mipi_elem_dump = dump_elem[index_no]; if (!mipi_elem_dump) { printf("Error: Unsupported MIPI element, skipping sequence execution\n"); return; } /* goto element payload */ data++; /* execute the element specifc rotines */ data = mipi_elem_dump(data); /* * After processing the element, data should point to * next element or end of sequence * check if have we reached end of sequence */ if (*data == 0x00) break; } } static uint8_t *goto_next_sequence(uint8_t *data, int *size) { uint16_t len; int tmp = *size; if (--tmp < 0) return NULL; /* goto first element */ data++; while (1) { switch (*data) { case MIPI_SEQ_ELEM_SEND_PKT: /* * skip by this element payload size * skip elem id, command flag and data type */ tmp -= 5; if (tmp < 0) return NULL; data += 3; len = *((uint16_t *)data); tmp -= len; if (tmp < 0) return NULL; /* skip by len */ data = data + 2 + len; break; case MIPI_SEQ_ELEM_DELAY: /* skip by elem id, and delay is 4 bytes */ tmp -= 5; if (tmp < 0) return NULL; data += 5; break; case MIPI_SEQ_ELEM_GPIO: tmp -= 3; if (tmp < 0) return NULL; data += 3; break; default: printf("Unknown element\n"); return NULL; } /* end of sequence ? */ if (*data == 0) break; } /* goto next sequence or end of block byte */ if (--tmp < 0) return NULL; data++; /* update amount of data left for the sequence block to be parsed */ *size = tmp; return data; } static uint16_t get_blocksize(void *p) { uint16_t *block_ptr, block_size; block_ptr = (uint16_t *)((char *)p - 2); block_size = *block_ptr; return block_size; } static void dump_mipi_sequence(const struct bdb_block *block) { struct bdb_mipi_sequence *sequence = block->data; uint8_t *data, *seq_data; int i, panel_id, seq_size; uint16_t block_size; /* Check if we have sequence block as well */ if (!sequence) { printf("No MIPI Sequence found\n"); return; } block_size = get_blocksize(sequence); /* * parse the sequence block for individual sequences */ seq_data = &sequence->data[0]; /* * sequence block is variable length and hence we need to parse and * get the sequence data for specific panel id */ for (i = 0; i < MAX_MIPI_CONFIGURATIONS; i++) { panel_id = *seq_data; seq_size = *((uint16_t *) (seq_data + 1)); if (panel_id == panel_type) break; /* skip the sequence including seq header of 3 bytes */ seq_data = seq_data + 3 + seq_size; if ((seq_data - &sequence->data[0]) > block_size) { printf("Sequence start is beyond sequence block size, corrupted sequence block\n"); return; } } if (i == MAX_MIPI_CONFIGURATIONS) { printf("Sequence block detected but no valid configuration\n"); return; } /* check if found sequence is completely within the sequence block * just being paranoid */ if (seq_size > block_size) { printf("Corrupted sequence/size, bailing out\n"); return; } /* skip the panel id(1 byte) and seq size(2 bytes) */ data = (uint8_t *) calloc(1, seq_size); if (data) memmove(data, seq_data + 3, seq_size); else { printf("Memory not allocated for sequence data\n"); return; } /* * loop into the sequence data and split into multiple sequneces * There are only 5 types of sequences as of now */ /* two consecutive 0x00 indicate end of all sequences */ while (1) { int seq_id = *data; if (MIPI_SEQ_MAX > seq_id && seq_id > MIPI_SEQ_UNDEFINED) dump_sequence(data); else { printf("Error:undefined sequence\n"); goto err; } /* partial parsing to skip elements */ data = goto_next_sequence(data, &seq_size); if (data == NULL) { printf("Sequence elements going beyond block itself. Sequence block parsing failed\n"); goto err; } if (*data == 0) break; /* end of sequence reached */ } return; err: free(data); data = NULL; } static int get_device_id(unsigned char *bios) { int device; int offset = (bios[0x19] << 8) + bios[0x18]; if (bios[offset] != 'P' || bios[offset+1] != 'C' || bios[offset+2] != 'I' || bios[offset+3] != 'R') return -1; device = (bios[offset+7] << 8) + bios[offset+6]; return device; } struct dumper { uint8_t id; const char *name; void (*dump)(const struct bdb_block *block); }; struct dumper dumpers[] = { { .id = BDB_GENERAL_FEATURES, .name = "General features block", .dump = dump_general_features, }, { .id = BDB_GENERAL_DEFINITIONS, .name = "General definitions block", .dump = dump_general_definitions, }, { .id = BDB_CHILD_DEVICE_TABLE, .name = "Child devices block", .dump = dump_child_devices, }, { .id = BDB_LVDS_OPTIONS, .name = "LVDS options block", .dump = dump_lvds_options, }, { .id = BDB_LVDS_LFP_DATA_PTRS, .name = "LVDS timing pointer data", .dump = dump_lvds_ptr_data, }, { .id = BDB_LVDS_LFP_DATA, .name = "LVDS panel data block", .dump = dump_lvds_data, }, { .id = BDB_LVDS_BACKLIGHT, .name = "Backlight info block", .dump = dump_backlight_info, }, { .id = BDB_SDVO_LVDS_OPTIONS, .name = "SDVO LVDS options block", .dump = dump_sdvo_lvds_options, }, { .id = BDB_SDVO_PANEL_DTDS, .name = "SDVO panel dtds", .dump = dump_sdvo_panel_dtds, }, { .id = BDB_DRIVER_FEATURES, .name = "Driver feature data block", .dump = dump_driver_feature, }, { .id = BDB_EDP, .name = "eDP block", .dump = dump_edp, }, { .id = BDB_MIPI_CONFIG, .name = "MIPI configuration block", .dump = dump_mipi_config, }, { .id = BDB_MIPI_SEQUENCE, .name = "MIPI sequence block", .dump = dump_mipi_sequence, }, }; static void hex_dump(const struct bdb_block *block) { int i; uint8_t *p = block->data; for (i = 0; i < block->size; i++) { if (i % 16 == 0) printf("\t%04x: ", i); printf("%02x", p[i]); if (i % 16 == 15) { if (i + 1 < block->size) printf("\n"); } else if (i % 8 == 7) { printf(" "); } else { printf(" "); } } printf("\n\n"); } static void dump_section(int section_id, int size) { struct dumper *dumper = NULL; const struct bdb_block *block; static int done[256]; int i; if (done[section_id]) return; done[section_id] = 1; block = find_section(section_id, size); if (!block) return; for (i = 0; i < ARRAY_SIZE(dumpers); i++) { if (block->id == dumpers[i].id) { dumper = &dumpers[i]; break; } } if (dumper && dumper->name) printf("BDB block %d - %s:\n", block->id, dumper->name); else printf("BDB block %d:\n", block->id); hex_dump(block); if (dumper && dumper->dump) dumper->dump(block); printf("\n"); } int main(int argc, char **argv) { int fd; struct vbt_header *vbt = NULL; int vbt_off, bdb_off, i; const char *filename = "bios"; struct stat finfo; int size; struct bdb_block *block; char signature[17]; char *devid_string; if (argc != 2) { printf("usage: %s \n", argv[0]); return 1; } if ((devid_string = getenv("DEVICE"))) devid = strtoul(devid_string, NULL, 0); filename = argv[1]; fd = open(filename, O_RDONLY); if (fd == -1) { printf("Couldn't open \"%s\": %s\n", filename, strerror(errno)); return 1; } if (stat(filename, &finfo)) { printf("failed to stat \"%s\": %s\n", filename, strerror(errno)); return 1; } size = finfo.st_size; if (size == 0) { int len = 0, ret; size = 8192; VBIOS = malloc (size); while ((ret = read(fd, VBIOS + len, size - len))) { if (ret < 0) { printf("failed to read \"%s\": %s\n", filename, strerror(errno)); return 1; } len += ret; if (len == size) { size *= 2; VBIOS = realloc(VBIOS, size); } } } else { VBIOS = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0); if (VBIOS == MAP_FAILED) { printf("failed to map \"%s\": %s\n", filename, strerror(errno)); return 1; } } /* Scour memory looking for the VBT signature */ for (i = 0; i + 4 < size; i++) { if (!memcmp(VBIOS + i, "$VBT", 4)) { vbt_off = i; vbt = (struct vbt_header *)(VBIOS + i); break; } } if (!vbt) { printf("VBT signature missing\n"); return 1; } printf("VBT vers: %d.%d\n", vbt->version / 100, vbt->version % 100); bdb_off = vbt_off + vbt->bdb_offset; if (bdb_off >= size - sizeof(struct bdb_header)) { printf("Invalid VBT found, BDB points beyond end of data block\n"); return 1; } bdb = (struct bdb_header *)(VBIOS + bdb_off); strncpy(signature, (char *)bdb->signature, 16); signature[16] = 0; printf("BDB sig: %s\n", signature); printf("BDB vers: %d\n", bdb->version); printf("Available sections: "); for (i = 0; i < 256; i++) { block = find_section(i, size); if (!block) continue; printf("%d ", i); free(block); } printf("\n"); if (devid == -1) devid = get_device_id(VBIOS); if (devid == -1) printf("Warning: could not find PCI device ID!\n"); dump_section(BDB_GENERAL_FEATURES, size); dump_section(BDB_GENERAL_DEFINITIONS, size); dump_section(BDB_CHILD_DEVICE_TABLE, size); dump_section(BDB_LVDS_OPTIONS, size); dump_section(BDB_LVDS_LFP_DATA_PTRS, size); dump_section(BDB_LVDS_LFP_DATA, size); dump_section(BDB_LVDS_BACKLIGHT, size); dump_section(BDB_SDVO_LVDS_OPTIONS, size); dump_section(BDB_SDVO_PANEL_DTDS, size); dump_section(BDB_DRIVER_FEATURES, size); dump_section(BDB_EDP, size); dump_section(BDB_MIPI_CONFIG, size); dump_section(BDB_MIPI_SEQUENCE, size); for (i = 0; i < 256; i++) dump_section(i, size); return 0; }