/* * Copyright (c) 2008-2009 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "ath9k.h" #include "btcoex.h" static char *dev_info = "ath9k"; MODULE_AUTHOR("Atheros Communications"); MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); static int modparam_nohwcrypt; module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption"); static unsigned int ath9k_debug = ATH_DBG_DEFAULT; module_param_named(debug, ath9k_debug, uint, 0); MODULE_PARM_DESC(debug, "Debugging mask"); /* We use the hw_value as an index into our private channel structure */ #define CHAN2G(_freq, _idx) { \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 20, \ } #define CHAN5G(_freq, _idx) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 20, \ } /* Some 2 GHz radios are actually tunable on 2312-2732 * on 5 MHz steps, we support the channels which we know * we have calibration data for all cards though to make * this static */ static struct ieee80211_channel ath9k_2ghz_chantable[] = { CHAN2G(2412, 0), /* Channel 1 */ CHAN2G(2417, 1), /* Channel 2 */ CHAN2G(2422, 2), /* Channel 3 */ CHAN2G(2427, 3), /* Channel 4 */ CHAN2G(2432, 4), /* Channel 5 */ CHAN2G(2437, 5), /* Channel 6 */ CHAN2G(2442, 6), /* Channel 7 */ CHAN2G(2447, 7), /* Channel 8 */ CHAN2G(2452, 8), /* Channel 9 */ CHAN2G(2457, 9), /* Channel 10 */ CHAN2G(2462, 10), /* Channel 11 */ CHAN2G(2467, 11), /* Channel 12 */ CHAN2G(2472, 12), /* Channel 13 */ CHAN2G(2484, 13), /* Channel 14 */ }; /* Some 5 GHz radios are actually tunable on XXXX-YYYY * on 5 MHz steps, we support the channels which we know * we have calibration data for all cards though to make * this static */ static struct ieee80211_channel ath9k_5ghz_chantable[] = { /* _We_ call this UNII 1 */ CHAN5G(5180, 14), /* Channel 36 */ CHAN5G(5200, 15), /* Channel 40 */ CHAN5G(5220, 16), /* Channel 44 */ CHAN5G(5240, 17), /* Channel 48 */ /* _We_ call this UNII 2 */ CHAN5G(5260, 18), /* Channel 52 */ CHAN5G(5280, 19), /* Channel 56 */ CHAN5G(5300, 20), /* Channel 60 */ CHAN5G(5320, 21), /* Channel 64 */ /* _We_ call this "Middle band" */ CHAN5G(5500, 22), /* Channel 100 */ CHAN5G(5520, 23), /* Channel 104 */ CHAN5G(5540, 24), /* Channel 108 */ CHAN5G(5560, 25), /* Channel 112 */ CHAN5G(5580, 26), /* Channel 116 */ CHAN5G(5600, 27), /* Channel 120 */ CHAN5G(5620, 28), /* Channel 124 */ CHAN5G(5640, 29), /* Channel 128 */ CHAN5G(5660, 30), /* Channel 132 */ CHAN5G(5680, 31), /* Channel 136 */ CHAN5G(5700, 32), /* Channel 140 */ /* _We_ call this UNII 3 */ CHAN5G(5745, 33), /* Channel 149 */ CHAN5G(5765, 34), /* Channel 153 */ CHAN5G(5785, 35), /* Channel 157 */ CHAN5G(5805, 36), /* Channel 161 */ CHAN5G(5825, 37), /* Channel 165 */ }; /* Atheros hardware rate code addition for short premble */ #define SHPCHECK(__hw_rate, __flags) \ ((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0) #define RATE(_bitrate, _hw_rate, _flags) { \ .bitrate = (_bitrate), \ .flags = (_flags), \ .hw_value = (_hw_rate), \ .hw_value_short = (SHPCHECK(_hw_rate, _flags)) \ } static struct ieee80211_rate ath9k_legacy_rates[] = { RATE(10, 0x1b, 0), RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE), RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE), RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE), RATE(60, 0x0b, 0), RATE(90, 0x0f, 0), RATE(120, 0x0a, 0), RATE(180, 0x0e, 0), RATE(240, 0x09, 0), RATE(360, 0x0d, 0), RATE(480, 0x08, 0), RATE(540, 0x0c, 0), }; static void ath_cache_conf_rate(struct ath_softc *sc, struct ieee80211_conf *conf) { switch (conf->channel->band) { case IEEE80211_BAND_2GHZ: if (conf_is_ht20(conf)) sc->cur_rate_mode = ATH9K_MODE_11NG_HT20; else if (conf_is_ht40_minus(conf)) sc->cur_rate_mode = ATH9K_MODE_11NG_HT40MINUS; else if (conf_is_ht40_plus(conf)) sc->cur_rate_mode = ATH9K_MODE_11NG_HT40PLUS; else sc->cur_rate_mode = ATH9K_MODE_11G; break; case IEEE80211_BAND_5GHZ: if (conf_is_ht20(conf)) sc->cur_rate_mode = ATH9K_MODE_11NA_HT20; else if (conf_is_ht40_minus(conf)) sc->cur_rate_mode = ATH9K_MODE_11NA_HT40MINUS; else if (conf_is_ht40_plus(conf)) sc->cur_rate_mode = ATH9K_MODE_11NA_HT40PLUS; else sc->cur_rate_mode = ATH9K_MODE_11A; break; default: BUG_ON(1); break; } } static void ath_update_txpow(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; u32 txpow; if (sc->curtxpow != sc->config.txpowlimit) { ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit); /* read back in case value is clamped */ ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow); sc->curtxpow = txpow; } } static u8 parse_mpdudensity(u8 mpdudensity) { /* * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": * 0 for no restriction * 1 for 1/4 us * 2 for 1/2 us * 3 for 1 us * 4 for 2 us * 5 for 4 us * 6 for 8 us * 7 for 16 us */ switch (mpdudensity) { case 0: return 0; case 1: case 2: case 3: /* Our lower layer calculations limit our precision to 1 microsecond */ return 1; case 4: return 2; case 5: return 4; case 6: return 8; case 7: return 16; default: return 0; } } static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc, struct ieee80211_hw *hw) { struct ieee80211_channel *curchan = hw->conf.channel; struct ath9k_channel *channel; u8 chan_idx; chan_idx = curchan->hw_value; channel = &sc->sc_ah->channels[chan_idx]; ath9k_update_ichannel(sc, hw, channel); return channel; } static bool ath9k_setpower(struct ath_softc *sc, enum ath9k_power_mode mode) { unsigned long flags; bool ret; spin_lock_irqsave(&sc->sc_pm_lock, flags); ret = ath9k_hw_setpower(sc->sc_ah, mode); spin_unlock_irqrestore(&sc->sc_pm_lock, flags); return ret; } void ath9k_ps_wakeup(struct ath_softc *sc) { unsigned long flags; spin_lock_irqsave(&sc->sc_pm_lock, flags); if (++sc->ps_usecount != 1) goto unlock; ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE); unlock: spin_unlock_irqrestore(&sc->sc_pm_lock, flags); } void ath9k_ps_restore(struct ath_softc *sc) { unsigned long flags; spin_lock_irqsave(&sc->sc_pm_lock, flags); if (--sc->ps_usecount != 0) goto unlock; if (sc->ps_enabled && !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON | SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_PSPOLL_DATA | SC_OP_WAIT_FOR_TX_ACK))) ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP); unlock: spin_unlock_irqrestore(&sc->sc_pm_lock, flags); } /* * Set/change channels. If the channel is really being changed, it's done * by reseting the chip. To accomplish this we must first cleanup any pending * DMA, then restart stuff. */ int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw, struct ath9k_channel *hchan) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_conf *conf = &common->hw->conf; bool fastcc = true, stopped; struct ieee80211_channel *channel = hw->conf.channel; int r; if (sc->sc_flags & SC_OP_INVALID) return -EIO; ath9k_ps_wakeup(sc); /* * This is only performed if the channel settings have * actually changed. * * To switch channels clear any pending DMA operations; * wait long enough for the RX fifo to drain, reset the * hardware at the new frequency, and then re-enable * the relevant bits of the h/w. */ ath9k_hw_set_interrupts(ah, 0); ath_drain_all_txq(sc, false); stopped = ath_stoprecv(sc); /* XXX: do not flush receive queue here. We don't want * to flush data frames already in queue because of * changing channel. */ if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET)) fastcc = false; ath_print(common, ATH_DBG_CONFIG, "(%u MHz) -> (%u MHz), conf_is_ht40: %d\n", sc->sc_ah->curchan->channel, channel->center_freq, conf_is_ht40(conf)); spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, hchan, fastcc); if (r) { ath_print(common, ATH_DBG_FATAL, "Unable to reset channel (%u Mhz) " "reset status %d\n", channel->center_freq, r); spin_unlock_bh(&sc->sc_resetlock); goto ps_restore; } spin_unlock_bh(&sc->sc_resetlock); sc->sc_flags &= ~SC_OP_FULL_RESET; if (ath_startrecv(sc) != 0) { ath_print(common, ATH_DBG_FATAL, "Unable to restart recv logic\n"); r = -EIO; goto ps_restore; } ath_cache_conf_rate(sc, &hw->conf); ath_update_txpow(sc); ath9k_hw_set_interrupts(ah, sc->imask); ps_restore: ath9k_ps_restore(sc); return r; } /* * This routine performs the periodic noise floor calibration function * that is used to adjust and optimize the chip performance. This * takes environmental changes (location, temperature) into account. * When the task is complete, it reschedules itself depending on the * appropriate interval that was calculated. */ static void ath_ani_calibrate(unsigned long data) { struct ath_softc *sc = (struct ath_softc *)data; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); bool longcal = false; bool shortcal = false; bool aniflag = false; unsigned int timestamp = jiffies_to_msecs(jiffies); u32 cal_interval, short_cal_interval; short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ? ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL; /* Only calibrate if awake */ if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE) goto set_timer; ath9k_ps_wakeup(sc); /* Long calibration runs independently of short calibration. */ if ((timestamp - common->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) { longcal = true; ath_print(common, ATH_DBG_ANI, "longcal @%lu\n", jiffies); common->ani.longcal_timer = timestamp; } /* Short calibration applies only while caldone is false */ if (!common->ani.caldone) { if ((timestamp - common->ani.shortcal_timer) >= short_cal_interval) { shortcal = true; ath_print(common, ATH_DBG_ANI, "shortcal @%lu\n", jiffies); common->ani.shortcal_timer = timestamp; common->ani.resetcal_timer = timestamp; } } else { if ((timestamp - common->ani.resetcal_timer) >= ATH_RESTART_CALINTERVAL) { common->ani.caldone = ath9k_hw_reset_calvalid(ah); if (common->ani.caldone) common->ani.resetcal_timer = timestamp; } } /* Verify whether we must check ANI */ if ((timestamp - common->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) { aniflag = true; common->ani.checkani_timer = timestamp; } /* Skip all processing if there's nothing to do. */ if (longcal || shortcal || aniflag) { /* Call ANI routine if necessary */ if (aniflag) ath9k_hw_ani_monitor(ah, ah->curchan); /* Perform calibration if necessary */ if (longcal || shortcal) { common->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan, common->rx_chainmask, longcal); if (longcal) common->ani.noise_floor = ath9k_hw_getchan_noise(ah, ah->curchan); ath_print(common, ATH_DBG_ANI, " calibrate chan %u/%x nf: %d\n", ah->curchan->channel, ah->curchan->channelFlags, common->ani.noise_floor); } } ath9k_ps_restore(sc); set_timer: /* * Set timer interval based on previous results. * The interval must be the shortest necessary to satisfy ANI, * short calibration and long calibration. */ cal_interval = ATH_LONG_CALINTERVAL; if (sc->sc_ah->config.enable_ani) cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL); if (!common->ani.caldone) cal_interval = min(cal_interval, (u32)short_cal_interval); mod_timer(&common->ani.timer, jiffies + msecs_to_jiffies(cal_interval)); } static void ath_start_ani(struct ath_common *common) { unsigned long timestamp = jiffies_to_msecs(jiffies); common->ani.longcal_timer = timestamp; common->ani.shortcal_timer = timestamp; common->ani.checkani_timer = timestamp; mod_timer(&common->ani.timer, jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL)); } /* * Update tx/rx chainmask. For legacy association, * hard code chainmask to 1x1, for 11n association, use * the chainmask configuration, for bt coexistence, use * the chainmask configuration even in legacy mode. */ void ath_update_chainmask(struct ath_softc *sc, int is_ht) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); if ((sc->sc_flags & SC_OP_SCANNING) || is_ht || (ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE)) { common->tx_chainmask = ah->caps.tx_chainmask; common->rx_chainmask = ah->caps.rx_chainmask; } else { common->tx_chainmask = 1; common->rx_chainmask = 1; } ath_print(common, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n", common->tx_chainmask, common->rx_chainmask); } static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta) { struct ath_node *an; an = (struct ath_node *)sta->drv_priv; if (sc->sc_flags & SC_OP_TXAGGR) { ath_tx_node_init(sc, an); an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor); an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density); an->last_rssi = ATH_RSSI_DUMMY_MARKER; } } static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta) { struct ath_node *an = (struct ath_node *)sta->drv_priv; if (sc->sc_flags & SC_OP_TXAGGR) ath_tx_node_cleanup(sc, an); } static void ath9k_tasklet(unsigned long data) { struct ath_softc *sc = (struct ath_softc *)data; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); u32 status = sc->intrstatus; ath9k_ps_wakeup(sc); if (status & ATH9K_INT_FATAL) { ath_reset(sc, false); ath9k_ps_restore(sc); return; } if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) { spin_lock_bh(&sc->rx.rxflushlock); ath_rx_tasklet(sc, 0); spin_unlock_bh(&sc->rx.rxflushlock); } if (status & ATH9K_INT_TX) ath_tx_tasklet(sc); if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) { /* * TSF sync does not look correct; remain awake to sync with * the next Beacon. */ ath_print(common, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n"); sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC; } if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE) if (status & ATH9K_INT_GENTIMER) ath_gen_timer_isr(sc->sc_ah); /* re-enable hardware interrupt */ ath9k_hw_set_interrupts(ah, sc->imask); ath9k_ps_restore(sc); } irqreturn_t ath_isr(int irq, void *dev) { #define SCHED_INTR ( \ ATH9K_INT_FATAL | \ ATH9K_INT_RXORN | \ ATH9K_INT_RXEOL | \ ATH9K_INT_RX | \ ATH9K_INT_TX | \ ATH9K_INT_BMISS | \ ATH9K_INT_CST | \ ATH9K_INT_TSFOOR | \ ATH9K_INT_GENTIMER) struct ath_softc *sc = dev; struct ath_hw *ah = sc->sc_ah; enum ath9k_int status; bool sched = false; /* * The hardware is not ready/present, don't * touch anything. Note this can happen early * on if the IRQ is shared. */ if (sc->sc_flags & SC_OP_INVALID) return IRQ_NONE; /* shared irq, not for us */ if (!ath9k_hw_intrpend(ah)) return IRQ_NONE; /* * Figure out the reason(s) for the interrupt. Note * that the hal returns a pseudo-ISR that may include * bits we haven't explicitly enabled so we mask the * value to insure we only process bits we requested. */ ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */ status &= sc->imask; /* discard unasked-for bits */ /* * If there are no status bits set, then this interrupt was not * for me (should have been caught above). */ if (!status) return IRQ_NONE; /* Cache the status */ sc->intrstatus = status; if (status & SCHED_INTR) sched = true; /* * If a FATAL or RXORN interrupt is received, we have to reset the * chip immediately. */ if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN)) goto chip_reset; if (status & ATH9K_INT_SWBA) tasklet_schedule(&sc->bcon_tasklet); if (status & ATH9K_INT_TXURN) ath9k_hw_updatetxtriglevel(ah, true); if (status & ATH9K_INT_MIB) { /* * Disable interrupts until we service the MIB * interrupt; otherwise it will continue to * fire. */ ath9k_hw_set_interrupts(ah, 0); /* * Let the hal handle the event. We assume * it will clear whatever condition caused * the interrupt. */ ath9k_hw_procmibevent(ah); ath9k_hw_set_interrupts(ah, sc->imask); } if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) if (status & ATH9K_INT_TIM_TIMER) { /* Clear RxAbort bit so that we can * receive frames */ ath9k_setpower(sc, ATH9K_PM_AWAKE); ath9k_hw_setrxabort(sc->sc_ah, 0); sc->sc_flags |= SC_OP_WAIT_FOR_BEACON; } chip_reset: ath_debug_stat_interrupt(sc, status); if (sched) { /* turn off every interrupt except SWBA */ ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA)); tasklet_schedule(&sc->intr_tq); } return IRQ_HANDLED; #undef SCHED_INTR } static u32 ath_get_extchanmode(struct ath_softc *sc, struct ieee80211_channel *chan, enum nl80211_channel_type channel_type) { u32 chanmode = 0; switch (chan->band) { case IEEE80211_BAND_2GHZ: switch(channel_type) { case NL80211_CHAN_NO_HT: case NL80211_CHAN_HT20: chanmode = CHANNEL_G_HT20; break; case NL80211_CHAN_HT40PLUS: chanmode = CHANNEL_G_HT40PLUS; break; case NL80211_CHAN_HT40MINUS: chanmode = CHANNEL_G_HT40MINUS; break; } break; case IEEE80211_BAND_5GHZ: switch(channel_type) { case NL80211_CHAN_NO_HT: case NL80211_CHAN_HT20: chanmode = CHANNEL_A_HT20; break; case NL80211_CHAN_HT40PLUS: chanmode = CHANNEL_A_HT40PLUS; break; case NL80211_CHAN_HT40MINUS: chanmode = CHANNEL_A_HT40MINUS; break; } break; default: break; } return chanmode; } static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key, struct ath9k_keyval *hk, const u8 *addr, bool authenticator) { struct ath_hw *ah = common->ah; const u8 *key_rxmic; const u8 *key_txmic; key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY; key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY; if (addr == NULL) { /* * Group key installation - only two key cache entries are used * regardless of splitmic capability since group key is only * used either for TX or RX. */ if (authenticator) { memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic)); } else { memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic)); } return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr); } if (!common->splitmic) { /* TX and RX keys share the same key cache entry. */ memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic)); return ath9k_hw_set_keycache_entry(ah, keyix, hk, addr); } /* Separate key cache entries for TX and RX */ /* TX key goes at first index, RX key at +32. */ memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); if (!ath9k_hw_set_keycache_entry(ah, keyix, hk, NULL)) { /* TX MIC entry failed. No need to proceed further */ ath_print(common, ATH_DBG_FATAL, "Setting TX MIC Key Failed\n"); return 0; } memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); /* XXX delete tx key on failure? */ return ath9k_hw_set_keycache_entry(ah, keyix + 32, hk, addr); } static int ath_reserve_key_cache_slot_tkip(struct ath_common *common) { int i; for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) { if (test_bit(i, common->keymap) || test_bit(i + 64, common->keymap)) continue; /* At least one part of TKIP key allocated */ if (common->splitmic && (test_bit(i + 32, common->keymap) || test_bit(i + 64 + 32, common->keymap))) continue; /* At least one part of TKIP key allocated */ /* Found a free slot for a TKIP key */ return i; } return -1; } static int ath_reserve_key_cache_slot(struct ath_common *common) { int i; /* First, try to find slots that would not be available for TKIP. */ if (common->splitmic) { for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) { if (!test_bit(i, common->keymap) && (test_bit(i + 32, common->keymap) || test_bit(i + 64, common->keymap) || test_bit(i + 64 + 32, common->keymap))) return i; if (!test_bit(i + 32, common->keymap) && (test_bit(i, common->keymap) || test_bit(i + 64, common->keymap) || test_bit(i + 64 + 32, common->keymap))) return i + 32; if (!test_bit(i + 64, common->keymap) && (test_bit(i , common->keymap) || test_bit(i + 32, common->keymap) || test_bit(i + 64 + 32, common->keymap))) return i + 64; if (!test_bit(i + 64 + 32, common->keymap) && (test_bit(i, common->keymap) || test_bit(i + 32, common->keymap) || test_bit(i + 64, common->keymap))) return i + 64 + 32; } } else { for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) { if (!test_bit(i, common->keymap) && test_bit(i + 64, common->keymap)) return i; if (test_bit(i, common->keymap) && !test_bit(i + 64, common->keymap)) return i + 64; } } /* No partially used TKIP slots, pick any available slot */ for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) { /* Do not allow slots that could be needed for TKIP group keys * to be used. This limitation could be removed if we know that * TKIP will not be used. */ if (i >= 64 && i < 64 + IEEE80211_WEP_NKID) continue; if (common->splitmic) { if (i >= 32 && i < 32 + IEEE80211_WEP_NKID) continue; if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID) continue; } if (!test_bit(i, common->keymap)) return i; /* Found a free slot for a key */ } /* No free slot found */ return -1; } static int ath_key_config(struct ath_common *common, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath_hw *ah = common->ah; struct ath9k_keyval hk; const u8 *mac = NULL; int ret = 0; int idx; memset(&hk, 0, sizeof(hk)); switch (key->alg) { case ALG_WEP: hk.kv_type = ATH9K_CIPHER_WEP; break; case ALG_TKIP: hk.kv_type = ATH9K_CIPHER_TKIP; break; case ALG_CCMP: hk.kv_type = ATH9K_CIPHER_AES_CCM; break; default: return -EOPNOTSUPP; } hk.kv_len = key->keylen; memcpy(hk.kv_val, key->key, key->keylen); if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) { /* For now, use the default keys for broadcast keys. This may * need to change with virtual interfaces. */ idx = key->keyidx; } else if (key->keyidx) { if (WARN_ON(!sta)) return -EOPNOTSUPP; mac = sta->addr; if (vif->type != NL80211_IFTYPE_AP) { /* Only keyidx 0 should be used with unicast key, but * allow this for client mode for now. */ idx = key->keyidx; } else return -EIO; } else { if (WARN_ON(!sta)) return -EOPNOTSUPP; mac = sta->addr; if (key->alg == ALG_TKIP) idx = ath_reserve_key_cache_slot_tkip(common); else idx = ath_reserve_key_cache_slot(common); if (idx < 0) return -ENOSPC; /* no free key cache entries */ } if (key->alg == ALG_TKIP) ret = ath_setkey_tkip(common, idx, key->key, &hk, mac, vif->type == NL80211_IFTYPE_AP); else ret = ath9k_hw_set_keycache_entry(ah, idx, &hk, mac); if (!ret) return -EIO; set_bit(idx, common->keymap); if (key->alg == ALG_TKIP) { set_bit(idx + 64, common->keymap); if (common->splitmic) { set_bit(idx + 32, common->keymap); set_bit(idx + 64 + 32, common->keymap); } } return idx; } static void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key) { struct ath_hw *ah = common->ah; ath9k_hw_keyreset(ah, key->hw_key_idx); if (key->hw_key_idx < IEEE80211_WEP_NKID) return; clear_bit(key->hw_key_idx, common->keymap); if (key->alg != ALG_TKIP) return; clear_bit(key->hw_key_idx + 64, common->keymap); if (common->splitmic) { clear_bit(key->hw_key_idx + 32, common->keymap); clear_bit(key->hw_key_idx + 64 + 32, common->keymap); } } static void setup_ht_cap(struct ath_softc *sc, struct ieee80211_sta_ht_cap *ht_info) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); u8 tx_streams, rx_streams; ht_info->ht_supported = true; ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_SM_PS | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40; ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8; /* set up supported mcs set */ memset(&ht_info->mcs, 0, sizeof(ht_info->mcs)); tx_streams = !(common->tx_chainmask & (common->tx_chainmask - 1)) ? 1 : 2; rx_streams = !(common->rx_chainmask & (common->rx_chainmask - 1)) ? 1 : 2; if (tx_streams != rx_streams) { ath_print(common, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n", tx_streams, rx_streams); ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF; ht_info->mcs.tx_params |= ((tx_streams - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); } ht_info->mcs.rx_mask[0] = 0xff; if (rx_streams >= 2) ht_info->mcs.rx_mask[1] = 0xff; ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; } static void ath9k_bss_assoc_info(struct ath_softc *sc, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); if (bss_conf->assoc) { ath_print(common, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n", bss_conf->aid, common->curbssid); /* New association, store aid */ common->curaid = bss_conf->aid; ath9k_hw_write_associd(ah); /* * Request a re-configuration of Beacon related timers * on the receipt of the first Beacon frame (i.e., * after time sync with the AP). */ sc->sc_flags |= SC_OP_BEACON_SYNC; /* Configure the beacon */ ath_beacon_config(sc, vif); /* Reset rssi stats */ sc->sc_ah->stats.avgbrssi = ATH_RSSI_DUMMY_MARKER; ath_start_ani(common); } else { ath_print(common, ATH_DBG_CONFIG, "Bss Info DISASSOC\n"); common->curaid = 0; /* Stop ANI */ del_timer_sync(&common->ani.timer); } } /********************************/ /* LED functions */ /********************************/ static void ath_led_blink_work(struct work_struct *work) { struct ath_softc *sc = container_of(work, struct ath_softc, ath_led_blink_work.work); if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED)) return; if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) || (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE)) ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0); else ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0); ieee80211_queue_delayed_work(sc->hw, &sc->ath_led_blink_work, (sc->sc_flags & SC_OP_LED_ON) ? msecs_to_jiffies(sc->led_off_duration) : msecs_to_jiffies(sc->led_on_duration)); sc->led_on_duration = sc->led_on_cnt ? max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) : ATH_LED_ON_DURATION_IDLE; sc->led_off_duration = sc->led_off_cnt ? max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) : ATH_LED_OFF_DURATION_IDLE; sc->led_on_cnt = sc->led_off_cnt = 0; if (sc->sc_flags & SC_OP_LED_ON) sc->sc_flags &= ~SC_OP_LED_ON; else sc->sc_flags |= SC_OP_LED_ON; } static void ath_led_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev); struct ath_softc *sc = led->sc; switch (brightness) { case LED_OFF: if (led->led_type == ATH_LED_ASSOC || led->led_type == ATH_LED_RADIO) { ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, (led->led_type == ATH_LED_RADIO)); sc->sc_flags &= ~SC_OP_LED_ASSOCIATED; if (led->led_type == ATH_LED_RADIO) sc->sc_flags &= ~SC_OP_LED_ON; } else { sc->led_off_cnt++; } break; case LED_FULL: if (led->led_type == ATH_LED_ASSOC) { sc->sc_flags |= SC_OP_LED_ASSOCIATED; ieee80211_queue_delayed_work(sc->hw, &sc->ath_led_blink_work, 0); } else if (led->led_type == ATH_LED_RADIO) { ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 0); sc->sc_flags |= SC_OP_LED_ON; } else { sc->led_on_cnt++; } break; default: break; } } static int ath_register_led(struct ath_softc *sc, struct ath_led *led, char *trigger) { int ret; led->sc = sc; led->led_cdev.name = led->name; led->led_cdev.default_trigger = trigger; led->led_cdev.brightness_set = ath_led_brightness; ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev); if (ret) ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL, "Failed to register led:%s", led->name); else led->registered = 1; return ret; } static void ath_unregister_led(struct ath_led *led) { if (led->registered) { led_classdev_unregister(&led->led_cdev); led->registered = 0; } } static void ath_deinit_leds(struct ath_softc *sc) { ath_unregister_led(&sc->assoc_led); sc->sc_flags &= ~SC_OP_LED_ASSOCIATED; ath_unregister_led(&sc->tx_led); ath_unregister_led(&sc->rx_led); ath_unregister_led(&sc->radio_led); ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1); } static void ath_init_leds(struct ath_softc *sc) { char *trigger; int ret; if (AR_SREV_9287(sc->sc_ah)) sc->sc_ah->led_pin = ATH_LED_PIN_9287; else sc->sc_ah->led_pin = ATH_LED_PIN_DEF; /* Configure gpio 1 for output */ ath9k_hw_cfg_output(sc->sc_ah, sc->sc_ah->led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); /* LED off, active low */ ath9k_hw_set_gpio(sc->sc_ah, sc->sc_ah->led_pin, 1); INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work); trigger = ieee80211_get_radio_led_name(sc->hw); snprintf(sc->radio_led.name, sizeof(sc->radio_led.name), "ath9k-%s::radio", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->radio_led, trigger); sc->radio_led.led_type = ATH_LED_RADIO; if (ret) goto fail; trigger = ieee80211_get_assoc_led_name(sc->hw); snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name), "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->assoc_led, trigger); sc->assoc_led.led_type = ATH_LED_ASSOC; if (ret) goto fail; trigger = ieee80211_get_tx_led_name(sc->hw); snprintf(sc->tx_led.name, sizeof(sc->tx_led.name), "ath9k-%s::tx", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->tx_led, trigger); sc->tx_led.led_type = ATH_LED_TX; if (ret) goto fail; trigger = ieee80211_get_rx_led_name(sc->hw); snprintf(sc->rx_led.name, sizeof(sc->rx_led.name), "ath9k-%s::rx", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->rx_led, trigger); sc->rx_led.led_type = ATH_LED_RX; if (ret) goto fail; return; fail: cancel_delayed_work_sync(&sc->ath_led_blink_work); ath_deinit_leds(sc); } void ath_radio_enable(struct ath_softc *sc, struct ieee80211_hw *hw) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_channel *channel = hw->conf.channel; int r; ath9k_ps_wakeup(sc); ath9k_hw_configpcipowersave(ah, 0, 0); if (!ah->curchan) ah->curchan = ath_get_curchannel(sc, sc->hw); spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, ah->curchan, false); if (r) { ath_print(common, ATH_DBG_FATAL, "Unable to reset channel %u (%uMhz) ", "reset status %d\n", channel->center_freq, r); } spin_unlock_bh(&sc->sc_resetlock); ath_update_txpow(sc); if (ath_startrecv(sc) != 0) { ath_print(common, ATH_DBG_FATAL, "Unable to restart recv logic\n"); return; } if (sc->sc_flags & SC_OP_BEACONS) ath_beacon_config(sc, NULL); /* restart beacons */ /* Re-Enable interrupts */ ath9k_hw_set_interrupts(ah, sc->imask); /* Enable LED */ ath9k_hw_cfg_output(ah, ah->led_pin, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); ath9k_hw_set_gpio(ah, ah->led_pin, 0); ieee80211_wake_queues(hw); ath9k_ps_restore(sc); } void ath_radio_disable(struct ath_softc *sc, struct ieee80211_hw *hw) { struct ath_hw *ah = sc->sc_ah; struct ieee80211_channel *channel = hw->conf.channel; int r; ath9k_ps_wakeup(sc); ieee80211_stop_queues(hw); /* Disable LED */ ath9k_hw_set_gpio(ah, ah->led_pin, 1); ath9k_hw_cfg_gpio_input(ah, ah->led_pin); /* Disable interrupts */ ath9k_hw_set_interrupts(ah, 0); ath_drain_all_txq(sc, false); /* clear pending tx frames */ ath_stoprecv(sc); /* turn off frame recv */ ath_flushrecv(sc); /* flush recv queue */ if (!ah->curchan) ah->curchan = ath_get_curchannel(sc, hw); spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, ah->curchan, false); if (r) { ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL, "Unable to reset channel %u (%uMhz) " "reset status %d\n", channel->center_freq, r); } spin_unlock_bh(&sc->sc_resetlock); ath9k_hw_phy_disable(ah); ath9k_hw_configpcipowersave(ah, 1, 1); ath9k_ps_restore(sc); ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP); } /*******************/ /* Rfkill */ /*******************/ static bool ath_is_rfkill_set(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) == ah->rfkill_polarity; } static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; bool blocked = !!ath_is_rfkill_set(sc); wiphy_rfkill_set_hw_state(hw->wiphy, blocked); } static void ath_start_rfkill_poll(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) wiphy_rfkill_start_polling(sc->hw->wiphy); } static void ath9k_uninit_hw(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; BUG_ON(!ah); ath9k_exit_debug(ah); ath9k_hw_detach(ah); sc->sc_ah = NULL; } static void ath_clean_core(struct ath_softc *sc) { struct ieee80211_hw *hw = sc->hw; struct ath_hw *ah = sc->sc_ah; int i = 0; ath9k_ps_wakeup(sc); dev_dbg(sc->dev, "Detach ATH hw\n"); ath_deinit_leds(sc); wiphy_rfkill_stop_polling(sc->hw->wiphy); for (i = 0; i < sc->num_sec_wiphy; i++) { struct ath_wiphy *aphy = sc->sec_wiphy[i]; if (aphy == NULL) continue; sc->sec_wiphy[i] = NULL; ieee80211_unregister_hw(aphy->hw); ieee80211_free_hw(aphy->hw); } ieee80211_unregister_hw(hw); ath_rx_cleanup(sc); ath_tx_cleanup(sc); tasklet_kill(&sc->intr_tq); tasklet_kill(&sc->bcon_tasklet); if (!(sc->sc_flags & SC_OP_INVALID)) ath9k_setpower(sc, ATH9K_PM_AWAKE); /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); if ((sc->btcoex.no_stomp_timer) && ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE) ath_gen_timer_free(ah, sc->btcoex.no_stomp_timer); } void ath_detach(struct ath_softc *sc) { ath_clean_core(sc); ath9k_uninit_hw(sc); } void ath_cleanup(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); ath_clean_core(sc); free_irq(sc->irq, sc); ath_bus_cleanup(common); kfree(sc->sec_wiphy); ieee80211_free_hw(sc->hw); ath9k_uninit_hw(sc); } static int ath9k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_regulatory *reg = ath9k_hw_regulatory(sc->sc_ah); return ath_reg_notifier_apply(wiphy, request, reg); } /* * Detects if there is any priority bt traffic */ static void ath_detect_bt_priority(struct ath_softc *sc) { struct ath_btcoex *btcoex = &sc->btcoex; struct ath_hw *ah = sc->sc_ah; if (ath9k_hw_gpio_get(sc->sc_ah, ah->btcoex_hw.btpriority_gpio)) btcoex->bt_priority_cnt++; if (time_after(jiffies, btcoex->bt_priority_time + msecs_to_jiffies(ATH_BT_PRIORITY_TIME_THRESHOLD))) { if (btcoex->bt_priority_cnt >= ATH_BT_CNT_THRESHOLD) { ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_BTCOEX, "BT priority traffic detected"); sc->sc_flags |= SC_OP_BT_PRIORITY_DETECTED; } else { sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED; } btcoex->bt_priority_cnt = 0; btcoex->bt_priority_time = jiffies; } } /* * Configures appropriate weight based on stomp type. */ static void ath9k_btcoex_bt_stomp(struct ath_softc *sc, enum ath_stomp_type stomp_type) { struct ath_hw *ah = sc->sc_ah; switch (stomp_type) { case ATH_BTCOEX_STOMP_ALL: ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT, AR_STOMP_ALL_WLAN_WGHT); break; case ATH_BTCOEX_STOMP_LOW: ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT, AR_STOMP_LOW_WLAN_WGHT); break; case ATH_BTCOEX_STOMP_NONE: ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT, AR_STOMP_NONE_WLAN_WGHT); break; default: ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX, "Invalid Stomptype\n"); break; } ath9k_hw_btcoex_enable(ah); } static void ath9k_gen_timer_start(struct ath_hw *ah, struct ath_gen_timer *timer, u32 timer_next, u32 timer_period) { struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; ath9k_hw_gen_timer_start(ah, timer, timer_next, timer_period); if ((sc->imask & ATH9K_INT_GENTIMER) == 0) { ath9k_hw_set_interrupts(ah, 0); sc->imask |= ATH9K_INT_GENTIMER; ath9k_hw_set_interrupts(ah, sc->imask); } } static void ath9k_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) { struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; ath9k_hw_gen_timer_stop(ah, timer); /* if no timer is enabled, turn off interrupt mask */ if (timer_table->timer_mask.val == 0) { ath9k_hw_set_interrupts(ah, 0); sc->imask &= ~ATH9K_INT_GENTIMER; ath9k_hw_set_interrupts(ah, sc->imask); } } /* * This is the master bt coex timer which runs for every * 45ms, bt traffic will be given priority during 55% of this * period while wlan gets remaining 45% */ static void ath_btcoex_period_timer(unsigned long data) { struct ath_softc *sc = (struct ath_softc *) data; struct ath_hw *ah = sc->sc_ah; struct ath_btcoex *btcoex = &sc->btcoex; ath_detect_bt_priority(sc); spin_lock_bh(&btcoex->btcoex_lock); ath9k_btcoex_bt_stomp(sc, btcoex->bt_stomp_type); spin_unlock_bh(&btcoex->btcoex_lock); if (btcoex->btcoex_period != btcoex->btcoex_no_stomp) { if (btcoex->hw_timer_enabled) ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer); ath9k_gen_timer_start(ah, btcoex->no_stomp_timer, (ath9k_hw_gettsf32(ah) + btcoex->btcoex_no_stomp), btcoex->btcoex_no_stomp * 10); btcoex->hw_timer_enabled = true; } mod_timer(&btcoex->period_timer, jiffies + msecs_to_jiffies(ATH_BTCOEX_DEF_BT_PERIOD)); } /* * Generic tsf based hw timer which configures weight * registers to time slice between wlan and bt traffic */ static void ath_btcoex_no_stomp_timer(void *arg) { struct ath_softc *sc = (struct ath_softc *)arg; struct ath_hw *ah = sc->sc_ah; struct ath_btcoex *btcoex = &sc->btcoex; ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX, "no stomp timer running \n"); spin_lock_bh(&btcoex->btcoex_lock); if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_LOW) ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_NONE); else if (btcoex->bt_stomp_type == ATH_BTCOEX_STOMP_ALL) ath9k_btcoex_bt_stomp(sc, ATH_BTCOEX_STOMP_LOW); spin_unlock_bh(&btcoex->btcoex_lock); } static int ath_init_btcoex_timer(struct ath_softc *sc) { struct ath_btcoex *btcoex = &sc->btcoex; btcoex->btcoex_period = ATH_BTCOEX_DEF_BT_PERIOD * 1000; btcoex->btcoex_no_stomp = (100 - ATH_BTCOEX_DEF_DUTY_CYCLE) * btcoex->btcoex_period / 100; setup_timer(&btcoex->period_timer, ath_btcoex_period_timer, (unsigned long) sc); spin_lock_init(&btcoex->btcoex_lock); btcoex->no_stomp_timer = ath_gen_timer_alloc(sc->sc_ah, ath_btcoex_no_stomp_timer, ath_btcoex_no_stomp_timer, (void *) sc, AR_FIRST_NDP_TIMER); if (!btcoex->no_stomp_timer) return -ENOMEM; return 0; } /* * Read and write, they both share the same lock. We do this to serialize * reads and writes on Atheros 802.11n PCI devices only. This is required * as the FIFO on these devices can only accept sanely 2 requests. After * that the device goes bananas. Serializing the reads/writes prevents this * from happening. */ static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset) { struct ath_hw *ah = (struct ath_hw *) hw_priv; struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; if (ah->config.serialize_regmode == SER_REG_MODE_ON) { unsigned long flags; spin_lock_irqsave(&sc->sc_serial_rw, flags); iowrite32(val, sc->mem + reg_offset); spin_unlock_irqrestore(&sc->sc_serial_rw, flags); } else iowrite32(val, sc->mem + reg_offset); } static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset) { struct ath_hw *ah = (struct ath_hw *) hw_priv; struct ath_common *common = ath9k_hw_common(ah); struct ath_softc *sc = (struct ath_softc *) common->priv; u32 val; if (ah->config.serialize_regmode == SER_REG_MODE_ON) { unsigned long flags; spin_lock_irqsave(&sc->sc_serial_rw, flags); val = ioread32(sc->mem + reg_offset); spin_unlock_irqrestore(&sc->sc_serial_rw, flags); } else val = ioread32(sc->mem + reg_offset); return val; } static const struct ath_ops ath9k_common_ops = { .read = ath9k_ioread32, .write = ath9k_iowrite32, }; /* * Initialize and fill ath_softc, ath_sofct is the * "Software Carrier" struct. Historically it has existed * to allow the separation between hardware specific * variables (now in ath_hw) and driver specific variables. */ static int ath_init_softc(u16 devid, struct ath_softc *sc, u16 subsysid, const struct ath_bus_ops *bus_ops) { struct ath_hw *ah = NULL; struct ath_common *common; int r = 0, i; int csz = 0; int qnum; /* XXX: hardware will not be ready until ath_open() being called */ sc->sc_flags |= SC_OP_INVALID; spin_lock_init(&sc->wiphy_lock); spin_lock_init(&sc->sc_resetlock); spin_lock_init(&sc->sc_serial_rw); spin_lock_init(&sc->sc_pm_lock); mutex_init(&sc->mutex); tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc); tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet, (unsigned long)sc); ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL); if (!ah) return -ENOMEM; ah->hw_version.devid = devid; ah->hw_version.subsysid = subsysid; sc->sc_ah = ah; common = ath9k_hw_common(ah); common->ops = &ath9k_common_ops; common->bus_ops = bus_ops; common->ah = ah; common->hw = sc->hw; common->priv = sc; common->debug_mask = ath9k_debug; /* * Cache line size is used to size and align various * structures used to communicate with the hardware. */ ath_read_cachesize(common, &csz); /* XXX assert csz is non-zero */ common->cachelsz = csz << 2; /* convert to bytes */ r = ath9k_hw_init(ah); if (r) { ath_print(common, ATH_DBG_FATAL, "Unable to initialize hardware; " "initialization status: %d\n", r); goto bad_free_hw; } if (ath9k_init_debug(ah) < 0) { ath_print(common, ATH_DBG_FATAL, "Unable to create debugfs files\n"); goto bad_free_hw; } /* Get the hardware key cache size. */ common->keymax = ah->caps.keycache_size; if (common->keymax > ATH_KEYMAX) { ath_print(common, ATH_DBG_ANY, "Warning, using only %u entries in %u key cache\n", ATH_KEYMAX, common->keymax); common->keymax = ATH_KEYMAX; } /* * Reset the key cache since some parts do not * reset the contents on initial power up. */ for (i = 0; i < common->keymax; i++) ath9k_hw_keyreset(ah, (u16) i); /* default to MONITOR mode */ sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR; /* * Allocate hardware transmit queues: one queue for * beacon frames and one data queue for each QoS * priority. Note that the hal handles reseting * these queues at the needed time. */ sc->beacon.beaconq = ath9k_hw_beaconq_setup(ah); if (sc->beacon.beaconq == -1) { ath_print(common, ATH_DBG_FATAL, "Unable to setup a beacon xmit queue\n"); r = -EIO; goto bad2; } sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0); if (sc->beacon.cabq == NULL) { ath_print(common, ATH_DBG_FATAL, "Unable to setup CAB xmit queue\n"); r = -EIO; goto bad2; } sc->config.cabqReadytime = ATH_CABQ_READY_TIME; ath_cabq_update(sc); for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++) sc->tx.hwq_map[i] = -1; /* Setup data queues */ /* NB: ensure BK queue is the lowest priority h/w queue */ if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) { ath_print(common, ATH_DBG_FATAL, "Unable to setup xmit queue for BK traffic\n"); r = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) { ath_print(common, ATH_DBG_FATAL, "Unable to setup xmit queue for BE traffic\n"); r = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) { ath_print(common, ATH_DBG_FATAL, "Unable to setup xmit queue for VI traffic\n"); r = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) { ath_print(common, ATH_DBG_FATAL, "Unable to setup xmit queue for VO traffic\n"); r = -EIO; goto bad2; } /* Initializes the noise floor to a reasonable default value. * Later on this will be updated during ANI processing. */ common->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR; setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc); if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_TKIP, NULL)) { /* * Whether we should enable h/w TKIP MIC. * XXX: if we don't support WME TKIP MIC, then we wouldn't * report WMM capable, so it's always safe to turn on * TKIP MIC in this case. */ ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC, 0, 1, NULL); } /* * Check whether the separate key cache entries * are required to handle both tx+rx MIC keys. * With split mic keys the number of stations is limited * to 27 otherwise 59. */ if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_TKIP, NULL) && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_MIC, NULL) && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT, 0, NULL)) common->splitmic = 1; /* turn on mcast key search if possible */ if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL)) (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1, 1, NULL); sc->config.txpowlimit = ATH_TXPOWER_MAX; /* 11n Capabilities */ if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) { sc->sc_flags |= SC_OP_TXAGGR; sc->sc_flags |= SC_OP_RXAGGR; } common->tx_chainmask = ah->caps.tx_chainmask; common->rx_chainmask = ah->caps.rx_chainmask; ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL); sc->rx.defant = ath9k_hw_getdefantenna(ah); if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN); sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */ /* initialize beacon slots */ for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) { sc->beacon.bslot[i] = NULL; sc->beacon.bslot_aphy[i] = NULL; } /* setup channels and rates */ if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes)) { sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable; sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ; sc->sbands[IEEE80211_BAND_2GHZ].n_channels = ARRAY_SIZE(ath9k_2ghz_chantable); sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates; sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates = ARRAY_SIZE(ath9k_legacy_rates); } if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) { sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable; sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ; sc->sbands[IEEE80211_BAND_5GHZ].n_channels = ARRAY_SIZE(ath9k_5ghz_chantable); sc->sbands[IEEE80211_BAND_5GHZ].bitrates = ath9k_legacy_rates + 4; sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates = ARRAY_SIZE(ath9k_legacy_rates) - 4; } switch (ah->btcoex_hw.scheme) { case ATH_BTCOEX_CFG_NONE: break; case ATH_BTCOEX_CFG_2WIRE: ath9k_hw_btcoex_init_2wire(ah); break; case ATH_BTCOEX_CFG_3WIRE: ath9k_hw_btcoex_init_3wire(ah); r = ath_init_btcoex_timer(sc); if (r) goto bad2; qnum = ath_tx_get_qnum(sc, ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE); ath9k_hw_init_btcoex_hw(ah, qnum); sc->btcoex.bt_stomp_type = ATH_BTCOEX_STOMP_LOW; break; default: WARN_ON(1); break; } return 0; bad2: /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); bad_free_hw: ath9k_uninit_hw(sc); return r; } void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw) { hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_AMPDU_AGGREGATION | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK | IEEE80211_HW_SPECTRUM_MGMT; if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt) hw->flags |= IEEE80211_HW_MFP_CAPABLE; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT); hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; hw->queues = 4; hw->max_rates = 4; hw->channel_change_time = 5000; hw->max_listen_interval = 10; /* Hardware supports 10 but we use 4 */ hw->max_rate_tries = 4; hw->sta_data_size = sizeof(struct ath_node); hw->vif_data_size = sizeof(struct ath_vif); hw->rate_control_algorithm = "ath9k_rate_control"; if (test_bit(ATH9K_MODE_11G, sc->sc_ah->caps.wireless_modes)) hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ]; if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &sc->sbands[IEEE80211_BAND_5GHZ]; } /* Device driver core initialization */ int ath_init_device(u16 devid, struct ath_softc *sc, u16 subsysid, const struct ath_bus_ops *bus_ops) { struct ieee80211_hw *hw = sc->hw; struct ath_common *common; struct ath_hw *ah; int error = 0, i; struct ath_regulatory *reg; dev_dbg(sc->dev, "Attach ATH hw\n"); error = ath_init_softc(devid, sc, subsysid, bus_ops); if (error != 0) return error; ah = sc->sc_ah; common = ath9k_hw_common(ah); /* get mac address from hardware and set in mac80211 */ SET_IEEE80211_PERM_ADDR(hw, common->macaddr); ath_set_hw_capab(sc, hw); error = ath_regd_init(&common->regulatory, sc->hw->wiphy, ath9k_reg_notifier); if (error) return error; reg = &common->regulatory; if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) { if (test_bit(ATH9K_MODE_11G, ah->caps.wireless_modes)) setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap); if (test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap); } /* initialize tx/rx engine */ error = ath_tx_init(sc, ATH_TXBUF); if (error != 0) goto error_attach; error = ath_rx_init(sc, ATH_RXBUF); if (error != 0) goto error_attach; INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work); INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work); sc->wiphy_scheduler_int = msecs_to_jiffies(500); error = ieee80211_register_hw(hw); if (!ath_is_world_regd(reg)) { error = regulatory_hint(hw->wiphy, reg->alpha2); if (error) goto error_attach; } /* Initialize LED control */ ath_init_leds(sc); ath_start_rfkill_poll(sc); return 0; error_attach: /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); ath9k_uninit_hw(sc); return error; } int ath_reset(struct ath_softc *sc, bool retry_tx) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_hw *hw = sc->hw; int r; /* Stop ANI */ del_timer_sync(&common->ani.timer); ath9k_hw_set_interrupts(ah, 0); ath_drain_all_txq(sc, retry_tx); ath_stoprecv(sc); ath_flushrecv(sc); spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false); if (r) ath_print(common, ATH_DBG_FATAL, "Unable to reset hardware; reset status %d\n", r); spin_unlock_bh(&sc->sc_resetlock); if (ath_startrecv(sc) != 0) ath_print(common, ATH_DBG_FATAL, "Unable to start recv logic\n"); /* * We may be doing a reset in response to a request * that changes the channel so update any state that * might change as a result. */ ath_cache_conf_rate(sc, &hw->conf); ath_update_txpow(sc); if (sc->sc_flags & SC_OP_BEACONS) ath_beacon_config(sc, NULL); /* restart beacons */ ath9k_hw_set_interrupts(ah, sc->imask); if (retry_tx) { int i; for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { spin_lock_bh(&sc->tx.txq[i].axq_lock); ath_txq_schedule(sc, &sc->tx.txq[i]); spin_unlock_bh(&sc->tx.txq[i].axq_lock); } } } /* Start ANI */ ath_start_ani(common); return r; } /* * This function will allocate both the DMA descriptor structure, and the * buffers it contains. These are used to contain the descriptors used * by the system. */ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head, const char *name, int nbuf, int ndesc) { #define DS2PHYS(_dd, _ds) \ ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0) #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096) struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_desc *ds; struct ath_buf *bf; int i, bsize, error; ath_print(common, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n", name, nbuf, ndesc); INIT_LIST_HEAD(head); /* ath_desc must be a multiple of DWORDs */ if ((sizeof(struct ath_desc) % 4) != 0) { ath_print(common, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n"); BUG_ON((sizeof(struct ath_desc) % 4) != 0); error = -ENOMEM; goto fail; } dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; /* * Need additional DMA memory because we can't use * descriptors that cross the 4K page boundary. Assume * one skipped descriptor per 4K page. */ if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { u32 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len); u32 dma_len; while (ndesc_skipped) { dma_len = ndesc_skipped * sizeof(struct ath_desc); dd->dd_desc_len += dma_len; ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len); }; } /* allocate descriptors */ dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len, &dd->dd_desc_paddr, GFP_KERNEL); if (dd->dd_desc == NULL) { error = -ENOMEM; goto fail; } ds = dd->dd_desc; ath_print(common, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n", name, ds, (u32) dd->dd_desc_len, ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len); /* allocate buffers */ bsize = sizeof(struct ath_buf) * nbuf; bf = kzalloc(bsize, GFP_KERNEL); if (bf == NULL) { error = -ENOMEM; goto fail2; } dd->dd_bufptr = bf; for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { /* * Skip descriptor addresses which can cause 4KB * boundary crossing (addr + length) with a 32 dword * descriptor fetch. */ while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) { BUG_ON((caddr_t) bf->bf_desc >= ((caddr_t) dd->dd_desc + dd->dd_desc_len)); ds += ndesc; bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); } } list_add_tail(&bf->list, head); } return 0; fail2: dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); fail: memset(dd, 0, sizeof(*dd)); return error; #undef ATH_DESC_4KB_BOUND_CHECK #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED #undef DS2PHYS } void ath_descdma_cleanup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head) { dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); INIT_LIST_HEAD(head); kfree(dd->dd_bufptr); memset(dd, 0, sizeof(*dd)); } int ath_get_hal_qnum(u16 queue, struct ath_softc *sc) { int qnum; switch (queue) { case 0: qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO]; break; case 1: qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI]; break; case 2: qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE]; break; case 3: qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK]; break; default: qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE]; break; } return qnum; } int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc) { int qnum; switch (queue) { case ATH9K_WME_AC_VO: qnum = 0; break; case ATH9K_WME_AC_VI: qnum = 1; break; case ATH9K_WME_AC_BE: qnum = 2; break; case ATH9K_WME_AC_BK: qnum = 3; break; default: qnum = -1; break; } return qnum; } /* XXX: Remove me once we don't depend on ath9k_channel for all * this redundant data */ void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw, struct ath9k_channel *ichan) { struct ieee80211_channel *chan = hw->conf.channel; struct ieee80211_conf *conf = &hw->conf; ichan->channel = chan->center_freq; ichan->chan = chan; if (chan->band == IEEE80211_BAND_2GHZ) { ichan->chanmode = CHANNEL_G; ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM | CHANNEL_G; } else { ichan->chanmode = CHANNEL_A; ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM; } if (conf_is_ht(conf)) ichan->chanmode = ath_get_extchanmode(sc, chan, conf->channel_type); } /**********************/ /* mac80211 callbacks */ /**********************/ /* * (Re)start btcoex timers */ static void ath9k_btcoex_timer_resume(struct ath_softc *sc) { struct ath_btcoex *btcoex = &sc->btcoex; struct ath_hw *ah = sc->sc_ah; ath_print(ath9k_hw_common(ah), ATH_DBG_BTCOEX, "Starting btcoex timers"); /* make sure duty cycle timer is also stopped when resuming */ if (btcoex->hw_timer_enabled) ath9k_gen_timer_stop(sc->sc_ah, btcoex->no_stomp_timer); btcoex->bt_priority_cnt = 0; btcoex->bt_priority_time = jiffies; sc->sc_flags &= ~SC_OP_BT_PRIORITY_DETECTED; mod_timer(&btcoex->period_timer, jiffies); } static int ath9k_start(struct ieee80211_hw *hw) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ieee80211_channel *curchan = hw->conf.channel; struct ath9k_channel *init_channel; int r; ath_print(common, ATH_DBG_CONFIG, "Starting driver with initial channel: %d MHz\n", curchan->center_freq); mutex_lock(&sc->mutex); if (ath9k_wiphy_started(sc)) { if (sc->chan_idx == curchan->hw_value) { /* * Already on the operational channel, the new wiphy * can be marked active. */ aphy->state = ATH_WIPHY_ACTIVE; ieee80211_wake_queues(hw); } else { /* * Another wiphy is on another channel, start the new * wiphy in paused state. */ aphy->state = ATH_WIPHY_PAUSED; ieee80211_stop_queues(hw); } mutex_unlock(&sc->mutex); return 0; } aphy->state = ATH_WIPHY_ACTIVE; /* setup initial channel */ sc->chan_idx = curchan->hw_value; init_channel = ath_get_curchannel(sc, hw); /* Reset SERDES registers */ ath9k_hw_configpcipowersave(ah, 0, 0); /* * The basic interface to setting the hardware in a good * state is ``reset''. On return the hardware is known to * be powered up and with interrupts disabled. This must * be followed by initialization of the appropriate bits * and then setup of the interrupt mask. */ spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, init_channel, false); if (r) { ath_print(common, ATH_DBG_FATAL, "Unable to reset hardware; reset status %d " "(freq %u MHz)\n", r, curchan->center_freq); spin_unlock_bh(&sc->sc_resetlock); goto mutex_unlock; } spin_unlock_bh(&sc->sc_resetlock); /* * This is needed only to setup initial state * but it's best done after a reset. */ ath_update_txpow(sc); /* * Setup the hardware after reset: * The receive engine is set going. * Frame transmit is handled entirely * in the frame output path; there's nothing to do * here except setup the interrupt mask. */ if (ath_startrecv(sc) != 0) { ath_print(common, ATH_DBG_FATAL, "Unable to start recv logic\n"); r = -EIO; goto mutex_unlock; } /* Setup our intr mask. */ sc->imask = ATH9K_INT_RX | ATH9K_INT_TX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL; if (ah->caps.hw_caps & ATH9K_HW_CAP_GTT) sc->imask |= ATH9K_INT_GTT; if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) sc->imask |= ATH9K_INT_CST; ath_cache_conf_rate(sc, &hw->conf); sc->sc_flags &= ~SC_OP_INVALID; /* Disable BMISS interrupt when we're not associated */ sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS); ath9k_hw_set_interrupts(ah, sc->imask); ieee80211_wake_queues(hw); ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0); if ((ah->btcoex_hw.scheme != ATH_BTCOEX_CFG_NONE) && !ah->btcoex_hw.enabled) { ath9k_hw_btcoex_set_weight(ah, AR_BT_COEX_WGHT, AR_STOMP_LOW_WLAN_WGHT); ath9k_hw_btcoex_enable(ah); if (common->bus_ops->bt_coex_prep) common->bus_ops->bt_coex_prep(common); if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE) ath9k_btcoex_timer_resume(sc); } mutex_unlock: mutex_unlock(&sc->mutex); return r; } static int ath9k_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_tx_control txctl; int padpos, padsize; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) { ath_print(common, ATH_DBG_XMIT, "ath9k: %s: TX in unexpected wiphy state " "%d\n", wiphy_name(hw->wiphy), aphy->state); goto exit; } if (sc->ps_enabled) { /* * mac80211 does not set PM field for normal data frames, so we * need to update that based on the current PS mode. */ if (ieee80211_is_data(hdr->frame_control) && !ieee80211_is_nullfunc(hdr->frame_control) && !ieee80211_has_pm(hdr->frame_control)) { ath_print(common, ATH_DBG_PS, "Add PM=1 for a TX frame " "while in PS mode\n"); hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM); } } if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) { /* * We are using PS-Poll and mac80211 can request TX while in * power save mode. Need to wake up hardware for the TX to be * completed and if needed, also for RX of buffered frames. */ ath9k_ps_wakeup(sc); ath9k_hw_setrxabort(sc->sc_ah, 0); if (ieee80211_is_pspoll(hdr->frame_control)) { ath_print(common, ATH_DBG_PS, "Sending PS-Poll to pick a buffered frame\n"); sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA; } else { ath_print(common, ATH_DBG_PS, "Wake up to complete TX\n"); sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK; } /* * The actual restore operation will happen only after * the sc_flags bit is cleared. We are just dropping * the ps_usecount here. */ ath9k_ps_restore(sc); } memset(&txctl, 0, sizeof(struct ath_tx_control)); /* * As a temporary workaround, assign seq# here; this will likely need * to be cleaned up to work better with Beacon transmission and virtual * BSSes. */ if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) sc->tx.seq_no += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); } /* Add the padding after the header if this is not already done */ padpos = ath9k_cmn_padpos(hdr->frame_control); padsize = padpos & 3; if (padsize && skb->len>padpos) { if (skb_headroom(skb) < padsize) return -1; skb_push(skb, padsize); memmove(skb->data, skb->data + padsize, padpos); } /* Check if a tx queue is available */ txctl.txq = ath_test_get_txq(sc, skb); if (!txctl.txq) goto exit; ath_print(common, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb); if (ath_tx_start(hw, skb, &txctl) != 0) { ath_print(common, ATH_DBG_XMIT, "TX failed\n"); goto exit; } return 0; exit: dev_kfree_skb_any(skb); return 0; } /* * Pause btcoex timer and bt duty cycle timer */ static void ath9k_btcoex_timer_pause(struct ath_softc *sc) { struct ath_btcoex *btcoex = &sc->btcoex; struct ath_hw *ah = sc->sc_ah; del_timer_sync(&btcoex->period_timer); if (btcoex->hw_timer_enabled) ath9k_gen_timer_stop(ah, btcoex->no_stomp_timer); btcoex->hw_timer_enabled = false; } static void ath9k_stop(struct ieee80211_hw *hw) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); mutex_lock(&sc->mutex); aphy->state = ATH_WIPHY_INACTIVE; cancel_delayed_work_sync(&sc->ath_led_blink_work); cancel_delayed_work_sync(&sc->tx_complete_work); if (!sc->num_sec_wiphy) { cancel_delayed_work_sync(&sc->wiphy_work); cancel_work_sync(&sc->chan_work); } if (sc->sc_flags & SC_OP_INVALID) { ath_print(common, ATH_DBG_ANY, "Device not present\n"); mutex_unlock(&sc->mutex); return; } if (ath9k_wiphy_started(sc)) { mutex_unlock(&sc->mutex); return; /* another wiphy still in use */ } if (ah->btcoex_hw.enabled) { ath9k_hw_btcoex_disable(ah); if (ah->btcoex_hw.scheme == ATH_BTCOEX_CFG_3WIRE) ath9k_btcoex_timer_pause(sc); } /* make sure h/w will not generate any interrupt * before setting the invalid flag. */ ath9k_hw_set_interrupts(ah, 0); if (!(sc->sc_flags & SC_OP_INVALID)) { ath_drain_all_txq(sc, false); ath_stoprecv(sc); ath9k_hw_phy_disable(ah); } else sc->rx.rxlink = NULL; /* disable HAL and put h/w to sleep */ ath9k_hw_disable(ah); ath9k_hw_configpcipowersave(ah, 1, 1); ath9k_setpower(sc, ATH9K_PM_FULL_SLEEP); sc->sc_flags |= SC_OP_INVALID; mutex_unlock(&sc->mutex); ath_print(common, ATH_DBG_CONFIG, "Driver halt\n"); } static int ath9k_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_vif *avp = (void *)vif->drv_priv; enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED; int ret = 0; mutex_lock(&sc->mutex); if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) && sc->nvifs > 0) { ret = -ENOBUFS; goto out; } switch (vif->type) { case NL80211_IFTYPE_STATION: ic_opmode = NL80211_IFTYPE_STATION; break; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_MESH_POINT: if (sc->nbcnvifs >= ATH_BCBUF) { ret = -ENOBUFS; goto out; } ic_opmode = vif->type; break; default: ath_print(common, ATH_DBG_FATAL, "Interface type %d not yet supported\n", vif->type); ret = -EOPNOTSUPP; goto out; } ath_print(common, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode); /* Set the VIF opmode */ avp->av_opmode = ic_opmode; avp->av_bslot = -1; sc->nvifs++; if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) ath9k_set_bssid_mask(hw); if (sc->nvifs > 1) goto out; /* skip global settings for secondary vif */ if (ic_opmode == NL80211_IFTYPE_AP) { ath9k_hw_set_tsfadjust(sc->sc_ah, 1); sc->sc_flags |= SC_OP_TSF_RESET; } /* Set the device opmode */ sc->sc_ah->opmode = ic_opmode; /* * Enable MIB interrupts when there are hardware phy counters. * Note we only do this (at the moment) for station mode. */ if ((vif->type == NL80211_IFTYPE_STATION) || (vif->type == NL80211_IFTYPE_ADHOC) || (vif->type == NL80211_IFTYPE_MESH_POINT)) { sc->imask |= ATH9K_INT_MIB; sc->imask |= ATH9K_INT_TSFOOR; } ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); if (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_MONITOR) ath_start_ani(common); out: mutex_unlock(&sc->mutex); return ret; } static void ath9k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_vif *avp = (void *)vif->drv_priv; int i; ath_print(common, ATH_DBG_CONFIG, "Detach Interface\n"); mutex_lock(&sc->mutex); /* Stop ANI */ del_timer_sync(&common->ani.timer); /* Reclaim beacon resources */ if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) || (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) { ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); ath_beacon_return(sc, avp); } sc->sc_flags &= ~SC_OP_BEACONS; for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) { if (sc->beacon.bslot[i] == vif) { printk(KERN_DEBUG "%s: vif had allocated beacon " "slot\n", __func__); sc->beacon.bslot[i] = NULL; sc->beacon.bslot_aphy[i] = NULL; } } sc->nvifs--; mutex_unlock(&sc->mutex); } static int ath9k_config(struct ieee80211_hw *hw, u32 changed) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ieee80211_conf *conf = &hw->conf; struct ath_hw *ah = sc->sc_ah; bool disable_radio; mutex_lock(&sc->mutex); /* * Leave this as the first check because we need to turn on the * radio if it was disabled before prior to processing the rest * of the changes. Likewise we must only disable the radio towards * the end. */ if (changed & IEEE80211_CONF_CHANGE_IDLE) { bool enable_radio; bool all_wiphys_idle; bool idle = !!(conf->flags & IEEE80211_CONF_IDLE); spin_lock_bh(&sc->wiphy_lock); all_wiphys_idle = ath9k_all_wiphys_idle(sc); ath9k_set_wiphy_idle(aphy, idle); if (!idle && all_wiphys_idle) enable_radio = true; /* * After we unlock here its possible another wiphy * can be re-renabled so to account for that we will * only disable the radio toward the end of this routine * if by then all wiphys are still idle. */ spin_unlock_bh(&sc->wiphy_lock); if (enable_radio) { ath_radio_enable(sc, hw); ath_print(common, ATH_DBG_CONFIG, "not-idle: enabling radio\n"); } } /* * We just prepare to enable PS. We have to wait until our AP has * ACK'd our null data frame to disable RX otherwise we'll ignore * those ACKs and end up retransmitting the same null data frames. * IEEE80211_CONF_CHANGE_PS is only passed by mac80211 for STA mode. */ if (changed & IEEE80211_CONF_CHANGE_PS) { if (conf->flags & IEEE80211_CONF_PS) { sc->sc_flags |= SC_OP_PS_ENABLED; if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) { sc->imask |= ATH9K_INT_TIM_TIMER; ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); } } /* * At this point we know hardware has received an ACK * of a previously sent null data frame. */ if ((sc->sc_flags & SC_OP_NULLFUNC_COMPLETED)) { sc->sc_flags &= ~SC_OP_NULLFUNC_COMPLETED; sc->ps_enabled = true; ath9k_hw_setrxabort(sc->sc_ah, 1); } } else { sc->ps_enabled = false; sc->sc_flags &= ~(SC_OP_PS_ENABLED | SC_OP_NULLFUNC_COMPLETED); ath9k_setpower(sc, ATH9K_PM_AWAKE); if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { ath9k_hw_setrxabort(sc->sc_ah, 0); sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON | SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_PSPOLL_DATA | SC_OP_WAIT_FOR_TX_ACK); if (sc->imask & ATH9K_INT_TIM_TIMER) { sc->imask &= ~ATH9K_INT_TIM_TIMER; ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); } } } } if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { struct ieee80211_channel *curchan = hw->conf.channel; int pos = curchan->hw_value; aphy->chan_idx = pos; aphy->chan_is_ht = conf_is_ht(conf); if (aphy->state == ATH_WIPHY_SCAN || aphy->state == ATH_WIPHY_ACTIVE) ath9k_wiphy_pause_all_forced(sc, aphy); else { /* * Do not change operational channel based on a paused * wiphy changes. */ goto skip_chan_change; } ath_print(common, ATH_DBG_CONFIG, "Set channel: %d MHz\n", curchan->center_freq); /* XXX: remove me eventualy */ ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]); ath_update_chainmask(sc, conf_is_ht(conf)); if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) { ath_print(common, ATH_DBG_FATAL, "Unable to set channel\n"); mutex_unlock(&sc->mutex); return -EINVAL; } } skip_chan_change: if (changed & IEEE80211_CONF_CHANGE_POWER) sc->config.txpowlimit = 2 * conf->power_level; spin_lock_bh(&sc->wiphy_lock); disable_radio = ath9k_all_wiphys_idle(sc); spin_unlock_bh(&sc->wiphy_lock); if (disable_radio) { ath_print(common, ATH_DBG_CONFIG, "idle: disabling radio\n"); ath_radio_disable(sc, hw); } mutex_unlock(&sc->mutex); return 0; } #define SUPPORTED_FILTERS \ (FIF_PROMISC_IN_BSS | \ FIF_ALLMULTI | \ FIF_CONTROL | \ FIF_PSPOLL | \ FIF_OTHER_BSS | \ FIF_BCN_PRBRESP_PROMISC | \ FIF_FCSFAIL) /* FIXME: sc->sc_full_reset ? */ static void ath9k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; u32 rfilt; changed_flags &= SUPPORTED_FILTERS; *total_flags &= SUPPORTED_FILTERS; sc->rx.rxfilter = *total_flags; ath9k_ps_wakeup(sc); rfilt = ath_calcrxfilter(sc); ath9k_hw_setrxfilter(sc->sc_ah, rfilt); ath9k_ps_restore(sc); ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", rfilt); } static void ath9k_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; switch (cmd) { case STA_NOTIFY_ADD: ath_node_attach(sc, sta); break; case STA_NOTIFY_REMOVE: ath_node_detach(sc, sta); break; default: break; } } static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *params) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath9k_tx_queue_info qi; int ret = 0, qnum; if (queue >= WME_NUM_AC) return 0; mutex_lock(&sc->mutex); memset(&qi, 0, sizeof(struct ath9k_tx_queue_info)); qi.tqi_aifs = params->aifs; qi.tqi_cwmin = params->cw_min; qi.tqi_cwmax = params->cw_max; qi.tqi_burstTime = params->txop; qnum = ath_get_hal_qnum(queue, sc); ath_print(common, ATH_DBG_CONFIG, "Configure tx [queue/halq] [%d/%d], " "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n", queue, qnum, params->aifs, params->cw_min, params->cw_max, params->txop); ret = ath_txq_update(sc, qnum, &qi); if (ret) ath_print(common, ATH_DBG_FATAL, "TXQ Update failed\n"); if (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) if ((qnum == sc->tx.hwq_map[ATH9K_WME_AC_BE]) && !ret) ath_beaconq_config(sc); mutex_unlock(&sc->mutex); return ret; } static int ath9k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_common *common = ath9k_hw_common(sc->sc_ah); int ret = 0; if (modparam_nohwcrypt) return -ENOSPC; mutex_lock(&sc->mutex); ath9k_ps_wakeup(sc); ath_print(common, ATH_DBG_CONFIG, "Set HW Key\n"); switch (cmd) { case SET_KEY: ret = ath_key_config(common, vif, sta, key); if (ret >= 0) { key->hw_key_idx = ret; /* push IV and Michael MIC generation to stack */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; if (key->alg == ALG_TKIP) key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP) key->flags |= IEEE80211_KEY_FLAG_SW_MGMT; ret = 0; } break; case DISABLE_KEY: ath_key_delete(common, key); break; default: ret = -EINVAL; } ath9k_ps_restore(sc); mutex_unlock(&sc->mutex); return ret; } static void ath9k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changed) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_vif *avp = (void *)vif->drv_priv; int error; mutex_lock(&sc->mutex); if (changed & BSS_CHANGED_BSSID) { /* Set BSSID */ memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN); memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN); common->curaid = 0; ath9k_hw_write_associd(ah); /* Set aggregation protection mode parameters */ sc->config.ath_aggr_prot = 0; /* Only legacy IBSS for now */ if (vif->type == NL80211_IFTYPE_ADHOC) ath_update_chainmask(sc, 0); ath_print(common, ATH_DBG_CONFIG, "BSSID: %pM aid: 0x%x\n", common->curbssid, common->curaid); /* need to reconfigure the beacon */ sc->sc_flags &= ~SC_OP_BEACONS ; } /* Enable transmission of beacons (AP, IBSS, MESH) */ if ((changed & BSS_CHANGED_BEACON) || ((changed & BSS_CHANGED_BEACON_ENABLED) && bss_conf->enable_beacon)) { ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); error = ath_beacon_alloc(aphy, vif); if (!error) ath_beacon_config(sc, vif); } /* Disable transmission of beacons */ if ((changed & BSS_CHANGED_BEACON_ENABLED) && !bss_conf->enable_beacon) ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); if (changed & BSS_CHANGED_BEACON_INT) { sc->beacon_interval = bss_conf->beacon_int; /* * In case of AP mode, the HW TSF has to be reset * when the beacon interval changes. */ if (vif->type == NL80211_IFTYPE_AP) { sc->sc_flags |= SC_OP_TSF_RESET; ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); error = ath_beacon_alloc(aphy, vif); if (!error) ath_beacon_config(sc, vif); } else { ath_beacon_config(sc, vif); } } if (changed & BSS_CHANGED_ERP_PREAMBLE) { ath_print(common, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n", bss_conf->use_short_preamble); if (bss_conf->use_short_preamble) sc->sc_flags |= SC_OP_PREAMBLE_SHORT; else sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT; } if (changed & BSS_CHANGED_ERP_CTS_PROT) { ath_print(common, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n", bss_conf->use_cts_prot); if (bss_conf->use_cts_prot && hw->conf.channel->band != IEEE80211_BAND_5GHZ) sc->sc_flags |= SC_OP_PROTECT_ENABLE; else sc->sc_flags &= ~SC_OP_PROTECT_ENABLE; } if (changed & BSS_CHANGED_ASSOC) { ath_print(common, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n", bss_conf->assoc); ath9k_bss_assoc_info(sc, vif, bss_conf); } mutex_unlock(&sc->mutex); } static u64 ath9k_get_tsf(struct ieee80211_hw *hw) { u64 tsf; struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; mutex_lock(&sc->mutex); tsf = ath9k_hw_gettsf64(sc->sc_ah); mutex_unlock(&sc->mutex); return tsf; } static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; mutex_lock(&sc->mutex); ath9k_hw_settsf64(sc->sc_ah, tsf); mutex_unlock(&sc->mutex); } static void ath9k_reset_tsf(struct ieee80211_hw *hw) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; mutex_lock(&sc->mutex); ath9k_ps_wakeup(sc); ath9k_hw_reset_tsf(sc->sc_ah); ath9k_ps_restore(sc); mutex_unlock(&sc->mutex); } static int ath9k_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; int ret = 0; switch (action) { case IEEE80211_AMPDU_RX_START: if (!(sc->sc_flags & SC_OP_RXAGGR)) ret = -ENOTSUPP; break; case IEEE80211_AMPDU_RX_STOP: break; case IEEE80211_AMPDU_TX_START: ath_tx_aggr_start(sc, sta, tid, ssn); ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_STOP: ath_tx_aggr_stop(sc, sta, tid); ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); break; case IEEE80211_AMPDU_TX_OPERATIONAL: ath_tx_aggr_resume(sc, sta, tid); break; default: ath_print(ath9k_hw_common(sc->sc_ah), ATH_DBG_FATAL, "Unknown AMPDU action\n"); } return ret; } static void ath9k_sw_scan_start(struct ieee80211_hw *hw) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_common *common = ath9k_hw_common(sc->sc_ah); mutex_lock(&sc->mutex); if (ath9k_wiphy_scanning(sc)) { printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the " "same time\n"); /* * Do not allow the concurrent scanning state for now. This * could be improved with scanning control moved into ath9k. */ mutex_unlock(&sc->mutex); return; } aphy->state = ATH_WIPHY_SCAN; ath9k_wiphy_pause_all_forced(sc, aphy); sc->sc_flags |= SC_OP_SCANNING; del_timer_sync(&common->ani.timer); cancel_delayed_work_sync(&sc->tx_complete_work); mutex_unlock(&sc->mutex); } static void ath9k_sw_scan_complete(struct ieee80211_hw *hw) { struct ath_wiphy *aphy = hw->priv; struct ath_softc *sc = aphy->sc; struct ath_common *common = ath9k_hw_common(sc->sc_ah); mutex_lock(&sc->mutex); aphy->state = ATH_WIPHY_ACTIVE; sc->sc_flags &= ~SC_OP_SCANNING; sc->sc_flags |= SC_OP_FULL_RESET; ath_start_ani(common); ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 0); ath_beacon_config(sc, NULL); mutex_unlock(&sc->mutex); } struct ieee80211_ops ath9k_ops = { .tx = ath9k_tx, .start = ath9k_start, .stop = ath9k_stop, .add_interface = ath9k_add_interface, .remove_interface = ath9k_remove_interface, .config = ath9k_config, .configure_filter = ath9k_configure_filter, .sta_notify = ath9k_sta_notify, .conf_tx = ath9k_conf_tx, .bss_info_changed = ath9k_bss_info_changed, .set_key = ath9k_set_key, .get_tsf = ath9k_get_tsf, .set_tsf = ath9k_set_tsf, .reset_tsf = ath9k_reset_tsf, .ampdu_action = ath9k_ampdu_action, .sw_scan_start = ath9k_sw_scan_start, .sw_scan_complete = ath9k_sw_scan_complete, .rfkill_poll = ath9k_rfkill_poll_state, }; static int __init ath9k_init(void) { int error; /* Register rate control algorithm */ error = ath_rate_control_register(); if (error != 0) { printk(KERN_ERR "ath9k: Unable to register rate control " "algorithm: %d\n", error); goto err_out; } error = ath9k_debug_create_root(); if (error) { printk(KERN_ERR "ath9k: Unable to create debugfs root: %d\n", error); goto err_rate_unregister; } error = ath_pci_init(); if (error < 0) { printk(KERN_ERR "ath9k: No PCI devices found, driver not installed.\n"); error = -ENODEV; goto err_remove_root; } error = ath_ahb_init(); if (error < 0) { error = -ENODEV; goto err_pci_exit; } return 0; err_pci_exit: ath_pci_exit(); err_remove_root: ath9k_debug_remove_root(); err_rate_unregister: ath_rate_control_unregister(); err_out: return error; } module_init(ath9k_init); static void __exit ath9k_exit(void) { ath_ahb_exit(); ath_pci_exit(); ath9k_debug_remove_root(); ath_rate_control_unregister(); printk(KERN_INFO "%s: Driver unloaded\n", dev_info); } module_exit(ath9k_exit);