/* * Linux cfg80211 driver * * Copyright (C) 1999-2011, Broadcom Corporation * * Unless you and Broadcom execute a separate written software license * agreement governing use of this software, this software is licensed to you * under the terms of the GNU General Public License version 2 (the "GPL"), * available at http://www.broadcom.com/licenses/GPLv2.php, with the * following added to such license: * * As a special exception, the copyright holders of this software give you * permission to link this software with independent modules, and to copy and * distribute the resulting executable under terms of your choice, provided that * you also meet, for each linked independent module, the terms and conditions of * the license of that module. An independent module is a module which is not * derived from this software. The special exception does not apply to any * modifications of the software. * * Notwithstanding the above, under no circumstances may you combine this * software in any way with any other Broadcom software provided under a license * other than the GPL, without Broadcom's express prior written consent. * * $Id: wl_cfg80211.c,v 1.1.4.1.2.14 2011/02/09 01:40:07 Exp $ */ #include #include #include #include /* * sys proc file will be REMOVED in next release */ #if defined(DHD_P2P_DEV_ADDR_FROM_SYSFS) && defined(CONFIG_SYSCTL) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct sdio_func *cfg80211_sdio_func; static struct wl_dev *wl_cfg80211_dev; u32 wl_dbg_level = WL_DBG_ERR; #define WL_4329_FW_FILE "brcm/bcm4329-fullmac-4-218-248-5.bin" #define WL_4329_NVRAM_FILE "brcm/bcm4329-fullmac-4-218-248-5.txt" #define WL_TRACE(a) printk("%s ", __FUNCTION__); printk a #define MAC2STR(a) (a)[0], (a)[1], (a)[2], (a)[3], (a)[4], (a)[5] #define MACSTR "%02x:%02x:%02x:%02x:%02x:%02x" #define MAX_WAIT_TIME 3000 static s8 ioctlbuf[WLC_IOCTL_MAXLEN]; #if defined(DHD_P2P_DEV_ADDR_FROM_SYSFS) && defined(CONFIG_SYSCTL) #define MAC_STRING_LEN (sizeof(u8) * 17) u8 wl_sysctl_macstring[2][MAC_STRING_LEN]; static ctl_table wl_sysctl_child[] = { { .procname = "p2p_dev_addr", .data = &wl_sysctl_macstring[0], .maxlen = MAC_STRING_LEN, .mode = 0444, .child = NULL, .proc_handler = proc_dostring, }, { .procname = "p2p_int_addr", .data = &wl_sysctl_macstring[1], .maxlen = MAC_STRING_LEN, .mode = 0444, .child = NULL, .proc_handler = proc_dostring, }, {0} }; static ctl_table wl_sysctl_table[] = { { .procname = "wifi", .data = NULL, .maxlen = 0, .mode = 0555, .child = wl_sysctl_child, .proc_handler = NULL, }, {0} }; static struct ctl_table_header *wl_sysctl_hdr; #endif /* CONFIG_SYSCTL */ /* This is to override regulatory domains defined in cfg80211 module (reg.c) * By default world regulatory domain defined in reg.c puts the flags NL80211_RRF_PASSIVE_SCAN * and NL80211_RRF_NO_IBSS for 5GHz channels (for 36..48 and 149..165). * With respect to these flags, wpa_supplicant doesn't start p2p operations on 5GHz channels. * All the chnages in world regulatory domain are to be done here. */ static const struct ieee80211_regdomain brcm_regdom = { .n_reg_rules = 5, .alpha2 = "99", .reg_rules = { /* IEEE 802.11b/g, channels 1..11 */ REG_RULE(2412-10, 2462+10, 40, 6, 20, 0), /* IEEE 802.11b/g, channels 12..13. No HT40 * channel fits here. */ REG_RULE(2467-10, 2472+10, 20, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS), /* IEEE 802.11 channel 14 - Only JP enables * this and for 802.11b only */ REG_RULE(2484-10, 2484+10, 20, 6, 20, NL80211_RRF_PASSIVE_SCAN | NL80211_RRF_NO_IBSS | NL80211_RRF_NO_OFDM), /* IEEE 802.11a, channel 36..48 */ REG_RULE(5180-10, 5240+10, 40, 6, 20, 0), /* NB: 5260 MHz - 5700 MHz requies DFS */ /* IEEE 802.11a, channel 149..165 */ REG_RULE(5745-10, 5825+10, 40, 6, 20, 0), } }; /* Data Element Definitions */ #define WPS_ID_CONFIG_METHODS 0x1008 #define WPS_ID_REQ_TYPE 0x103A #define WPS_ID_DEVICE_NAME 0x1011 #define WPS_ID_VERSION 0x104A #define WPS_ID_DEVICE_PWD_ID 0x1012 #define WPS_ID_REQ_DEV_TYPE 0x106A #define WPS_ID_SELECTED_REGISTRAR_CONFIG_METHODS 0x1053 #define WPS_ID_PRIM_DEV_TYPE 0x1054 /* Device Password ID */ #define DEV_PW_DEFAULT 0x0000 #define DEV_PW_USER_SPECIFIED 0x0001, #define DEV_PW_MACHINE_SPECIFIED 0x0002 #define DEV_PW_REKEY 0x0003 #define DEV_PW_PUSHBUTTON 0x0004 #define DEV_PW_REGISTRAR_SPECIFIED 0x0005 /* Config Methods */ #define WPS_CONFIG_USBA 0x0001 #define WPS_CONFIG_ETHERNET 0x0002 #define WPS_CONFIG_LABEL 0x0004 #define WPS_CONFIG_DISPLAY 0x0008 #define WPS_CONFIG_EXT_NFC_TOKEN 0x0010 #define WPS_CONFIG_INT_NFC_TOKEN 0x0020 #define WPS_CONFIG_NFC_INTERFACE 0x0040 #define WPS_CONFIG_PUSHBUTTON 0x0080 #define WPS_CONFIG_KEYPAD 0x0100 #define WPS_CONFIG_VIRT_PUSHBUTTON 0x0280 #define WPS_CONFIG_PHY_PUSHBUTTON 0x0480 #define WPS_CONFIG_VIRT_DISPLAY 0x2008 #define WPS_CONFIG_PHY_DISPLAY 0x4008 /* * cfg80211_ops api/callback list */ static s32 wl_frame_get_mgmt(u16 fc, const struct ether_addr *da, const struct ether_addr *sa, const struct ether_addr *bssid, u8 **pheader, u32 *body_len, u8 *pbody); static s32 __wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request, struct cfg80211_ssid *this_ssid); static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request); static s32 wl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed); static s32 wl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params); static s32 wl_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev); static s32 wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo); static s32 wl_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, s32 timeout); static int wl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code); static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, enum nl80211_tx_power_setting type, s32 dbm); static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm); static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool unicast, bool multicast); static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params); static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr); static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params *params)); static s32 wl_cfg80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx); static s32 wl_cfg80211_resume(struct wiphy *wiphy); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39) static s32 wl_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow); #else static s32 wl_cfg80211_suspend(struct wiphy *wiphy); #endif static s32 wl_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa); static s32 wl_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa); static s32 wl_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *dev); static void wl_notify_escan_complete(struct wl_priv *wl, bool aborted); /* * event & event Q handlers for cfg80211 interfaces */ static s32 wl_create_event_handler(struct wl_priv *wl); static void wl_destroy_event_handler(struct wl_priv *wl); static s32 wl_event_handler(void *data); static void wl_init_eq(struct wl_priv *wl); static void wl_flush_eq(struct wl_priv *wl); static void wl_lock_eq(struct wl_priv *wl); static void wl_unlock_eq(struct wl_priv *wl); static void wl_init_eq_lock(struct wl_priv *wl); static void wl_init_event_handler(struct wl_priv *wl); static struct wl_event_q *wl_deq_event(struct wl_priv *wl); static s32 wl_enq_event(struct wl_priv *wl, struct net_device *ndev, u32 type, const wl_event_msg_t *msg, void *data); static void wl_put_event(struct wl_event_q *e); static void wl_wakeup_event(struct wl_priv *wl); static s32 wl_notify_connect_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_roaming_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_scan_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_bss_connect_done(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data, bool completed); static s32 wl_bss_roaming_done(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_mic_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); /* * register/deregister sdio function */ struct sdio_func *wl_cfg80211_get_sdio_func(void); static void wl_clear_sdio_func(void); /* * ioctl utilites */ static s32 wl_dev_bufvar_get(struct net_device *dev, s8 *name, s8 *buf, s32 buf_len); static __used s32 wl_dev_bufvar_set(struct net_device *dev, s8 *name, s8 *buf, s32 len); static s32 wl_dev_intvar_set(struct net_device *dev, s8 *name, s32 val); static s32 wl_dev_intvar_get(struct net_device *dev, s8 *name, s32 *retval); /* * cfg80211 set_wiphy_params utilities */ static s32 wl_set_frag(struct net_device *dev, u32 frag_threshold); static s32 wl_set_rts(struct net_device *dev, u32 frag_threshold); static s32 wl_set_retry(struct net_device *dev, u32 retry, bool l); /* * wl profile utilities */ static s32 wl_update_prof(struct wl_priv *wl, const wl_event_msg_t *e, void *data, s32 item); static void *wl_read_prof(struct wl_priv *wl, s32 item); static void wl_init_prof(struct wl_profile *prof); /* * cfg80211 connect utilites */ static s32 wl_set_wpa_version(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_auth_type(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_set_cipher(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_key_mgmt(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_set_sharedkey(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_get_assoc_ies(struct wl_priv *wl, struct net_device *ndev); static void wl_ch_to_chanspec(int ch, struct wl_join_params *join_params, size_t *join_params_size); /* * information element utilities */ static void wl_rst_ie(struct wl_priv *wl); static __used s32 wl_add_ie(struct wl_priv *wl, u8 t, u8 l, u8 *v); static s32 wl_mrg_ie(struct wl_priv *wl, u8 *ie_stream, u16 ie_size); static s32 wl_cp_ie(struct wl_priv *wl, u8 *dst, u16 dst_size); static u32 wl_get_ielen(struct wl_priv *wl); static s32 wl_mode_to_nl80211_iftype(s32 mode); static struct wireless_dev *wl_alloc_wdev(s32 sizeof_iface, struct device *dev); static void wl_free_wdev(struct wl_priv *wl); static s32 wl_inform_bss(struct wl_priv *wl); static s32 wl_inform_single_bss(struct wl_priv *wl, struct wl_bss_info *bi); static s32 wl_update_bss_info(struct wl_priv *wl, struct net_device *ndev); static s32 wl_add_keyext(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr, struct key_params *params); /* * key indianess swap utilities */ static void swap_key_from_BE(struct wl_wsec_key *key); static void swap_key_to_BE(struct wl_wsec_key *key); /* * wl_priv memory init/deinit utilities */ static s32 wl_init_priv_mem(struct wl_priv *wl); static void wl_deinit_priv_mem(struct wl_priv *wl); static void wl_delay(u32 ms); /* * store/restore cfg80211 instance data */ static void wl_set_drvdata(struct wl_dev *dev, void *data); static void *wl_get_drvdata(struct wl_dev *dev); /* * ibss mode utilities */ static bool wl_is_ibssmode(struct wl_priv *wl, struct net_device *ndev); static __used bool wl_is_ibssstarter(struct wl_priv *wl); /* * dongle up/down , default configuration utilities */ static bool wl_is_linkdown(struct wl_priv *wl, const wl_event_msg_t *e); static bool wl_is_linkup(struct wl_priv *wl, const wl_event_msg_t *e, struct net_device *ndev); static bool wl_is_nonetwork(struct wl_priv *wl, const wl_event_msg_t *e); static void wl_link_up(struct wl_priv *wl); static void wl_link_down(struct wl_priv *wl); static s32 wl_dongle_mode(struct wl_priv *wl, struct net_device *ndev, s32 iftype); static s32 __wl_cfg80211_up(struct wl_priv *wl); static s32 __wl_cfg80211_down(struct wl_priv *wl); static s32 wl_dongle_probecap(struct wl_priv *wl); static void wl_init_conf(struct wl_conf *conf); static s32 wl_dongle_add_remove_eventmsg(struct net_device *ndev, u16 event, bool add); static s32 wl_dongle_eventmsg(struct net_device *ndev); /* * dongle configuration utilities */ #ifndef EMBEDDED_PLATFORM static s32 wl_dongle_country(struct net_device *ndev, u8 ccode); static s32 wl_dongle_up(struct net_device *ndev, u32 up); static s32 wl_dongle_power(struct net_device *ndev, u32 power_mode); static s32 wl_dongle_glom(struct net_device *ndev, u32 glom, u32 dongle_align); static s32 wl_dongle_roam(struct net_device *ndev, u32 roamvar, u32 bcn_timeout); static s32 wl_dongle_eventmsg(struct net_device *ndev); static s32 wl_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time, s32 scan_unassoc_time); static s32 wl_dongle_offload(struct net_device *ndev, s32 arpoe, s32 arp_ol); static s32 wl_pattern_atoh(s8 *src, s8 *dst); static s32 wl_dongle_filter(struct net_device *ndev, u32 filter_mode); static s32 wl_update_wiphybands(struct wl_priv *wl); #endif /* !EMBEDDED_PLATFORM */ static __used void wl_dongle_poweron(struct wl_priv *wl); static __used void wl_dongle_poweroff(struct wl_priv *wl); static s32 wl_config_dongle(struct wl_priv *wl, bool need_lock); /* * iscan handler */ static void wl_iscan_timer(unsigned long data); static void wl_term_iscan(struct wl_priv *wl); static s32 wl_init_scan(struct wl_priv *wl); static s32 wl_iscan_thread(void *data); static s32 wl_run_iscan(struct wl_iscan_ctrl *iscan, struct wlc_ssid *ssid, u16 action); static s32 wl_do_iscan(struct wl_priv *wl); static s32 wl_wakeup_iscan(struct wl_iscan_ctrl *iscan); static s32 wl_invoke_iscan(struct wl_priv *wl); static s32 wl_get_iscan_results(struct wl_iscan_ctrl *iscan, u32 *status, struct wl_scan_results **bss_list); static void wl_notify_iscan_complete(struct wl_iscan_ctrl *iscan, bool aborted); static void wl_init_iscan_handler(struct wl_iscan_ctrl *iscan); static s32 wl_iscan_done(struct wl_priv *wl); static s32 wl_iscan_pending(struct wl_priv *wl); static s32 wl_iscan_inprogress(struct wl_priv *wl); static s32 wl_iscan_aborted(struct wl_priv *wl); /* * fw/nvram downloading handler */ static void wl_init_fw(struct wl_fw_ctrl *fw); /* * find most significant bit set */ static __used u32 wl_find_msb(u16 bit16); /* * update pmklist to dongle */ static __used s32 wl_update_pmklist(struct net_device *dev, struct wl_pmk_list *pmk_list, s32 err); /* * debufs support */ static int wl_debugfs_add_netdev_params(struct wl_priv *wl); static void wl_debugfs_remove_netdev(struct wl_priv *wl); /* * rfkill support */ static int wl_setup_rfkill(struct wl_priv *wl, bool setup); static int wl_rfkill_set(void *data, bool blocked); /* * Some external functions, TODO: move them to dhd_linux.h */ int dhd_add_monitor(char *name, struct net_device **new_ndev); int dhd_del_monitor(struct net_device *ndev); int dhd_monitor_init(void *dhd_pub); int dhd_monitor_uninit(void); int dhd_start_xmit(struct sk_buff *skb, struct net_device *net); #define WL_PRIV_GET() \ ({ \ struct wl_iface *ci = NULL; \ if (unlikely(!(wl_cfg80211_dev && \ (ci = wl_get_drvdata(wl_cfg80211_dev))))) { \ WL_ERR(("wl_cfg80211_dev is unavailable\n")); \ BUG(); \ } \ ci_to_wl(ci); \ }) #define CHECK_SYS_UP() \ do { \ struct wl_priv *wl = WL_PRIV_GET(); \ if (unlikely(!wl_get_drv_status(wl, READY))) { \ WL_INFO(("device is not ready : status (%d)\n", \ (int)wl->status)); \ return -EIO; \ } \ } while (0) #define IS_WPA_AKM(akm) ((akm) == RSN_AKM_NONE || \ (akm) == RSN_AKM_UNSPECIFIED || \ (akm) == RSN_AKM_PSK) extern int dhd_wait_pend8021x(struct net_device *dev); #if (WL_DBG_LEVEL > 0) #define WL_DBG_ESTR_MAX 50 static s8 wl_dbg_estr[][WL_DBG_ESTR_MAX] = { "SET_SSID", "JOIN", "START", "AUTH", "AUTH_IND", "DEAUTH", "DEAUTH_IND", "ASSOC", "ASSOC_IND", "REASSOC", "REASSOC_IND", "DISASSOC", "DISASSOC_IND", "QUIET_START", "QUIET_END", "BEACON_RX", "LINK", "MIC_ERROR", "NDIS_LINK", "ROAM", "TXFAIL", "PMKID_CACHE", "RETROGRADE_TSF", "PRUNE", "AUTOAUTH", "EAPOL_MSG", "SCAN_COMPLETE", "ADDTS_IND", "DELTS_IND", "BCNSENT_IND", "BCNRX_MSG", "BCNLOST_MSG", "ROAM_PREP", "PFN_NET_FOUND", "PFN_NET_LOST", "RESET_COMPLETE", "JOIN_START", "ROAM_START", "ASSOC_START", "IBSS_ASSOC", "RADIO", "PSM_WATCHDOG", "WLC_E_CCX_ASSOC_START", "WLC_E_CCX_ASSOC_ABORT", "PROBREQ_MSG", "SCAN_CONFIRM_IND", "PSK_SUP", "COUNTRY_CODE_CHANGED", "EXCEEDED_MEDIUM_TIME", "ICV_ERROR", "UNICAST_DECODE_ERROR", "MULTICAST_DECODE_ERROR", "TRACE", "WLC_E_BTA_HCI_EVENT", "IF", "WLC_E_P2P_DISC_LISTEN_COMPLETE", "RSSI", "PFN_SCAN_COMPLETE", "WLC_E_EXTLOG_MSG", "ACTION_FRAME", "ACTION_FRAME_COMPLETE", "WLC_E_PRE_ASSOC_IND", "WLC_E_PRE_REASSOC_IND", "WLC_E_CHANNEL_ADOPTED", "WLC_E_AP_STARTED", "WLC_E_DFS_AP_STOP", "WLC_E_DFS_AP_RESUME", "WLC_E_WAI_STA_EVENT", "WLC_E_WAI_MSG", "WLC_E_ESCAN_RESULT", "WLC_E_ACTION_FRAME_OFF_CHAN_COMPLETE", "WLC_E_PROBRESP_MSG", "WLC_E_P2P_PROBREQ_MSG", "WLC_E_DCS_REQUEST", "WLC_E_FIFO_CREDIT_MAP", "WLC_E_ACTION_FRAME_RX", "WLC_E_WAKE_EVENT", "WLC_E_RM_COMPLETE" }; #endif /* WL_DBG_LEVEL */ #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = 5000 + (5 * (_channel)), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2) #define RATETAB_ENT(_rateid, _flags) \ { \ .bitrate = RATE_TO_BASE100KBPS(_rateid), \ .hw_value = (_rateid), \ .flags = (_flags), \ } static struct ieee80211_rate __wl_rates[] = { RATETAB_ENT(WLC_RATE_1M, 0), RATETAB_ENT(WLC_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(WLC_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(WLC_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(WLC_RATE_6M, 0), RATETAB_ENT(WLC_RATE_9M, 0), RATETAB_ENT(WLC_RATE_12M, 0), RATETAB_ENT(WLC_RATE_18M, 0), RATETAB_ENT(WLC_RATE_24M, 0), RATETAB_ENT(WLC_RATE_36M, 0), RATETAB_ENT(WLC_RATE_48M, 0), RATETAB_ENT(WLC_RATE_54M, 0) }; #define wl_a_rates (__wl_rates + 4) #define wl_a_rates_size 8 #define wl_g_rates (__wl_rates + 0) #define wl_g_rates_size 12 static struct ieee80211_channel __wl_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0) }; static struct ieee80211_channel __wl_5ghz_a_channels[] = { CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(52, 0), CHAN5G(56, 0), CHAN5G(60, 0), CHAN5G(64, 0), CHAN5G(100, 0), CHAN5G(104, 0), CHAN5G(108, 0), CHAN5G(112, 0), CHAN5G(116, 0), CHAN5G(120, 0), CHAN5G(124, 0), CHAN5G(128, 0), CHAN5G(132, 0), CHAN5G(136, 0), CHAN5G(140, 0), CHAN5G(149, 0), CHAN5G(153, 0), CHAN5G(157, 0), CHAN5G(161, 0), CHAN5G(165, 0), CHAN5G(184, 0), CHAN5G(188, 0), CHAN5G(192, 0), CHAN5G(196, 0), CHAN5G(200, 0), CHAN5G(204, 0), CHAN5G(208, 0), CHAN5G(212, 0), CHAN5G(216, 0) }; static struct ieee80211_channel __wl_5ghz_n_channels[] = { CHAN5G(32, 0), CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(50, 0), CHAN5G(52, 0), CHAN5G(54, 0), CHAN5G(56, 0), CHAN5G(58, 0), CHAN5G(60, 0), CHAN5G(62, 0), CHAN5G(64, 0), CHAN5G(66, 0), CHAN5G(68, 0), CHAN5G(70, 0), CHAN5G(72, 0), CHAN5G(74, 0), CHAN5G(76, 0), CHAN5G(78, 0), CHAN5G(80, 0), CHAN5G(82, 0), CHAN5G(84, 0), CHAN5G(86, 0), CHAN5G(88, 0), CHAN5G(90, 0), CHAN5G(92, 0), CHAN5G(94, 0), CHAN5G(96, 0), CHAN5G(98, 0), CHAN5G(100, 0), CHAN5G(102, 0), CHAN5G(104, 0), CHAN5G(106, 0), CHAN5G(108, 0), CHAN5G(110, 0), CHAN5G(112, 0), CHAN5G(114, 0), CHAN5G(116, 0), CHAN5G(118, 0), CHAN5G(120, 0), CHAN5G(122, 0), CHAN5G(124, 0), CHAN5G(126, 0), CHAN5G(128, 0), CHAN5G(130, 0), CHAN5G(132, 0), CHAN5G(134, 0), CHAN5G(136, 0), CHAN5G(138, 0), CHAN5G(140, 0), CHAN5G(142, 0), CHAN5G(144, 0), CHAN5G(145, 0), CHAN5G(146, 0), CHAN5G(147, 0), CHAN5G(148, 0), CHAN5G(149, 0), CHAN5G(150, 0), CHAN5G(151, 0), CHAN5G(152, 0), CHAN5G(153, 0), CHAN5G(154, 0), CHAN5G(155, 0), CHAN5G(156, 0), CHAN5G(157, 0), CHAN5G(158, 0), CHAN5G(159, 0), CHAN5G(160, 0), CHAN5G(161, 0), CHAN5G(162, 0), CHAN5G(163, 0), CHAN5G(164, 0), CHAN5G(165, 0), CHAN5G(166, 0), CHAN5G(168, 0), CHAN5G(170, 0), CHAN5G(172, 0), CHAN5G(174, 0), CHAN5G(176, 0), CHAN5G(178, 0), CHAN5G(180, 0), CHAN5G(182, 0), CHAN5G(184, 0), CHAN5G(186, 0), CHAN5G(188, 0), CHAN5G(190, 0), CHAN5G(192, 0), CHAN5G(194, 0), CHAN5G(196, 0), CHAN5G(198, 0), CHAN5G(200, 0), CHAN5G(202, 0), CHAN5G(204, 0), CHAN5G(206, 0), CHAN5G(208, 0), CHAN5G(210, 0), CHAN5G(212, 0), CHAN5G(214, 0), CHAN5G(216, 0), CHAN5G(218, 0), CHAN5G(220, 0), CHAN5G(222, 0), CHAN5G(224, 0), CHAN5G(226, 0), CHAN5G(228, 0) }; static struct ieee80211_supported_band __wl_band_2ghz = { .band = IEEE80211_BAND_2GHZ, .channels = __wl_2ghz_channels, .n_channels = ARRAY_SIZE(__wl_2ghz_channels), .bitrates = wl_g_rates, .n_bitrates = wl_g_rates_size }; static struct ieee80211_supported_band __wl_band_5ghz_a = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_a_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_a_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size }; static struct ieee80211_supported_band __wl_band_5ghz_n = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_n_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_n_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size }; static const u32 __wl_cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_AES_CMAC }; /* There isn't a lot of sense in it, but you can transmit anything you like */ static const struct ieee80211_txrx_stypes wl_cfg80211_default_mgmt_stypes[NUM_NL80211_IFTYPES] = { [NL80211_IFTYPE_ADHOC] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) }, [NL80211_IFTYPE_STATION] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_AP] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4) }, [NL80211_IFTYPE_AP_VLAN] = { /* copy AP */ .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4) }, [NL80211_IFTYPE_P2P_CLIENT] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_GO] = { .tx = 0xffff, .rx = BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_ACTION >> 4) } }; static void swap_key_from_BE(struct wl_wsec_key *key) { key->index = htod32(key->index); key->len = htod32(key->len); key->algo = htod32(key->algo); key->flags = htod32(key->flags); key->rxiv.hi = htod32(key->rxiv.hi); key->rxiv.lo = htod16(key->rxiv.lo); key->iv_initialized = htod32(key->iv_initialized); } static void swap_key_to_BE(struct wl_wsec_key *key) { key->index = dtoh32(key->index); key->len = dtoh32(key->len); key->algo = dtoh32(key->algo); key->flags = dtoh32(key->flags); key->rxiv.hi = dtoh32(key->rxiv.hi); key->rxiv.lo = dtoh16(key->rxiv.lo); key->iv_initialized = dtoh32(key->iv_initialized); } /* For debug: Dump the contents of the encoded wps ie buffe */ static void wl_validate_wps_ie(char *wps_ie, bool *pbc) { #define WPS_IE_FIXED_LEN 6 u16 len = (u16) wps_ie[TLV_LEN_OFF]; u8 *subel = wps_ie+ WPS_IE_FIXED_LEN; u16 subelt_id; u16 subelt_len; u16 val; u8 *valptr = (uint8*) &val; WL_DBG(("wps_ie len=%d\n", len)); len -= 4; /* for the WPS IE's OUI, oui_type fields */ while (len >= 4) { /* must have attr id, attr len fields */ valptr[0] = *subel++; valptr[1] = *subel++; subelt_id = HTON16(val); valptr[0] = *subel++; valptr[1] = *subel++; subelt_len = HTON16(val); len -= 4; /* for the attr id, attr len fields */ len -= subelt_len; /* for the remaining fields in this attribute */ WL_DBG((" subel=%p, subelt_id=0x%x subelt_len=%u\n", subel, subelt_id, subelt_len)); if (subelt_id == WPS_ID_VERSION) { WL_DBG((" attr WPS_ID_VERSION: %u\n", *subel)); } else if (subelt_id == WPS_ID_REQ_TYPE) { WL_DBG((" attr WPS_ID_REQ_TYPE: %u\n", *subel)); } else if (subelt_id == WPS_ID_CONFIG_METHODS) { valptr[0] = *subel; valptr[1] = *(subel + 1); WL_DBG((" attr WPS_ID_CONFIG_METHODS: %x\n", HTON16(val))); } else if (subelt_id == WPS_ID_DEVICE_NAME) { char devname[100]; memcpy(devname, subel, subelt_len); devname[subelt_len] = '\0'; WL_DBG((" attr WPS_ID_DEVICE_NAME: %s (len %u)\n", devname, subelt_len)); } else if (subelt_id == WPS_ID_DEVICE_PWD_ID) { valptr[0] = *subel; valptr[1] = *(subel + 1); WL_DBG((" attr WPS_ID_DEVICE_PWD_ID: %u\n", HTON16(val))); *pbc = (HTON16(val) == DEV_PW_PUSHBUTTON) ? true : false; } else if (subelt_id == WPS_ID_PRIM_DEV_TYPE) { valptr[0] = *subel; valptr[1] = *(subel + 1); WL_DBG((" attr WPS_ID_PRIM_DEV_TYPE: cat=%u \n", HTON16(val))); valptr[0] = *(subel + 6); valptr[1] = *(subel + 7); WL_DBG((" attr WPS_ID_PRIM_DEV_TYPE: subcat=%u\n", HTON16(val))); } else if (subelt_id == WPS_ID_REQ_DEV_TYPE) { valptr[0] = *subel; valptr[1] = *(subel + 1); WL_DBG((" attr WPS_ID_REQ_DEV_TYPE: cat=%u\n", HTON16(val))); valptr[0] = *(subel + 6); valptr[1] = *(subel + 7); WL_DBG((" attr WPS_ID_REQ_DEV_TYPE: subcat=%u\n", HTON16(val))); } else if (subelt_id == WPS_ID_SELECTED_REGISTRAR_CONFIG_METHODS) { valptr[0] = *subel; valptr[1] = *(subel + 1); WL_DBG((" attr WPS_ID_SELECTED_REGISTRAR_CONFIG_METHODS" ": cat=%u\n", HTON16(val))); } else { WL_DBG((" unknown attr 0x%x\n", subelt_id)); } subel += subelt_len; } } static struct net_device* wl_cfg80211_add_monitor_if(char *name) { int ret = 0; struct net_device* ndev = NULL; ret = dhd_add_monitor(name, &ndev); WL_INFO(("wl_cfg80211_add_monitor_if net device returned: 0x%p\n", ndev)); return ndev; } static struct net_device * wl_cfg80211_add_virtual_iface(struct wiphy *wiphy, char *name, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { s32 err; s32 timeout = -1; s32 wlif_type = -1; s32 index = 0; s32 mode = 0; chanspec_t chspec; struct wl_priv *wl = WL_PRIV_GET(); struct net_device *_ndev; dhd_pub_t *dhd = (dhd_pub_t *)(wl->pub); int (*net_attach)(dhd_pub_t *dhdp, int ifidx); WL_DBG(("if name: %s, type: %d\n", name, type)); switch (type) { case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MESH_POINT: WL_ERR(("Unsupported interface type\n")); mode = WL_MODE_IBSS; return NULL; case NL80211_IFTYPE_MONITOR: return wl_cfg80211_add_monitor_if(name); case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_STATION: wlif_type = WL_P2P_IF_CLIENT; mode = WL_MODE_BSS; break; case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_AP: wlif_type = WL_P2P_IF_GO; mode = WL_MODE_AP; break; default: WL_ERR(("Unsupported interface type\n")); return NULL; break; } if (!name) { WL_ERR(("name is NULL\n")); return NULL; } if (wl->p2p_supported && (wlif_type != -1)) { if (wl_get_p2p_status(wl, IF_DELETING) == 1) { /* wait till IF_DEL is complete * release the lock for the unregister to proceed */ rtnl_unlock(); WL_INFO(("%s: Released the lock and wait till IF_DEL is complete\n", __func__)); timeout = wait_event_interruptible_timeout(wl->dongle_event_wait, (wl_get_p2p_status(wl, IF_DELETING) == false), msecs_to_jiffies(MAX_WAIT_TIME)); /* put back the rtnl_lock again */ rtnl_lock(); if (timeout > 0) { WL_ERR(("IF DEL is Success\n")); } else { WL_ERR(("%s: timeount < 0, return -EAGAIN\n", __func__)); return ERR_PTR(-EAGAIN); } } if (!p2p_on(wl) && strstr(name, WL_P2P_INTERFACE_PREFIX)) { p2p_on(wl) = true; wl_cfgp2p_set_firm_p2p(wl); wl_cfgp2p_init_discovery(wl); } memset(wl->p2p->vir_ifname, 0, IFNAMSIZ); strncpy(wl->p2p->vir_ifname, name, IFNAMSIZ - 1); wl_cfgp2p_generate_bss_mac(&dhd->mac, &wl->p2p->dev_addr, &wl->p2p->int_addr); /* Temporary use channel 11, in case GO will be changed with set_channel API */ chspec = wf_chspec_aton(WL_P2P_TEMP_CHAN); /* For P2P mode, use P2P-specific driver features to create the * bss: "wl p2p_ifadd" */ wl_set_p2p_status(wl, IF_ADD); err = wl_cfgp2p_ifadd(wl, &wl->p2p->int_addr, htod32(wlif_type), chspec); if (unlikely(err)) return ERR_PTR(-ENOMEM); timeout = wait_event_interruptible_timeout(wl->dongle_event_wait, (wl_get_p2p_status(wl, IF_ADD) == false), msecs_to_jiffies(MAX_WAIT_TIME)); if (timeout > 0 && (!wl_get_p2p_status(wl, IF_ADD))) { struct wireless_dev *vwdev; vwdev = kzalloc(sizeof(*vwdev), GFP_KERNEL); if (unlikely(!vwdev)) { WL_ERR(("Could not allocate wireless device\n")); return ERR_PTR(-ENOMEM); } vwdev->wiphy = wl->wdev->wiphy; WL_INFO((" virtual interface(%s) is created \n", wl->p2p->vir_ifname)); index = alloc_idx_vwdev(wl); wl->vwdev[index] = vwdev; vwdev->iftype = (wlif_type == WL_P2P_IF_CLIENT) ? NL80211_IFTYPE_STATION : NL80211_IFTYPE_AP; _ndev = wl_to_p2p_bss_ndev(wl, P2PAPI_BSSCFG_CONNECTION); _ndev->ieee80211_ptr = vwdev; SET_NETDEV_DEV(_ndev, wiphy_dev(vwdev->wiphy)); vwdev->netdev = _ndev; wl_set_drv_status(wl, READY); wl->p2p->vif_created = true; set_mode_by_netdev(wl, _ndev, mode); wl = wdev_to_wl(vwdev); net_attach = wl_to_p2p_bss_private(wl, P2PAPI_BSSCFG_CONNECTION); rtnl_unlock(); if (net_attach && !net_attach(dhd, _ndev->ifindex)) WL_DBG((" virtual interface(%s) is " "created\n", wl->p2p->vir_ifname)); else { rtnl_lock(); goto fail; } rtnl_lock(); return _ndev; } else { wl_clr_p2p_status(wl, IF_ADD); WL_ERR((" virtual interface(%s) is not created \n", wl->p2p->vir_ifname)); memset(wl->p2p->vir_ifname, '\0', IFNAMSIZ); wl->p2p->vif_created = false; } } fail: return ERR_PTR(-ENODEV); } static s32 wl_cfg80211_del_virtual_iface(struct wiphy *wiphy, struct net_device *dev) { struct ether_addr p2p_mac; struct wl_priv *wl = WL_PRIV_GET(); s32 timeout = -1; s32 ret = 0; if (wl->p2p_supported) { memcpy(p2p_mac.octet, wl->p2p->int_addr.octet, ETHER_ADDR_LEN); if (wl->p2p->vif_created) { if (wl_get_drv_status(wl, SCANNING)) { wl_cfg80211_scan_abort(wl, dev); } wl_cfgp2p_ifdel(wl, &p2p_mac); wl_set_p2p_status(wl, IF_DELETING); /* Wait for any pending scan req to get aborted from the sysioc context */ timeout = wait_event_interruptible_timeout(wl->dongle_event_wait, (wl->scan_request == false), msecs_to_jiffies(MAX_WAIT_TIME)); if (timeout > 0 && (!wl->scan_request)) { WL_DBG(("IFDEL Operations Done")); } else { WL_ERR(("IFDEL didn't complete properly")); } ret = dhd_del_monitor(dev); } } return ret; } static s32 wl_cfg80211_change_virtual_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { s32 ap = 0; s32 infra = 0; s32 err = BCME_OK; s32 timeout = -1; s32 wlif_type; s32 mode = 0; chanspec_t chspec; struct wl_priv *wl = WL_PRIV_GET(); WL_DBG(("Enter \n")); switch (type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MESH_POINT: ap = 1; WL_ERR(("type (%d) : currently we do not support this type\n", type)); break; case NL80211_IFTYPE_ADHOC: mode = WL_MODE_IBSS; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: mode = WL_MODE_BSS; infra = 1; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_P2P_GO: mode = WL_MODE_AP; ap = 1; break; default: return -EINVAL; } if (ap) { set_mode_by_netdev(wl, ndev, mode); if (wl->p2p_supported && wl->p2p->vif_created) { WL_DBG(("p2p_vif_created (%d) p2p_on (%d)\n", wl->p2p->vif_created, p2p_on(wl))); chspec = wf_chspec_aton(WL_P2P_TEMP_CHAN); wlif_type = ap ? WL_P2P_IF_GO : WL_P2P_IF_CLIENT; WL_ERR(("%s : ap (%d), infra (%d), iftype: (%d)\n", ndev->name, ap, infra, type)); wl_set_p2p_status(wl, IF_CHANGING); wl_clr_p2p_status(wl, IF_CHANGED); err = wl_cfgp2p_ifchange(wl, &wl->p2p->int_addr, htod32(wlif_type), chspec); timeout = wait_event_interruptible_timeout(wl->dongle_event_wait, (wl_get_p2p_status(wl, IF_CHANGED) == true), msecs_to_jiffies(MAX_WAIT_TIME)); set_mode_by_netdev(wl, ndev, mode); wl_clr_p2p_status(wl, IF_CHANGING); wl_clr_p2p_status(wl, IF_CHANGED); } else if (ndev == wl_to_prmry_ndev(wl) && !wl_get_drv_status(wl, AP_CREATED)) { wl_set_drv_status(wl, AP_CREATING); if (!wl->ap_info && !(wl->ap_info = kzalloc(sizeof(struct ap_info), GFP_KERNEL))) { WL_ERR(("struct ap_saved_ie allocation failed\n")); return -ENOMEM; } } else { WL_ERR(("Cannot change the interface for GO or SOFTAP\n")); return -EINVAL; } } ndev->ieee80211_ptr->iftype = type; return 0; } s32 wl_cfg80211_notify_ifadd(struct net_device *net, s32 idx, int (*_net_attach)(dhd_pub_t *dhdp, int ifidx)) { struct wl_priv *wl = WL_PRIV_GET(); s32 ret = BCME_OK; if (!net) { WL_ERR(("net is NULL\n")); return 0; } if (wl->p2p_supported) { WL_DBG(("IF_ADD event called from dongle, old interface name: %s," "new name: %s\n", net->name, wl->p2p->vir_ifname)); /* Assign the net device to CONNECT BSSCFG */ strncpy(net->name, wl->p2p->vir_ifname, IFNAMSIZ - 1); wl_to_p2p_bss_ndev(wl, P2PAPI_BSSCFG_CONNECTION) = net; wl_to_p2p_bss_bssidx(wl, P2PAPI_BSSCFG_CONNECTION) = P2PAPI_BSSCFG_CONNECTION; wl_to_p2p_bss_private(wl, P2PAPI_BSSCFG_CONNECTION) = _net_attach; wl_clr_p2p_status(wl, IF_ADD); net->ifindex = idx; wake_up_interruptible(&wl->dongle_event_wait); } return ret; } s32 wl_cfg80211_ifdel_ops(struct net_device *net) { struct wl_priv *wl = WL_PRIV_GET(); if (!net || !net->name) { WL_DBG(("net is NULL\n")); return 0; } if ((wl->p2p->vif_created) && (wl->scan_request)) { /* Abort any pending scan requests */ wl->escan_info.escan_state = WL_ESCAN_STATE_IDLE; rtnl_lock(); WL_INFO(("ESCAN COMPLETED\n")); wl_notify_escan_complete(wl, true); rtnl_unlock(); } /* Wake up any waiting thread */ wake_up_interruptible(&wl->dongle_event_wait); return 0; } s32 wl_cfg80211_notify_ifdel(struct net_device *net) { struct wl_priv *wl = WL_PRIV_GET(); if (wl->p2p->vif_created) { s32 index = 0; WL_DBG(("IF_DEL event called from dongle, _net name: %s, vif name: %s\n", net->name, wl->p2p->vir_ifname)); memset(wl->p2p->vir_ifname, '\0', IFNAMSIZ); index = wl_cfgp2p_find_idx(wl, net); wl_to_p2p_bss_ndev(wl, index) = NULL; wl_to_p2p_bss_bssidx(wl, index) = 0; wl->p2p->vif_created = false; set_mode_by_netdev(wl, net, -1); wl_cfgp2p_clear_management_ie(wl, index); index = get_idx_vwdev_by_netdev(wl, net); WL_DBG(("index : %d\n", index)); if (index >= 0) { free_vwdev_by_index(wl, index); } } wl_clr_p2p_status(wl, IF_DELETING); /* Wake up any waiting thread */ wake_up_interruptible(&wl->dongle_event_wait); return 0; } s32 wl_cfg80211_is_progress_ifadd(void) { s32 is_progress = 0; struct wl_priv *wl = WL_PRIV_GET(); if (wl_get_p2p_status(wl, IF_ADD)) is_progress = 1; return is_progress; } s32 wl_cfg80211_is_progress_ifchange(void) { s32 is_progress = 0; struct wl_priv *wl = WL_PRIV_GET(); if (wl_get_p2p_status(wl, IF_CHANGING)) is_progress = 1; return is_progress; } s32 wl_cfg80211_notify_ifchange(void) { struct wl_priv *wl = WL_PRIV_GET(); if (wl_get_p2p_status(wl, IF_CHANGING)) { wl_set_p2p_status(wl, IF_CHANGED); wake_up_interruptible(&wl->dongle_event_wait); } return 0; } static void wl_iscan_prep(struct wl_scan_params *params, struct wlc_ssid *ssid) { memcpy(¶ms->bssid, ðer_bcast, ETHER_ADDR_LEN); params->bss_type = DOT11_BSSTYPE_ANY; params->scan_type = 0; params->nprobes = -1; params->active_time = -1; params->passive_time = -1; params->home_time = -1; params->channel_num = 0; params->nprobes = htod32(params->nprobes); params->active_time = htod32(params->active_time); params->passive_time = htod32(params->passive_time); params->home_time = htod32(params->home_time); if (ssid && ssid->SSID_len) memcpy(¶ms->ssid, ssid, sizeof(wlc_ssid_t)); } static s32 wl_run_iscan(struct wl_iscan_ctrl *iscan, struct wlc_ssid *ssid, u16 action) { s32 params_size = (WL_SCAN_PARAMS_FIXED_SIZE + offsetof(wl_iscan_params_t, params)); struct wl_iscan_params *params; s32 err = 0; if (ssid && ssid->SSID_len) params_size += sizeof(struct wlc_ssid); params = (struct wl_iscan_params *)kzalloc(params_size, GFP_KERNEL); if (unlikely(!params)) return -ENOMEM; memset(params, 0, params_size); BUG_ON(unlikely(params_size >= WLC_IOCTL_SMLEN)); wl_iscan_prep(¶ms->params, ssid); params->version = htod32(ISCAN_REQ_VERSION); params->action = htod16(action); params->scan_duration = htod16(0); /* params_size += offsetof(wl_iscan_params_t, params); */ err = wldev_iovar_setbuf(iscan->dev, "iscan", params, params_size, iscan->ioctl_buf, WLC_IOCTL_SMLEN); if (unlikely(err)) { if (err == -EBUSY) { WL_INFO(("system busy : iscan canceled\n")); } else { WL_ERR(("error (%d)\n", err)); } } kfree(params); return err; } static s32 wl_do_iscan(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl_to_iscan(wl); struct net_device *ndev = wl_to_prmry_ndev(wl); struct wlc_ssid ssid; s32 passive_scan; s32 err = 0; /* Broadcast scan by default */ memset(&ssid, 0, sizeof(ssid)); iscan->state = WL_ISCAN_STATE_SCANING; passive_scan = wl->active_scan ? 0 : 1; err = wldev_ioctl(ndev, WLC_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan), false); if (unlikely(err)) { WL_DBG(("error (%d)\n", err)); return err; } wl->iscan_kickstart = true; wl_run_iscan(iscan, &ssid, WL_SCAN_ACTION_START); mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 wl_run_escan(struct wl_priv *wl, struct net_device *ndev, wlc_ssid_t *ssid, uint16 action) { s32 err = BCME_OK; s32 params_size = (WL_SCAN_PARAMS_FIXED_SIZE + OFFSETOF(wl_escan_params_t, params)); wl_escan_params_t *params; struct cfg80211_scan_request *scan_request = wl->scan_request; u32 num_chans = 0; s32 search_state = WL_P2P_DISC_ST_SCAN; u32 i; u16 *default_chan_list = NULL; WL_DBG(("Enter \n")); if (!wl->p2p_supported || ((ndev == wl_to_prmry_ndev(wl)) && !p2p_scan(wl))) { /* LEGACY SCAN TRIGGER */ WL_DBG(("LEGACY SCAN START\n")); if (ssid && ssid->SSID_len) { params_size += sizeof(wlc_ssid_t); } params = (wl_escan_params_t *) kmalloc(params_size, GFP_KERNEL); if (params == NULL) return -ENOMEM; memset(params, 0, params_size); memcpy(¶ms->params.bssid, ðer_bcast, ETHER_ADDR_LEN); params->params.bss_type = DOT11_BSSTYPE_ANY; params->params.scan_type = 0; params->params.nprobes = htod32(-1); params->params.active_time = htod32(-1); params->params.passive_time = htod32(-1); params->params.home_time = htod32(-1); params->params.channel_num = 0; if (ssid && ssid->SSID_len) { memcpy(params->params.ssid.SSID, ssid->SSID, ssid->SSID_len); params->params.ssid.SSID_len = htod32(ssid->SSID_len); } params->version = htod32(ESCAN_REQ_VERSION); params->action = htod16(action); params->sync_id = htod16(0x1234); wldev_iovar_setbuf(ndev, "escan", params, params_size, wl->escan_ioctl_buf, WLC_IOCTL_MEDLEN); kfree(params); } else if (p2p_on(wl) && p2p_scan(wl)) { /* P2P SCAN TRIGGER */ if (scan_request && scan_request->n_channels) { num_chans = scan_request->n_channels; WL_INFO((" chann number : %d\n", num_chans)); default_chan_list = kzalloc(num_chans * sizeof(*default_chan_list), GFP_KERNEL); if (default_chan_list == NULL) { WL_ERR(("channel list allocation failed \n")); err = -ENOMEM; goto exit; } for (i = 0; i < num_chans; i++) { default_chan_list[i] = ieee80211_frequency_to_channel( scan_request->channels[i]->center_freq); } if (num_chans == 3 && ( (default_chan_list[0] == SOCIAL_CHAN_1) && (default_chan_list[1] == SOCIAL_CHAN_2) && (default_chan_list[2] == SOCIAL_CHAN_3))) { /* SOCIAL CHANNELS 1, 6, 11 */ search_state = WL_P2P_DISC_ST_SEARCH; WL_INFO(("P2P SEARCH PHASE START \n")); } else { WL_INFO(("P2P SCAN STATE START \n")); } } err = wl_cfgp2p_escan(wl, ndev, wl->active_scan, num_chans, default_chan_list, search_state, action, wl_to_p2p_bss_bssidx(wl, P2PAPI_BSSCFG_DEVICE)); kfree(default_chan_list); } exit: return err; } static s32 wl_do_escan(struct wl_priv *wl, struct wiphy *wiphy, struct net_device *ndev, wlc_ssid_t *ssid) { s32 err = BCME_OK; s32 passive_scan; wl_scan_results_t *results; WL_DBG(("Enter \n")); wl->escan_info.wiphy = wiphy; wl->escan_info.escan_state = WL_ESCAN_STATE_SCANING; passive_scan = wl->active_scan ? 0 : 1; err = wldev_ioctl(ndev, WLC_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan), false); if (unlikely(err)) { WL_DBG(("error (%d)\n", err)); return err; } results = (wl_scan_results_t *) wl->escan_info.escan_buf; results->version = 0; results->count = 0; results->buflen = WL_SCAN_RESULTS_FIXED_SIZE; wl_run_escan(wl, ndev, ssid, WL_SCAN_ACTION_START); return err; } static s32 __wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request, struct cfg80211_ssid *this_ssid) { struct wl_priv *wl = WL_PRIV_GET(); struct cfg80211_ssid *ssids; struct wl_scan_req *sr = wl_to_sr(wl); wlc_ssid_t ssid_info; s32 passive_scan; bool iscan_req; bool escan_req; bool spec_scan; s32 err = 0; if (unlikely(wl_get_drv_status(wl, SCANNING))) { WL_ERR(("Scanning already : status (%d)\n", (int)wl->status)); return -EAGAIN; } if (unlikely(wl_get_drv_status(wl, SCAN_ABORTING))) { WL_ERR(("Scanning being aborted : status (%d)\n", (int)wl->status)); return -EAGAIN; } WL_DBG(("wiphy (%p)\n", wiphy)); iscan_req = false; spec_scan = false; if (request) { /* scan bss */ ssids = request->ssids; if (wl->iscan_on && (!ssids || !ssids->ssid_len)) { iscan_req = true; } else if (wl->escan_on) { escan_req = true; if (ssids->ssid_len && IS_P2P_SSID(ssids->ssid)) { if (wl->p2p_supported) { /* p2p scan trigger */ if (p2p_on(wl) == false) { /* p2p on at the first time */ p2p_on(wl) = true; wl_cfgp2p_set_firm_p2p(wl); } p2p_scan(wl) = true; } } else { /* legacy scan trigger * So, we have to disable p2p discovery if p2p discovery is on */ if (wl->p2p_supported) { p2p_scan(wl) = false; /* If Netdevice is not equals to primary and p2p is on * , we will do p2p scan using P2PAPI_BSSCFG_DEVICE. */ if (p2p_on(wl) && (ndev != wl_to_prmry_ndev(wl))) p2p_scan(wl) = true; if (p2p_scan(wl) == false) { if (wl_get_p2p_status(wl, DISCOVERY_ON)) { err = wl_cfgp2p_discover_enable_search(wl, false); if (unlikely(err)) { goto scan_out; } } } } } } } else { /* scan in ibss */ /* we don't do iscan in ibss */ ssids = this_ssid; } wl->scan_request = request; wl_set_drv_status(wl, SCANNING); if (iscan_req) { err = wl_do_iscan(wl); if (likely(!err)) return err; else goto scan_out; } else if (escan_req) { WL_DBG(("ssid \"%s\", ssid_len (%d)\n", ssids->ssid, ssids->ssid_len)); memcpy(ssid_info.SSID, ssids->ssid, ssids->ssid_len); ssid_info.SSID_len = ssids->ssid_len; if (wl->p2p_supported) { if (p2p_on(wl) && p2p_scan(wl)) { err = wl_cfgp2p_enable_discovery(wl, ndev, request->ie, request->ie_len); if (unlikely(err)) { goto scan_out; } } } err = wl_do_escan(wl, wiphy, ndev, &ssid_info); if (likely(!err)) return err; else goto scan_out; } else { memset(&sr->ssid, 0, sizeof(sr->ssid)); sr->ssid.SSID_len = min_t(u8, sizeof(sr->ssid.SSID), ssids->ssid_len); if (sr->ssid.SSID_len) { memcpy(sr->ssid.SSID, ssids->ssid, sr->ssid.SSID_len); sr->ssid.SSID_len = htod32(sr->ssid.SSID_len); WL_DBG(("Specific scan ssid=\"%s\" len=%d\n", sr->ssid.SSID, sr->ssid.SSID_len)); spec_scan = true; } else { WL_DBG(("Broadcast scan\n")); } WL_DBG(("sr->ssid.SSID_len (%d)\n", sr->ssid.SSID_len)); passive_scan = wl->active_scan ? 0 : 1; err = wldev_ioctl(ndev, WLC_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan), false); if (unlikely(err)) { WL_ERR(("WLC_SET_PASSIVE_SCAN error (%d)\n", err)); goto scan_out; } err = wldev_ioctl(ndev, WLC_SCAN, &sr->ssid, sizeof(sr->ssid), false); if (err) { if (err == -EBUSY) { WL_INFO(("system busy : scan for \"%s\" " "canceled\n", sr->ssid.SSID)); } else { WL_ERR(("WLC_SCAN error (%d)\n", err)); } goto scan_out; } } return 0; scan_out: wl_clr_drv_status(wl, SCANNING); wl->scan_request = NULL; return err; } static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request) { s32 err = 0; WL_DBG(("Enter \n")); CHECK_SYS_UP(); err = __wl_cfg80211_scan(wiphy, ndev, request, NULL); if (unlikely(err)) { WL_ERR(("scan error (%d)\n", err)); return err; } return err; } static s32 wl_dev_intvar_set(struct net_device *dev, s8 *name, s32 val) { s8 buf[WLC_IOCTL_SMLEN]; u32 len; s32 err = 0; val = htod32(val); len = bcm_mkiovar(name, (char *)(&val), sizeof(val), buf, sizeof(buf)); BUG_ON(unlikely(!len)); err = wldev_ioctl(dev, WLC_SET_VAR, buf, len, false); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); } return err; } static s32 wl_dev_intvar_get(struct net_device *dev, s8 *name, s32 *retval) { union { s8 buf[WLC_IOCTL_SMLEN]; s32 val; } var; u32 len; u32 data_null; s32 err = 0; len = bcm_mkiovar(name, (char *)(&data_null), 0, (char *)(&var), sizeof(var.buf)); BUG_ON(unlikely(!len)); err = wldev_ioctl(dev, WLC_GET_VAR, &var, len, false); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); } *retval = dtoh32(var.val); return err; } static s32 wl_set_rts(struct net_device *dev, u32 rts_threshold) { s32 err = 0; err = wl_dev_intvar_set(dev, "rtsthresh", rts_threshold); if (unlikely(err)) { WL_ERR(("Error (%d)\n", err)); return err; } return err; } static s32 wl_set_frag(struct net_device *dev, u32 frag_threshold) { s32 err = 0; err = wl_dev_intvar_set(dev, "fragthresh", frag_threshold); if (unlikely(err)) { WL_ERR(("Error (%d)\n", err)); return err; } return err; } static s32 wl_set_retry(struct net_device *dev, u32 retry, bool l) { s32 err = 0; u32 cmd = (l ? WLC_SET_LRL : WLC_SET_SRL); retry = htod32(retry); err = wldev_ioctl(dev, cmd, &retry, sizeof(retry), false); if (unlikely(err)) { WL_ERR(("cmd (%d) , error (%d)\n", cmd, err)); return err; } return err; } static s32 wl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_prmry_ndev(wl); s32 err = 0; CHECK_SYS_UP(); if (changed & WIPHY_PARAM_RTS_THRESHOLD && (wl->conf->rts_threshold != wiphy->rts_threshold)) { wl->conf->rts_threshold = wiphy->rts_threshold; err = wl_set_rts(ndev, wl->conf->rts_threshold); if (!err) return err; } if (changed & WIPHY_PARAM_FRAG_THRESHOLD && (wl->conf->frag_threshold != wiphy->frag_threshold)) { wl->conf->frag_threshold = wiphy->frag_threshold; err = wl_set_frag(ndev, wl->conf->frag_threshold); if (!err) return err; } if (changed & WIPHY_PARAM_RETRY_LONG && (wl->conf->retry_long != wiphy->retry_long)) { wl->conf->retry_long = wiphy->retry_long; err = wl_set_retry(ndev, wl->conf->retry_long, true); if (!err) return err; } if (changed & WIPHY_PARAM_RETRY_SHORT && (wl->conf->retry_short != wiphy->retry_short)) { wl->conf->retry_short = wiphy->retry_short; err = wl_set_retry(ndev, wl->conf->retry_short, false); if (!err) { return err; } } return err; } static s32 wl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params) { struct wl_priv *wl = WL_PRIV_GET(); struct cfg80211_bss *bss; struct ieee80211_channel *chan; struct wl_join_params join_params; struct cfg80211_ssid ssid; s32 scan_retry = 0; s32 err = 0; WL_TRACE(("In\n")); CHECK_SYS_UP(); if (params->bssid) { WL_ERR(("Invalid bssid\n")); return -EOPNOTSUPP; } bss = cfg80211_get_ibss(wiphy, NULL, params->ssid, params->ssid_len); if (!bss) { memcpy(ssid.ssid, params->ssid, params->ssid_len); ssid.ssid_len = params->ssid_len; do { if (unlikely (__wl_cfg80211_scan(wiphy, dev, NULL, &ssid) == -EBUSY)) { wl_delay(150); } else { break; } } while (++scan_retry < WL_SCAN_RETRY_MAX); /* to allow scan_inform to propagate to cfg80211 plane */ rtnl_unlock(); /* wait 4 secons till scan done.... */ schedule_timeout_interruptible(4 * HZ); rtnl_lock(); bss = cfg80211_get_ibss(wiphy, NULL, params->ssid, params->ssid_len); } if (bss) { wl->ibss_starter = false; WL_DBG(("Found IBSS\n")); } else { wl->ibss_starter = true; } chan = params->channel; if (chan) wl->channel = ieee80211_frequency_to_channel(chan->center_freq); /* * Join with specific BSSID and cached SSID * If SSID is zero join based on BSSID only */ memset(&join_params, 0, sizeof(join_params)); memcpy((void *)join_params.ssid.SSID, (void *)params->ssid, params->ssid_len); join_params.ssid.SSID_len = htod32(params->ssid_len); if (params->bssid) memcpy(&join_params.params.bssid, params->bssid, ETHER_ADDR_LEN); else memset(&join_params.params.bssid, 0, ETHER_ADDR_LEN); err = wldev_ioctl(dev, WLC_SET_SSID, &join_params, sizeof(join_params), false); if (unlikely(err)) { WL_ERR(("Error (%d)\n", err)); return err; } return err; } static s32 wl_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev) { struct wl_priv *wl = WL_PRIV_GET(); s32 err = 0; CHECK_SYS_UP(); wl_link_down(wl); return err; } static s32 wl_set_wpa_version(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = WL_PRIV_GET(); struct wl_security *sec; s32 val = 0; s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1) val = WPA_AUTH_PSK; /* | WPA_AUTH_UNSPECIFIED; */ else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2) val = WPA2_AUTH_PSK; /* | WPA2_AUTH_UNSPECIFIED ; */ else val = WPA_AUTH_DISABLED; if (is_wps_conn(sme)) val = WPA_AUTH_DISABLED; WL_DBG(("setting wpa_auth to 0x%0x\n", val)); err = wldev_iovar_setint_bsscfg(dev, "wpa_auth", val, bssidx); if (unlikely(err)) { WL_ERR(("set wpa_auth failed (%d)\n", err)); return err; } sec = wl_read_prof(wl, WL_PROF_SEC); sec->wpa_versions = sme->crypto.wpa_versions; return err; } static s32 wl_set_auth_type(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = WL_PRIV_GET(); struct wl_security *sec; s32 val = 0; s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); switch (sme->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: val = 0; WL_DBG(("open system\n")); break; case NL80211_AUTHTYPE_SHARED_KEY: val = 1; WL_DBG(("shared key\n")); break; case NL80211_AUTHTYPE_AUTOMATIC: val = 2; WL_DBG(("automatic\n")); break; case NL80211_AUTHTYPE_NETWORK_EAP: WL_DBG(("network eap\n")); default: val = 2; WL_ERR(("invalid auth type (%d)\n", sme->auth_type)); break; } err = wldev_iovar_setint_bsscfg(dev, "auth", val, bssidx); if (unlikely(err)) { WL_ERR(("set auth failed (%d)\n", err)); return err; } sec = wl_read_prof(wl, WL_PROF_SEC); sec->auth_type = sme->auth_type; return err; } static s32 wl_set_set_cipher(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = WL_PRIV_GET(); struct wl_security *sec; s32 pval = 0; s32 gval = 0; s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); if (sme->crypto.n_ciphers_pairwise) { switch (sme->crypto.ciphers_pairwise[0]) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: pval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: pval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: pval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: pval = AES_ENABLED; break; default: WL_ERR(("invalid cipher pairwise (%d)\n", sme->crypto.ciphers_pairwise[0])); return -EINVAL; } } if (sme->crypto.cipher_group) { switch (sme->crypto.cipher_group) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: gval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: gval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: gval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: gval = AES_ENABLED; break; default: WL_ERR(("invalid cipher group (%d)\n", sme->crypto.cipher_group)); return -EINVAL; } } WL_DBG(("pval (%d) gval (%d)\n", pval, gval)); if (is_wps_conn(sme)) { err = wldev_iovar_setint_bsscfg(dev, "wsec", 4, bssidx); } else { err = wldev_iovar_setint_bsscfg(dev, "wsec", pval | gval, bssidx); } if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); return err; } sec = wl_read_prof(wl, WL_PROF_SEC); sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0]; sec->cipher_group = sme->crypto.cipher_group; return err; } static s32 wl_set_key_mgmt(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = WL_PRIV_GET(); struct wl_security *sec; s32 val = 0; s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); if (sme->crypto.n_akm_suites) { err = wl_dev_intvar_get(dev, "wpa_auth", &val); if (unlikely(err)) { WL_ERR(("could not get wpa_auth (%d)\n", err)); return err; } if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA_AUTH_PSK; break; default: WL_ERR(("invalid cipher group (%d)\n", sme->crypto.cipher_group)); return -EINVAL; } } else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA2_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA2_AUTH_PSK; break; default: WL_ERR(("invalid cipher group (%d)\n", sme->crypto.cipher_group)); return -EINVAL; } } WL_DBG(("setting wpa_auth to %d\n", val)); err = wldev_iovar_setint_bsscfg(dev, "wpa_auth", val, bssidx); if (unlikely(err)) { WL_ERR(("could not set wpa_auth (%d)\n", err)); return err; } } sec = wl_read_prof(wl, WL_PROF_SEC); sec->wpa_auth = sme->crypto.akm_suites[0]; return err; } static s32 wl_set_set_sharedkey(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = WL_PRIV_GET(); struct wl_security *sec; struct wl_wsec_key key; s32 val; s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); WL_DBG(("key len (%d)\n", sme->key_len)); if (sme->key_len) { sec = wl_read_prof(wl, WL_PROF_SEC); WL_DBG(("wpa_versions 0x%x cipher_pairwise 0x%x\n", sec->wpa_versions, sec->cipher_pairwise)); if (!(sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2)) && (sec->cipher_pairwise & (WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104))) { memset(&key, 0, sizeof(key)); key.len = (u32) sme->key_len; key.index = (u32) sme->key_idx; if (unlikely(key.len > sizeof(key.data))) { WL_ERR(("Too long key length (%u)\n", key.len)); return -EINVAL; } memcpy(key.data, sme->key, key.len); key.flags = WL_PRIMARY_KEY; switch (sec->cipher_pairwise) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; break; default: WL_ERR(("Invalid algorithm (%d)\n", sme->crypto.ciphers_pairwise[0])); return -EINVAL; } /* Set the new key/index */ WL_DBG(("key length (%d) key index (%d) algo (%d)\n", key.len, key.index, key.algo)); WL_DBG(("key \"%s\"\n", key.data)); swap_key_from_BE(&key); err = wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf, sizeof(ioctlbuf), bssidx); if (unlikely(err)) { WL_ERR(("WLC_SET_KEY error (%d)\n", err)); return err; } if (sec->auth_type == NL80211_AUTHTYPE_OPEN_SYSTEM) { WL_DBG(("set auth_type to shared key\n")); val = 1; /* shared key */ err = wldev_iovar_setint_bsscfg(dev, "auth", val, bssidx); if (unlikely(err)) { WL_ERR(("set auth failed (%d)\n", err)); return err; } } } } return err; } static s32 wl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = WL_PRIV_GET(); struct ieee80211_channel *chan = sme->channel; struct wl_join_params join_params; size_t join_params_size; s32 err = 0; WL_DBG(("In\n")); CHECK_SYS_UP(); /* * Cancel ongoing scan to sync up with sme state machine of cfg80211. */ if (wl->scan_request) { wl_cfg80211_scan_abort(wl, dev); } if (IS_P2P_SSID(sme->ssid) && (dev != wl_to_prmry_ndev(wl))) { /* we only allow to connect using virtual interface in case of P2P */ if (p2p_on(wl) && is_wps_conn(sme)) { WL_DBG(("p2p index : %d\n", wl_cfgp2p_find_idx(wl, dev))); /* Have to apply WPS IE + P2P IE in assoc req frame */ wl_cfgp2p_set_management_ie(wl, dev, wl_cfgp2p_find_idx(wl, dev), VNDR_IE_PRBREQ_FLAG, wl_to_p2p_bss_saved_ie(wl, P2PAPI_BSSCFG_DEVICE).p2p_probe_req_ie, wl_to_p2p_bss_saved_ie(wl, P2PAPI_BSSCFG_DEVICE).p2p_probe_req_ie_len); wl_cfgp2p_set_management_ie(wl, dev, wl_cfgp2p_find_idx(wl, dev), VNDR_IE_ASSOCREQ_FLAG, sme->ie, sme->ie_len); } else if (p2p_on(wl) && (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2)) { /* This is the connect req after WPS is done [credentials exchanged] * currently identified with WPA_VERSION_2 . * Update the previously set IEs with * the newly received IEs from Supplicant. This will remove the WPS IE from * the Assoc Req. */ wl_cfgp2p_set_management_ie(wl, dev, wl_cfgp2p_find_idx(wl, dev), VNDR_IE_ASSOCREQ_FLAG, sme->ie, sme->ie_len); } } else { WL_INFO(("No P2PIE in beacon \n")); } if (unlikely(!sme->ssid)) { WL_ERR(("Invalid ssid\n")); return -EOPNOTSUPP; } if (chan) { wl->channel = ieee80211_frequency_to_channel(chan->center_freq); WL_DBG(("channel (%d), center_req (%d)\n", wl->channel, chan->center_freq)); } WL_DBG(("ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len)); err = wl_set_wpa_version(dev, sme); if (unlikely(err)) return err; err = wl_set_auth_type(dev, sme); if (unlikely(err)) return err; err = wl_set_set_cipher(dev, sme); if (unlikely(err)) return err; err = wl_set_key_mgmt(dev, sme); if (unlikely(err)) return err; err = wl_set_set_sharedkey(dev, sme); if (unlikely(err)) return err; wl_update_prof(wl, NULL, sme->bssid, WL_PROF_BSSID); /* * Join with specific BSSID and cached SSID * If SSID is zero join based on BSSID only */ memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid); join_params.ssid.SSID_len = min(sizeof(join_params.ssid.SSID), sme->ssid_len); memcpy(&join_params.ssid.SSID, sme->ssid, join_params.ssid.SSID_len); join_params.ssid.SSID_len = htod32(join_params.ssid.SSID_len); wl_update_prof(wl, NULL, &join_params.ssid, WL_PROF_SSID); memcpy(&join_params.params.bssid, ðer_bcast, ETHER_ADDR_LEN); wl_ch_to_chanspec(wl->channel, &join_params, &join_params_size); WL_DBG(("join_param_size %d\n", join_params_size)); if (join_params.ssid.SSID_len < IEEE80211_MAX_SSID_LEN) { WL_INFO(("ssid \"%s\", len (%d)\n", join_params.ssid.SSID, join_params.ssid.SSID_len)); } err = wldev_ioctl(dev, WLC_SET_SSID, &join_params, join_params_size, false); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); return err; } wl_set_drv_status(wl, CONNECTING); return err; } static s32 wl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code) { struct wl_priv *wl = WL_PRIV_GET(); scb_val_t scbval; bool act = false; s32 err = 0; WL_ERR(("Reason %d\n\n\n", reason_code)); CHECK_SYS_UP(); act = *(bool *) wl_read_prof(wl, WL_PROF_ACT); if (likely(act)) { scbval.val = reason_code; memcpy(&scbval.ea, &wl->bssid, ETHER_ADDR_LEN); scbval.val = htod32(scbval.val); err = wldev_ioctl(dev, WLC_DISASSOC, &scbval, sizeof(scb_val_t), false); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); return err; } } return err; } static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, enum nl80211_tx_power_setting type, s32 dbm) { struct wl_priv *wl = WL_PRIV_GET(); struct net_device *ndev = wl_to_prmry_ndev(wl); u16 txpwrmw; s32 err = 0; s32 disable = 0; CHECK_SYS_UP(); switch (type) { case NL80211_TX_POWER_AUTOMATIC: break; case NL80211_TX_POWER_LIMITED: if (dbm < 0) { WL_ERR(("TX_POWER_LIMITTED - dbm is negative\n")); return -EINVAL; } break; case NL80211_TX_POWER_FIXED: if (dbm < 0) { WL_ERR(("TX_POWER_FIXED - dbm is negative..\n")); return -EINVAL; } break; } /* Make sure radio is off or on as far as software is concerned */ disable = WL_RADIO_SW_DISABLE << 16; disable = htod32(disable); err = wldev_ioctl(ndev, WLC_SET_RADIO, &disable, sizeof(disable), false); if (unlikely(err)) { WL_ERR(("WLC_SET_RADIO error (%d)\n", err)); return err; } if (dbm > 0xffff) txpwrmw = 0xffff; else txpwrmw = (u16) dbm; err = wl_dev_intvar_set(ndev, "qtxpower", (s32) (bcm_mw_to_qdbm(txpwrmw))); if (unlikely(err)) { WL_ERR(("qtxpower error (%d)\n", err)); return err; } wl->conf->tx_power = dbm; return err; } static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm) { struct wl_priv *wl = WL_PRIV_GET(); struct net_device *ndev = wl_to_prmry_ndev(wl); s32 txpwrdbm; u8 result; s32 err = 0; CHECK_SYS_UP(); err = wl_dev_intvar_get(ndev, "qtxpower", &txpwrdbm); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); return err; } result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE); *dbm = (s32) bcm_qdbm_to_mw(result); return err; } static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool unicast, bool multicast) { struct wl_priv *wl = WL_PRIV_GET(); u32 index; s32 wsec; s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); WL_DBG(("key index (%d)\n", key_idx)); CHECK_SYS_UP(); err = wldev_iovar_getint_bsscfg(dev, "wsec", &wsec, bssidx); if (unlikely(err)) { WL_ERR(("WLC_GET_WSEC error (%d)\n", err)); return err; } if (wsec & WEP_ENABLED) { /* Just select a new current key */ index = (u32) key_idx; index = htod32(index); err = wldev_ioctl(dev, WLC_SET_KEY_PRIMARY, &index, sizeof(index), false); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); } } return err; } static s32 wl_add_keyext(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr, struct key_params *params) { struct wl_priv *wl = WL_PRIV_GET(); struct wl_wsec_key key; s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); s32 mode = get_mode_by_netdev(wl, dev); memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; if (!ETHER_ISMULTI(mac_addr)) memcpy((char *)&key.ea, (void *)mac_addr, ETHER_ADDR_LEN); key.len = (u32) params->key_len; /* check for key index change */ if (key.len == 0) { /* key delete */ swap_key_from_BE(&key); wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf, sizeof(ioctlbuf), bssidx); if (unlikely(err)) { WL_ERR(("key delete error (%d)\n", err)); return err; } } else { if (key.len > sizeof(key.data)) { WL_ERR(("Invalid key length (%d)\n", key.len)); return -EINVAL; } WL_DBG(("Setting the key index %d\n", key.index)); memcpy(key.data, params->key, key.len); if ((mode == WL_MODE_BSS) && (params->cipher == WLAN_CIPHER_SUITE_TKIP)) { u8 keybuf[8]; memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); } /* if IW_ENCODE_EXT_RX_SEQ_VALID set */ if (params->seq && params->seq_len == 6) { /* rx iv */ u8 *ivptr; ivptr = (u8 *) params->seq; key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) | (ivptr[3] << 8) | ivptr[2]; key.rxiv.lo = (ivptr[1] << 8) | ivptr[0]; key.iv_initialized = true; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; WL_DBG(("WLAN_CIPHER_SUITE_WEP40\n")); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; WL_DBG(("WLAN_CIPHER_SUITE_WEP104\n")); break; case WLAN_CIPHER_SUITE_TKIP: key.algo = CRYPTO_ALGO_TKIP; WL_DBG(("WLAN_CIPHER_SUITE_TKIP\n")); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; WL_DBG(("WLAN_CIPHER_SUITE_AES_CMAC\n")); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; WL_DBG(("WLAN_CIPHER_SUITE_CCMP\n")); break; default: WL_ERR(("Invalid cipher (0x%x)\n", params->cipher)); return -EINVAL; } swap_key_from_BE(&key); #ifdef CONFIG_WIRELESS_EXT dhd_wait_pend8021x(dev); #endif wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf, sizeof(ioctlbuf), bssidx); if (unlikely(err)) { WL_ERR(("WLC_SET_KEY error (%d)\n", err)); return err; } } return err; } static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct wl_wsec_key key; s32 val = 0; s32 wsec = 0; s32 err = 0; u8 keybuf[8]; s32 bssidx = 0; struct wl_priv *wl = WL_PRIV_GET(); s32 mode = get_mode_by_netdev(wl, dev); WL_DBG(("key index (%d)\n", key_idx)); CHECK_SYS_UP(); bssidx = wl_cfgp2p_find_idx(wl, dev); if (mac_addr) { wl_add_keyext(wiphy, dev, key_idx, mac_addr, params); goto exit; } memset(&key, 0, sizeof(key)); key.len = (u32) params->key_len; key.index = (u32) key_idx; if (unlikely(key.len > sizeof(key.data))) { WL_ERR(("Too long key length (%u)\n", key.len)); return -EINVAL; } memcpy(key.data, params->key, key.len); key.flags = WL_PRIMARY_KEY; switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; val = WEP_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_WEP40\n")); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; val = WEP_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_WEP104\n")); break; case WLAN_CIPHER_SUITE_TKIP: key.algo = CRYPTO_ALGO_TKIP; val = TKIP_ENABLED; /* wpa_supplicant switches the third and fourth quarters of the TKIP key */ if (mode == WL_MODE_BSS) { bcopy(&key.data[24], keybuf, sizeof(keybuf)); bcopy(&key.data[16], &key.data[24], sizeof(keybuf)); bcopy(keybuf, &key.data[16], sizeof(keybuf)); } WL_DBG(("WLAN_CIPHER_SUITE_TKIP\n")); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; val = AES_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_AES_CMAC\n")); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; val = AES_ENABLED; WL_DBG(("WLAN_CIPHER_SUITE_CCMP\n")); break; default: WL_ERR(("Invalid cipher (0x%x)\n", params->cipher)); return -EINVAL; } /* Set the new key/index */ swap_key_from_BE(&key); err = wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf, sizeof(ioctlbuf), bssidx); if (unlikely(err)) { WL_ERR(("WLC_SET_KEY error (%d)\n", err)); return err; } exit: err = wldev_iovar_getint_bsscfg(dev, "wsec", &wsec, bssidx); if (unlikely(err)) { WL_ERR(("get wsec error (%d)\n", err)); return err; } wsec |= val; err = wldev_iovar_setint_bsscfg(dev, "wsec", wsec, bssidx); if (unlikely(err)) { WL_ERR(("set wsec error (%d)\n", err)); return err; } #ifdef NOT_YET /* TODO: Removed in P2P, check later --lm */ val = 1; /* assume shared key. otherwise 0 */ val = htod32(val); err = wldev_ioctl(dev, WLC_SET_AUTH, &val, sizeof(val), false); if (unlikely(err)) { WL_ERR(("WLC_SET_AUTH error (%d)\n", err)); return err; } #endif return err; } static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct wl_wsec_key key; struct wl_priv *wl = WL_PRIV_GET(); s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); WL_DBG(("Enter\n")); CHECK_SYS_UP(); memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; key.flags = WL_PRIMARY_KEY; key.algo = CRYPTO_ALGO_OFF; WL_DBG(("key index (%d)\n", key_idx)); /* Set the new key/index */ swap_key_from_BE(&key); wldev_iovar_setbuf_bsscfg(dev, "wsec_key", &key, sizeof(key), ioctlbuf, sizeof(ioctlbuf), bssidx); if (unlikely(err)) { if (err == -EINVAL) { if (key.index >= DOT11_MAX_DEFAULT_KEYS) { /* we ignore this key index in this case */ WL_DBG(("invalid key index (%d)\n", key_idx)); } } else { WL_ERR(("WLC_SET_KEY error (%d)\n", err)); } return err; } #ifdef NOT_YET /* TODO: Removed in P2P twig, check later --lin */ val = 0; /* assume open key. otherwise 1 */ val = htod32(val); err = wldev_ioctl(dev, WLC_SET_AUTH, &val, sizeof(val), false); if (unlikely(err)) { WL_ERR(("WLC_SET_AUTH error (%d)\n", err)); return err; } #endif return err; } static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params * params)) { struct key_params params; struct wl_wsec_key key; struct wl_priv *wl = WL_PRIV_GET(); struct wl_security *sec; s32 wsec; s32 err = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); WL_DBG(("key index (%d)\n", key_idx)); CHECK_SYS_UP(); memset(&key, 0, sizeof(key)); key.index = key_idx; swap_key_to_BE(&key); memset(¶ms, 0, sizeof(params)); params.key_len = (u8) min_t(u8, DOT11_MAX_KEY_SIZE, key.len); memcpy(params.key, key.data, params.key_len); wldev_iovar_getint_bsscfg(dev, "wsec", &wsec, bssidx); if (unlikely(err)) { WL_ERR(("WLC_GET_WSEC error (%d)\n", err)); return err; } switch (wsec & ~SES_OW_ENABLED) { case WEP_ENABLED: sec = wl_read_prof(wl, WL_PROF_SEC); if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) { params.cipher = WLAN_CIPHER_SUITE_WEP40; WL_DBG(("WLAN_CIPHER_SUITE_WEP40\n")); } else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) { params.cipher = WLAN_CIPHER_SUITE_WEP104; WL_DBG(("WLAN_CIPHER_SUITE_WEP104\n")); } break; case TKIP_ENABLED: params.cipher = WLAN_CIPHER_SUITE_TKIP; WL_DBG(("WLAN_CIPHER_SUITE_TKIP\n")); break; case AES_ENABLED: params.cipher = WLAN_CIPHER_SUITE_AES_CMAC; WL_DBG(("WLAN_CIPHER_SUITE_AES_CMAC\n")); break; default: WL_ERR(("Invalid algo (0x%x)\n", wsec)); return -EINVAL; } callback(cookie, ¶ms); return err; } static s32 wl_cfg80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx) { WL_INFO(("Not supported\n")); CHECK_SYS_UP(); return -EOPNOTSUPP; } static s32 wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo) { struct wl_priv *wl = WL_PRIV_GET(); scb_val_t scb_val; int rssi; s32 rate; s32 err = 0; CHECK_SYS_UP(); if (unlikely (memcmp(mac, wl_read_prof(wl, WL_PROF_BSSID), ETHER_ADDR_LEN))) { WL_ERR(("Wrong Mac address\n")); return -ENOENT; } /* Report the current tx rate */ err = wldev_ioctl(dev, WLC_GET_RATE, &rate, sizeof(rate), false); if (err) { WL_ERR(("Could not get rate (%d)\n", err)); } else { rate = dtoh32(rate); sinfo->filled |= STATION_INFO_TX_BITRATE; sinfo->txrate.legacy = rate * 5; WL_DBG(("Rate %d Mbps\n", (rate / 2))); } if (wl_get_drv_status(wl, CONNECTED)) { memset(&scb_val, 0, sizeof(scb_val)); scb_val.val = 0; err = wldev_ioctl(dev, WLC_GET_RSSI, &scb_val, sizeof(scb_val_t), false); if (unlikely(err)) { WL_ERR(("Could not get rssi (%d)\n", err)); return err; } rssi = dtoh32(scb_val.val); sinfo->filled |= STATION_INFO_SIGNAL; sinfo->signal = rssi; WL_DBG(("RSSI %d dBm\n", rssi)); } #if defined(ANDROID_WIRELESS_PATCH) err = wldev_ioctl(dev, WLC_GET_RATE, &sinfo->link_speed, sizeof(sinfo->link_speed), false); sinfo->link_speed = sinfo->link_speed / 2; /* Convert internal 500Kbps to Mpbs */ if (!err) sinfo->filled |= STATION_LINK_SPEED; else WL_ERR(("WLC_GET_RATE failed\n")); #endif return err; } static s32 wl_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, s32 timeout) { s32 pm; s32 err = 0; CHECK_SYS_UP(); pm = enabled ? PM_FAST : PM_OFF; pm = htod32(pm); WL_DBG(("power save %s\n", (pm ? "enabled" : "disabled"))); err = wldev_ioctl(dev, WLC_SET_PM, &pm, sizeof(pm), false); if (unlikely(err)) { if (err == -ENODEV) WL_DBG(("net_device is not ready yet\n")); else WL_ERR(("error (%d)\n", err)); return err; } return err; } static __used u32 wl_find_msb(u16 bit16) { u32 ret = 0; if (bit16 & 0xff00) { ret += 8; bit16 >>= 8; } if (bit16 & 0xf0) { ret += 4; bit16 >>= 4; } if (bit16 & 0xc) { ret += 2; bit16 >>= 2; } if (bit16 & 2) ret += bit16 & 2; else if (bit16) ret += bit16; return ret; } static s32 wl_cfg80211_resume(struct wiphy *wiphy) { struct wl_priv *wl = WL_PRIV_GET(); s32 err = 0; if (unlikely(!wl_get_drv_status(wl, READY))) { WL_INFO(("device is not ready : status (%d)\n", (int)wl->status)); return 0; } wl_invoke_iscan(wl); return err; } #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39) static s32 wl_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow) #else static s32 wl_cfg80211_suspend(struct wiphy *wiphy) #endif { struct wl_priv *wl = WL_PRIV_GET(); s32 err = 0; if (unlikely(!wl_get_drv_status(wl, READY))) { WL_INFO(("device is not ready : status (%d)\n", (int)wl->status)); return 0; } wl_set_drv_status(wl, SCAN_ABORTING); wl_term_iscan(wl); if (wl->scan_request) { cfg80211_scan_done(wl->scan_request, true); wl->scan_request = NULL; } wl_clr_drv_status(wl, SCANNING); wl_clr_drv_status(wl, SCAN_ABORTING); return err; } static __used s32 wl_update_pmklist(struct net_device *dev, struct wl_pmk_list *pmk_list, s32 err) { int i, j; struct wl_priv *wl = WL_PRIV_GET(); struct net_device *primary_dev = wl_to_prmry_ndev(wl); /* Firmware is supporting pmk list only for STA interface i.e. primary interface * Refer code wlc_bsscfg.c->wlc_bsscfg_sta_init * Do we really need to support PMK cache in P2P in firmware? */ if (primary_dev != dev) { WL_ERR(("Not supporting Flushing pmklist on virtual" " interfaces than primary interface\n")); return err; } WL_DBG(("No of elements %d\n", pmk_list->pmkids.npmkid)); for (i = 0; i < pmk_list->pmkids.npmkid; i++) { WL_DBG(("PMKID[%d]: %pM =\n", i, &pmk_list->pmkids.pmkid[i].BSSID)); for (j = 0; j < WPA2_PMKID_LEN; j++) { WL_DBG(("%02x\n", pmk_list->pmkids.pmkid[i].PMKID[j])); } } if (likely(!err)) { err = wl_dev_bufvar_set(dev, "pmkid_info", (char *)pmk_list, sizeof(*pmk_list)); } return err; } static s32 wl_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa) { struct wl_priv *wl = WL_PRIV_GET(); s32 err = 0; int i; CHECK_SYS_UP(); for (i = 0; i < wl->pmk_list->pmkids.npmkid; i++) if (!memcmp(pmksa->bssid, &wl->pmk_list->pmkids.pmkid[i].BSSID, ETHER_ADDR_LEN)) break; if (i < WL_NUM_PMKIDS_MAX) { memcpy(&wl->pmk_list->pmkids.pmkid[i].BSSID, pmksa->bssid, ETHER_ADDR_LEN); memcpy(&wl->pmk_list->pmkids.pmkid[i].PMKID, pmksa->pmkid, WPA2_PMKID_LEN); if (i == wl->pmk_list->pmkids.npmkid) wl->pmk_list->pmkids.npmkid++; } else { err = -EINVAL; } WL_DBG(("set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n", &wl->pmk_list->pmkids.pmkid[wl->pmk_list->pmkids.npmkid].BSSID)); for (i = 0; i < WPA2_PMKID_LEN; i++) { WL_DBG(("%02x\n", wl->pmk_list->pmkids.pmkid[wl->pmk_list->pmkids.npmkid]. PMKID[i])); } err = wl_update_pmklist(dev, wl->pmk_list, err); return err; } static s32 wl_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa) { struct wl_priv *wl = WL_PRIV_GET(); struct _pmkid_list pmkid; s32 err = 0; int i; CHECK_SYS_UP(); memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETHER_ADDR_LEN); memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WPA2_PMKID_LEN); WL_DBG(("del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n", &pmkid.pmkid[0].BSSID)); for (i = 0; i < WPA2_PMKID_LEN; i++) { WL_DBG(("%02x\n", pmkid.pmkid[0].PMKID[i])); } for (i = 0; i < wl->pmk_list->pmkids.npmkid; i++) if (!memcmp (pmksa->bssid, &wl->pmk_list->pmkids.pmkid[i].BSSID, ETHER_ADDR_LEN)) break; if ((wl->pmk_list->pmkids.npmkid > 0) && (i < wl->pmk_list->pmkids.npmkid)) { memset(&wl->pmk_list->pmkids.pmkid[i], 0, sizeof(pmkid_t)); for (; i < (wl->pmk_list->pmkids.npmkid - 1); i++) { memcpy(&wl->pmk_list->pmkids.pmkid[i].BSSID, &wl->pmk_list->pmkids.pmkid[i + 1].BSSID, ETHER_ADDR_LEN); memcpy(&wl->pmk_list->pmkids.pmkid[i].PMKID, &wl->pmk_list->pmkids.pmkid[i + 1].PMKID, WPA2_PMKID_LEN); } wl->pmk_list->pmkids.npmkid--; } else { err = -EINVAL; } err = wl_update_pmklist(dev, wl->pmk_list, err); return err; } static s32 wl_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *dev) { struct wl_priv *wl = WL_PRIV_GET(); s32 err = 0; CHECK_SYS_UP(); memset(wl->pmk_list, 0, sizeof(*wl->pmk_list)); err = wl_update_pmklist(dev, wl->pmk_list, err); return err; } wl_scan_params_t * wl_cfg80211_scan_alloc_params(int channel, int nprobes, int *out_params_size) { wl_scan_params_t *params; int params_size; int num_chans; *out_params_size = 0; /* Our scan params only need space for 1 channel and 0 ssids */ params_size = WL_SCAN_PARAMS_FIXED_SIZE + 1 * sizeof(uint16); params = (wl_scan_params_t*) kzalloc(params_size, GFP_KERNEL); if (params == NULL) { WL_ERR(("%s: mem alloc failed (%d bytes)\n", __func__, params_size)); return params; } memset(params, 0, params_size); params->nprobes = nprobes; num_chans = (channel == 0) ? 0 : 1; memcpy(¶ms->bssid, ðer_bcast, ETHER_ADDR_LEN); params->bss_type = DOT11_BSSTYPE_ANY; params->scan_type = DOT11_SCANTYPE_ACTIVE; params->nprobes = htod32(1); params->active_time = htod32(-1); params->passive_time = htod32(-1); params->home_time = htod32(10); params->channel_list[0] = htodchanspec(channel); /* Our scan params have 1 channel and 0 ssids */ params->channel_num = htod32((0 << WL_SCAN_PARAMS_NSSID_SHIFT) | (num_chans & WL_SCAN_PARAMS_COUNT_MASK)); *out_params_size = params_size; /* rtn size to the caller */ return params; } s32 wl_cfg80211_scan_abort(struct wl_priv *wl, struct net_device *ndev) { wl_scan_params_t *params; s32 params_size; s32 err = BCME_OK; WL_DBG(("Enter\n")); /* Our scan params only need space for 1 channel and 0 ssids */ params = wl_cfg80211_scan_alloc_params(-1, 0, ¶ms_size); if (params == NULL) { WL_ERR(("scan params allocation failed \n")); err = -ENOMEM; } /* Do a scan abort to stop the driver's scan engine */ err = wldev_ioctl(ndev, WLC_SCAN, params, params_size, false); if (err < 0) { WL_ERR(("scan abort failed \n")); } return err; } static s32 wl_cfg80211_remain_on_channel(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_channel * channel, enum nl80211_channel_type channel_type, unsigned int duration, u64 *cookie) { s32 target_channel; s32 err = BCME_OK; struct wl_priv *wl = WL_PRIV_GET(); dhd_pub_t *dhd = (dhd_pub_t *)(wl->pub); WL_DBG(("Enter, netdev_ifidx: %d \n", dev->ifindex)); if (likely(wl_get_drv_status(wl, SCANNING))) { wl_cfg80211_scan_abort(wl, dev); } target_channel = ieee80211_frequency_to_channel(channel->center_freq); memcpy(&wl->remain_on_chan, channel, sizeof(struct ieee80211_channel)); wl->remain_on_chan_type = channel_type; wl->cache_cookie = *cookie; cfg80211_ready_on_channel(dev, *cookie, channel, channel_type, duration, GFP_KERNEL); if (!p2p_on(wl)) { wl_cfgp2p_generate_bss_mac(&dhd->mac, &wl->p2p->dev_addr, &wl->p2p->int_addr); /* In case of p2p_listen command, supplicant send remain_on_channel * without turning on P2P */ err = wl_cfgp2p_enable_discovery(wl, dev, NULL, 0); if (unlikely(err)) { goto exit; } p2p_on(wl) = true; } if (p2p_on(wl)) wl_cfgp2p_discover_listen(wl, target_channel, duration); exit: return err; } static s32 wl_cfg80211_cancel_remain_on_channel(struct wiphy *wiphy, struct net_device *dev, u64 cookie) { s32 err = 0; WL_DBG((" enter ) netdev_ifidx: %d \n", dev->ifindex)); return err; } static s32 wl_cfg80211_mgmt_tx(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_channel *channel, bool offchan, enum nl80211_channel_type channel_type, bool channel_type_valid, unsigned int wait, const u8* buf, size_t len, u64 *cookie) { wl_action_frame_t *action_frame; wl_af_params_t *af_params; wifi_p2p_ie_t *p2p_ie; wpa_ie_fixed_t *wps_ie; const struct ieee80211_mgmt *mgmt; struct wl_priv *wl = WL_PRIV_GET(); dhd_pub_t *dhd = (dhd_pub_t *)(wl->pub); s32 err = BCME_OK; s32 bssidx = 0; u32 p2pie_len = 0; u32 wpsie_len = 0; u16 fc; bool ack = false; WL_DBG(("Enter \n")); /* find bssidx based on ndev */ bssidx = wl_cfgp2p_find_idx(wl, dev); /* cookie generation */ *cookie = (unsigned long) buf; if (bssidx == -1) { WL_ERR(("Can not find the bssidx for dev( %p )\n", dev)); return -ENODEV; } if (wl->p2p_supported && p2p_on(wl)) { wl_cfgp2p_generate_bss_mac(&dhd->mac, &wl->p2p->dev_addr, &wl->p2p->int_addr); /* Suspend P2P discovery search-listen to prevent it from changing the * channel. */ if ((err = wl_cfgp2p_discover_enable_search(wl, false)) < 0) { WL_ERR(("Can not disable discovery mode\n")); return -EFAULT; } } mgmt = (const struct ieee80211_mgmt *) buf; fc = mgmt->frame_control; if (fc != IEEE80211_STYPE_ACTION) { if (fc == IEEE80211_STYPE_PROBE_RESP) { s32 ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN; s32 ie_len = len - ie_offset; if ((p2p_ie = wl_cfgp2p_find_p2pie((u8 *)(buf + ie_offset), ie_len)) != NULL) { /* Total length of P2P Information Element */ p2pie_len = p2p_ie->len + sizeof(p2p_ie->len) + sizeof(p2p_ie->id); /* Have to change p2p device address in dev_info attribute * because Supplicant use primary eth0 address */ #ifdef ENABLE_DRIVER_CHANGE_IFADDR /* We are now doing this in supplicant */ wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p_dev_addr, P2P_SEID_DEV_INFO); #endif } if ((wps_ie = wl_cfgp2p_find_wpsie((u8 *)(buf + ie_offset), ie_len)) != NULL) { /* Order of Vendor IE is 1) WPS IE + * 2) P2P IE created by supplicant * So, it is ok to find start address of WPS IE * to save IEs to firmware */ wpsie_len = wps_ie->length + sizeof(wps_ie->length) + sizeof(wps_ie->tag); wl_cfgp2p_set_management_ie(wl, dev, bssidx, VNDR_IE_PRBRSP_FLAG, (u8 *)wps_ie, wpsie_len + p2pie_len); /* remove WLC_E_PROBREQ_MSG event to prevent HOSTAPD * from responding many probe request */ } } cfg80211_mgmt_tx_status(dev, *cookie, buf, len, true, GFP_KERNEL); goto exit; } else { /* Abort the dwell time of any previous off-channel action frame that may * be still in effect. Sending off-channel action frames relies on the * driver's scan engine. If a previous off-channel action frame tx is * still in progress (including the dwell time), then this new action * frame will not be sent out. */ wl_cfg80211_scan_abort(wl, dev); } af_params = (wl_af_params_t *) kzalloc(WL_WIFI_AF_PARAMS_SIZE, GFP_KERNEL); if (af_params == NULL) { WL_ERR(("unable to allocate frame\n")); return -ENOMEM; } action_frame = &af_params->action_frame; /* Add the packet Id */ action_frame->packetId = (u32) action_frame; WL_DBG(("action frame %d\n", action_frame->packetId)); /* Add BSSID */ memcpy(&action_frame->da, &mgmt->da[0], ETHER_ADDR_LEN); memcpy(&af_params->BSSID, &mgmt->bssid[0], ETHER_ADDR_LEN); /* Add the length exepted for 802.11 header */ action_frame->len = len - DOT11_MGMT_HDR_LEN; WL_DBG(("action_frame->len: %d\n", action_frame->len)); /* Add the channel */ af_params->channel = ieee80211_frequency_to_channel(channel->center_freq); /* Add the dwell time * Dwell time to stay off-channel to wait for a response action frame * after transmitting an GO Negotiation action frame */ af_params->dwell_time = WL_DWELL_TIME; memcpy(action_frame->data, &buf[DOT11_MGMT_HDR_LEN], action_frame->len); if (wl->p2p->vif_created) { wifi_p2p_pub_act_frame_t *act_frm = (wifi_p2p_pub_act_frame_t *) (action_frame->data); /* * Have to change intented address from GO REQ or GO RSP and INVITE REQ * because wpa-supplicant use eth0 primary address */ if ((act_frm->subtype == P2P_PAF_GON_REQ)|| (act_frm->subtype == P2P_PAF_GON_RSP)|| (act_frm->subtype == P2P_PAF_GON_CONF)|| (act_frm->subtype == P2P_PAF_INVITE_REQ)) { p2p_ie = wl_cfgp2p_find_p2pie(act_frm->elts, action_frame->len - P2P_PUB_AF_FIXED_LEN); #ifdef ENABLE_DRIVER_CHANGE_IFADDR /* We are now doing this in supplicant */ wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p.int_addr, P2P_SEID_INTINTADDR); wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p.dev_addr, P2P_SEID_DEV_INFO); wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p.dev_addr, P2P_SEID_GROUP_ID); #endif } } ack = (wl_cfgp2p_tx_action_frame(wl, dev, af_params, bssidx)) ? false : true; cfg80211_mgmt_tx_status(dev, *cookie, buf, len, ack, GFP_KERNEL); kfree(af_params); exit: return err; } static void wl_cfg80211_mgmt_frame_register(struct wiphy *wiphy, struct net_device *dev, u16 frame_type, bool reg) { WL_DBG(("%s: frame_type: %x, reg: %d\n", __func__, frame_type, reg)); if (frame_type != (IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ)) return; return; } static s32 wl_cfg80211_change_bss(struct wiphy *wiphy, struct net_device *dev, struct bss_parameters *params) { if (params->use_cts_prot >= 0) { } if (params->use_short_preamble >= 0) { } if (params->use_short_slot_time >= 0) { } if (params->basic_rates) { } if (params->ap_isolate >= 0) { } if (params->ht_opmode >= 0) { } return 0; } static s32 wl_cfg80211_set_channel(struct wiphy *wiphy, struct net_device *dev, struct ieee80211_channel *chan, enum nl80211_channel_type channel_type) { s32 channel; s32 err = BCME_OK; channel = ieee80211_frequency_to_channel(chan->center_freq); WL_DBG(("netdev_ifidx(%d), chan_type(%d) target channel(%d) \n", dev->ifindex, channel_type, channel)); wldev_ioctl(dev, WLC_SET_CHANNEL, &channel, sizeof(channel), false); return err; } static s32 wl_validate_wpa2ie(struct net_device *dev, bcm_tlv_t *wpa2ie, s32 bssidx) { s32 len = 0; s32 err = BCME_OK; u16 auth = 0; /* d11 open authentication */ u16 count; u32 wsec; u32 pval = 0; u32 gval = 0; u32 wpa_auth = 0; u8* tmp; wpa_suite_mcast_t *mcast; wpa_suite_ucast_t *ucast; wpa_suite_auth_key_mgmt_t *mgmt; if (wpa2ie == NULL) goto exit; WL_DBG(("Enter \n")); len = wpa2ie->len; /* check the mcast cipher */ mcast = (wpa_suite_mcast_t *)&wpa2ie->data[WPA2_VERSION_LEN]; tmp = mcast->oui; switch (tmp[DOT11_OUI_LEN]) { case WPA_CIPHER_NONE: gval = 0; break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: gval = WEP_ENABLED; break; case WPA_CIPHER_TKIP: gval = TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: gval = AES_ENABLED; break; default: WL_ERR(("No Security Info\n")); break; } len -= WPA_SUITE_LEN; /* check the unicast cipher */ ucast = (wpa_suite_ucast_t *)&mcast[1]; count = ltoh16_ua(&ucast->count); tmp = ucast->list[0].oui; switch (tmp[DOT11_OUI_LEN]) { case WPA_CIPHER_NONE: pval = 0; break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: pval = WEP_ENABLED; break; case WPA_CIPHER_TKIP: pval = TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: pval = AES_ENABLED; break; default: WL_ERR(("No Security Info\n")); } /* FOR WPS , set SEC_OW_ENABLED */ wsec = (pval | gval | SES_OW_ENABLED); /* check the AKM */ mgmt = (wpa_suite_auth_key_mgmt_t *)&ucast->list[1]; count = ltoh16_ua(&mgmt->count); tmp = (u8 *)&mgmt->list[0]; switch (tmp[DOT11_OUI_LEN]) { case RSN_AKM_NONE: wpa_auth = WPA_AUTH_NONE; break; case RSN_AKM_UNSPECIFIED: wpa_auth = WPA2_AUTH_UNSPECIFIED; break; case RSN_AKM_PSK: wpa_auth = WPA2_AUTH_PSK; break; default: WL_ERR(("No Key Mgmt Info\n")); } /* set auth */ err = wldev_iovar_setint_bsscfg(dev, "auth", auth, bssidx); if (err < 0) { WL_ERR(("auth error %d\n", err)); return BCME_ERROR; } /* set wsec */ err = wldev_iovar_setint_bsscfg(dev, "wsec", wsec, bssidx); if (err < 0) { WL_ERR(("wsec error %d\n", err)); return BCME_ERROR; } /* set upper-layer auth */ err = wldev_iovar_setint_bsscfg(dev, "wpa_auth", wpa_auth, bssidx); if (err < 0) { WL_ERR(("wpa_auth error %d\n", err)); return BCME_ERROR; } exit: return 0; } static s32 wl_validate_wpaie(struct net_device *dev, wpa_ie_fixed_t *wpaie, s32 bssidx) { wpa_suite_mcast_t *mcast; wpa_suite_ucast_t *ucast; wpa_suite_auth_key_mgmt_t *mgmt; u16 auth = 0; /* d11 open authentication */ u16 count; s32 err = BCME_OK; s32 len = 0; u32 i; u32 wsec; u32 pval = 0; u32 gval = 0; u32 wpa_auth = 0; u32 tmp = 0; if (wpaie == NULL) goto exit; WL_DBG(("Enter \n")); len = wpaie->length; /* value length */ len -= WPA_IE_TAG_FIXED_LEN; /* check for multicast cipher suite */ if (len < WPA_SUITE_LEN) { WL_INFO(("no multicast cipher suite\n")); goto exit; } /* pick up multicast cipher */ mcast = (wpa_suite_mcast_t *)&wpaie[1]; len -= WPA_SUITE_LEN; if (!bcmp(mcast->oui, WPA_OUI, WPA_OUI_LEN)) { if (IS_WPA_CIPHER(mcast->type)) { tmp = 0; switch (mcast->type) { case WPA_CIPHER_NONE: tmp = 0; break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: tmp = WEP_ENABLED; break; case WPA_CIPHER_TKIP: tmp = TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: tmp = AES_ENABLED; break; default: WL_ERR(("No Security Info\n")); } gval |= tmp; } } /* Check for unicast suite(s) */ if (len < WPA_IE_SUITE_COUNT_LEN) { WL_INFO(("no unicast suite\n")); goto exit; } /* walk thru unicast cipher list and pick up what we recognize */ ucast = (wpa_suite_ucast_t *)&mcast[1]; count = ltoh16_ua(&ucast->count); len -= WPA_IE_SUITE_COUNT_LEN; for (i = 0; i < count && len >= WPA_SUITE_LEN; i++, len -= WPA_SUITE_LEN) { if (!bcmp(ucast->list[i].oui, WPA_OUI, WPA_OUI_LEN)) { if (IS_WPA_CIPHER(ucast->list[i].type)) { tmp = 0; switch (ucast->list[i].type) { case WPA_CIPHER_NONE: tmp = 0; break; case WPA_CIPHER_WEP_40: case WPA_CIPHER_WEP_104: tmp = WEP_ENABLED; break; case WPA_CIPHER_TKIP: tmp = TKIP_ENABLED; break; case WPA_CIPHER_AES_CCM: tmp = AES_ENABLED; break; default: WL_ERR(("No Security Info\n")); } pval |= tmp; } } } len -= (count - i) * WPA_SUITE_LEN; /* Check for auth key management suite(s) */ if (len < WPA_IE_SUITE_COUNT_LEN) { WL_INFO((" no auth key mgmt suite\n")); goto exit; } /* walk thru auth management suite list and pick up what we recognize */ mgmt = (wpa_suite_auth_key_mgmt_t *)&ucast->list[count]; count = ltoh16_ua(&mgmt->count); len -= WPA_IE_SUITE_COUNT_LEN; for (i = 0; i < count && len >= WPA_SUITE_LEN; i++, len -= WPA_SUITE_LEN) { if (!bcmp(mgmt->list[i].oui, WPA_OUI, WPA_OUI_LEN)) { if (IS_WPA_AKM(mgmt->list[i].type)) { tmp = 0; switch (mgmt->list[i].type) { case RSN_AKM_NONE: tmp = WPA_AUTH_NONE; break; case RSN_AKM_UNSPECIFIED: tmp = WPA_AUTH_UNSPECIFIED; break; case RSN_AKM_PSK: tmp = WPA_AUTH_PSK; break; default: WL_ERR(("No Key Mgmt Info\n")); } wpa_auth |= tmp; } } } /* FOR WPS , set SEC_OW_ENABLED */ wsec = (pval | gval | SES_OW_ENABLED); /* set auth */ err = wldev_iovar_setint_bsscfg(dev, "auth", auth, bssidx); if (err < 0) { WL_ERR(("auth error %d\n", err)); return BCME_ERROR; } /* set wsec */ err = wldev_iovar_setint_bsscfg(dev, "wsec", wsec, bssidx); if (err < 0) { WL_ERR(("wsec error %d\n", err)); return BCME_ERROR; } /* set upper-layer auth */ err = wldev_iovar_setint_bsscfg(dev, "wpa_auth", wpa_auth, bssidx); if (err < 0) { WL_ERR(("wpa_auth error %d\n", err)); return BCME_ERROR; } exit: return 0; } static s32 wl_cfg80211_set_beacon(struct wiphy *wiphy, struct net_device *dev, struct beacon_parameters *info) { s32 err = BCME_OK; bcm_tlv_t *ssid_ie; wlc_ssid_t ssid; struct wl_priv *wl = WL_PRIV_GET(); struct wl_join_params join_params; wpa_ie_fixed_t *wps_ie; wpa_ie_fixed_t *wpa_ie; bcm_tlv_t *wpa2_ie; wifi_p2p_ie_t *p2p_ie; bool is_bssup = false; bool update_bss = false; bool pbc = false; u16 wpsie_len = 0; u16 p2pie_len = 0; u8 beacon_ie[IE_MAX_LEN]; s32 ie_offset = 0; s32 bssidx = wl_cfgp2p_find_idx(wl, dev); s32 infra = 1; s32 join_params_size = 0; s32 ap = 0; WL_DBG(("interval (%d) dtim_period (%d) head_len (%d) tail_len (%d)\n", info->interval, info->dtim_period, info->head_len, info->tail_len)); if (wl->p2p_supported && p2p_on(wl) && (bssidx >= wl_to_p2p_bss_bssidx(wl, P2PAPI_BSSCFG_CONNECTION))) { memset(beacon_ie, 0, sizeof(beacon_ie)); /* We don't need to set beacon for P2P_GO, * but need to parse ssid from beacon_parameters * because there is no way to set ssid */ ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN; /* find the SSID */ if ((ssid_ie = bcm_parse_tlvs((u8 *)&info->head[ie_offset], info->head_len - ie_offset, DOT11_MNG_SSID_ID)) != NULL) { memcpy(wl->p2p->ssid.SSID, ssid_ie->data, ssid_ie->len); wl->p2p->ssid.SSID_len = ssid_ie->len; WL_DBG(("SSID (%s) in Head \n", ssid_ie->data)); } else { WL_ERR(("No SSID in beacon \n")); } /* find the WPSIE */ if ((wps_ie = wl_cfgp2p_find_wpsie((u8 *)info->tail, info->tail_len)) != NULL) { wpsie_len = wps_ie->length + WPA_RSN_IE_TAG_FIXED_LEN; /* * Should be compared with saved ie before saving it */ wl_validate_wps_ie((char *) wps_ie, &pbc); memcpy(beacon_ie, wps_ie, wpsie_len); } else { WL_ERR(("No WPSIE in beacon \n")); } /* find the P2PIE */ if ((p2p_ie = wl_cfgp2p_find_p2pie((u8 *)info->tail, info->tail_len)) != NULL) { /* Total length of P2P Information Element */ p2pie_len = p2p_ie->len + sizeof(p2p_ie->len) + sizeof(p2p_ie->id); #ifdef ENABLE_DRIVER_CHANGE_IFADDR /* We are now doing this in supplicant */ /* Have to change device address in dev_id attribute because Supplicant * use primary eth0 address */ wl_cfg80211_change_ifaddr((u8 *)p2p_ie, &wl->p2p_dev_addr, P2P_SEID_DEV_ID); #endif memcpy(&beacon_ie[wpsie_len], p2p_ie, p2pie_len); } else { WL_ERR(("No P2PIE in beacon \n")); } wl_cfgp2p_set_management_ie(wl, dev, bssidx, VNDR_IE_BEACON_FLAG, beacon_ie, wpsie_len + p2pie_len); wl_cfgp2p_set_management_ie(wl, dev, bssidx, VNDR_IE_ASSOCRSP_FLAG, beacon_ie, wpsie_len + p2pie_len); /* find the RSN_IE */ if ((wpa2_ie = bcm_parse_tlvs((u8 *)info->tail, info->tail_len, DOT11_MNG_RSN_ID)) != NULL) { WL_DBG((" WPA2 IE is found\n")); } is_bssup = wl_cfgp2p_bss_isup(dev, bssidx); if (!is_bssup && (wpa2_ie != NULL)) { if ((err = wl_validate_wpa2ie(dev, wpa2_ie, bssidx)) < 0) { WL_ERR(("WPA2 IE parsing error")); return BCME_ERROR; } err = wldev_ioctl(dev, WLC_SET_INFRA, &infra, sizeof(s32), false); if (err < 0) { WL_ERR(("SET INFRA error %d\n", err)); return err; } err = wldev_iovar_setbuf_bsscfg(dev, "ssid", &wl->p2p->ssid, sizeof(wl->p2p->ssid), ioctlbuf, sizeof(ioctlbuf), bssidx); if (err < 0) { WL_ERR(("GO SSID setting error %d\n", err)); return err; } if ((err = wl_cfgp2p_bss(dev, bssidx, 1)) < 0) { WL_ERR(("GO Bring up error %d\n", err)); return err; } } } else if (wl_get_drv_status(wl, AP_CREATING)) { ie_offset = DOT11_MGMT_HDR_LEN + DOT11_BCN_PRB_FIXED_LEN; ap = 1; /* find the SSID */ if ((ssid_ie = bcm_parse_tlvs((u8 *)&info->head[ie_offset], info->head_len - ie_offset, DOT11_MNG_SSID_ID)) != NULL) { memset(&ssid, 0, sizeof(wlc_ssid_t)); memcpy(ssid.SSID, ssid_ie->data, ssid_ie->len); WL_DBG(("SSID is (%s) in Head \n", ssid.SSID)); ssid.SSID_len = ssid_ie->len; wldev_iovar_setint(dev, "mpc", 0); wldev_ioctl(dev, WLC_DOWN, &ap, sizeof(s32), false); wldev_ioctl(dev, WLC_SET_INFRA, &infra, sizeof(s32), false); wldev_ioctl(dev, WLC_SET_AP, &ap, sizeof(s32), false); /* find the RSN_IE */ if ((wpa2_ie = bcm_parse_tlvs((u8 *)info->tail, info->tail_len, DOT11_MNG_RSN_ID)) != NULL) { WL_DBG((" WPA2 IE is found\n")); } /* find the WPA_IE */ if ((wpa_ie = wl_cfgp2p_find_wpaie((u8 *)info->tail, info->tail_len)) != NULL) { WL_DBG((" WPA IE is found\n")); } if ((wpa_ie != NULL || wpa2_ie != NULL)) { if (wl_validate_wpa2ie(dev, wpa2_ie, bssidx) < 0 || wl_validate_wpaie(dev, wpa_ie, bssidx) < 0) { wl->ap_info->security_mode = false; return BCME_ERROR; } wl->ap_info->security_mode = true; kfree(wl->ap_info->rsn_ie); kfree(wl->ap_info->wpa_ie); kfree(wl->ap_info->wps_ie); if (wpa_ie != NULL) { /* WPAIE */ wl->ap_info->rsn_ie = NULL; wl->ap_info->wpa_ie = kmemdup(wpa_ie, wpa_ie->length + WPA_RSN_IE_TAG_FIXED_LEN, GFP_KERNEL); } else { /* RSNIE */ wl->ap_info->wpa_ie = NULL; wl->ap_info->rsn_ie = kmemdup(wpa2_ie, wpa2_ie->len + WPA_RSN_IE_TAG_FIXED_LEN, GFP_KERNEL); } } else wl->ap_info->security_mode = false; /* find the WPSIE */ if ((wps_ie = wl_cfgp2p_find_wpsie((u8 *)info->tail, info->tail_len)) != NULL) { wpsie_len = wps_ie->length +WPA_RSN_IE_TAG_FIXED_LEN; /* * Should be compared with saved ie before saving it */ wl_validate_wps_ie((char *) wps_ie, &pbc); memcpy(beacon_ie, wps_ie, wpsie_len); wl_cfgp2p_set_management_ie(wl, dev, bssidx, VNDR_IE_BEACON_FLAG, beacon_ie, wpsie_len); wl->ap_info->wps_ie = kmemdup(wps_ie, wpsie_len, GFP_KERNEL); /* add WLC_E_PROBREQ_MSG event to respose probe_request from STA */ wl_dongle_add_remove_eventmsg(dev, WLC_E_PROBREQ_MSG, pbc); } else { WL_DBG(("No WPSIE in beacon \n")); } wldev_ioctl(dev, WLC_UP, &ap, sizeof(s32), false); memset(&join_params, 0, sizeof(join_params)); /* join parameters starts with ssid */ join_params_size = sizeof(join_params.ssid); memcpy(join_params.ssid.SSID, ssid.SSID, ssid.SSID_len); join_params.ssid.SSID_len = htod32(ssid.SSID_len); /* create softap */ if ((err = wldev_ioctl(dev, WLC_SET_SSID, &join_params, join_params_size, false)) == 0) { wl_clr_drv_status(wl, AP_CREATING); wl_set_drv_status(wl, AP_CREATED); } } } else if (wl_get_drv_status(wl, AP_CREATED)) { ap = 1; /* find the WPSIE */ if ((wps_ie = wl_cfgp2p_find_wpsie((u8 *)info->tail, info->tail_len)) != NULL) { wpsie_len = wps_ie->length + WPA_RSN_IE_TAG_FIXED_LEN; /* * Should be compared with saved ie before saving it */ wl_validate_wps_ie((char *) wps_ie, &pbc); memcpy(beacon_ie, wps_ie, wpsie_len); wl_cfgp2p_set_management_ie(wl, dev, bssidx, VNDR_IE_BEACON_FLAG, beacon_ie, wpsie_len); if (wl->ap_info->wps_ie && memcmp(wl->ap_info->wps_ie, wps_ie, wpsie_len)) { WL_DBG((" WPS IE is changed\n")); kfree(wl->ap_info->wps_ie); wl->ap_info->wps_ie = kmemdup(wps_ie, wpsie_len, GFP_KERNEL); /* add WLC_E_PROBREQ_MSG event to respose probe_request from STA */ wl_dongle_add_remove_eventmsg(dev, WLC_E_PROBREQ_MSG, pbc); } else if (wl->ap_info->wps_ie == NULL) { WL_DBG((" WPS IE is added\n")); wl->ap_info->wps_ie = kmemdup(wps_ie, wpsie_len, GFP_KERNEL); /* add WLC_E_PROBREQ_MSG event to respose probe_request from STA */ wl_dongle_add_remove_eventmsg(dev, WLC_E_PROBREQ_MSG, pbc); } /* find the RSN_IE */ if ((wpa2_ie = bcm_parse_tlvs((u8 *)info->tail, info->tail_len, DOT11_MNG_RSN_ID)) != NULL) { WL_DBG((" WPA2 IE is found\n")); } /* find the WPA_IE */ if ((wpa_ie = wl_cfgp2p_find_wpaie((u8 *)info->tail, info->tail_len)) != NULL) { WL_DBG((" WPA IE is found\n")); } if ((wpa_ie != NULL || wpa2_ie != NULL)) { if (!wl->ap_info->security_mode) { /* change from open mode to security mode */ update_bss = true; if (wpa_ie != NULL) { wl->ap_info->wpa_ie = kmemdup(wpa_ie, wpa_ie->length + WPA_RSN_IE_TAG_FIXED_LEN, GFP_KERNEL); } else { wl->ap_info->rsn_ie = kmemdup(wpa2_ie, wpa2_ie->len + WPA_RSN_IE_TAG_FIXED_LEN, GFP_KERNEL); } } else if (wl->ap_info->wpa_ie) { /* change from WPA mode to WPA2 mode */ if (wpa2_ie != NULL) { update_bss = true; kfree(wl->ap_info->wpa_ie); wl->ap_info->rsn_ie = kmemdup(wpa2_ie, wpa2_ie->len + WPA_RSN_IE_TAG_FIXED_LEN, GFP_KERNEL); wl->ap_info->wpa_ie = NULL; } else if (memcmp(wl->ap_info->wpa_ie, wpa_ie, wpa_ie->length + WPA_RSN_IE_TAG_FIXED_LEN)) { kfree(wl->ap_info->wpa_ie); update_bss = true; wl->ap_info->wpa_ie = kmemdup(wpa_ie, wpa_ie->length + WPA_RSN_IE_TAG_FIXED_LEN, GFP_KERNEL); wl->ap_info->rsn_ie = NULL; } } else { /* change from WPA2 mode to WPA mode */ if (wpa_ie != NULL) { update_bss = true; kfree(wl->ap_info->rsn_ie); wl->ap_info->rsn_ie = NULL; wl->ap_info->wpa_ie = kmemdup(wpa_ie, wpa_ie->length + WPA_RSN_IE_TAG_FIXED_LEN, GFP_KERNEL); } else if (memcmp(wl->ap_info->rsn_ie, wpa2_ie, wpa2_ie->len + WPA_RSN_IE_TAG_FIXED_LEN)) { update_bss = true; kfree(wl->ap_info->rsn_ie); wl->ap_info->rsn_ie = kmemdup(wpa2_ie, wpa2_ie->len + WPA_RSN_IE_TAG_FIXED_LEN, GFP_KERNEL); wl->ap_info->wpa_ie = NULL; } } if (update_bss) { wl->ap_info->security_mode = true; wl_cfgp2p_bss(dev, bssidx, 0); if (wl_validate_wpa2ie(dev, wpa2_ie, bssidx) < 0 || wl_validate_wpaie(dev, wpa_ie, bssidx) < 0) { return BCME_ERROR; } wl_cfgp2p_bss(dev, bssidx, 1); } } } else { WL_ERR(("No WPSIE in beacon \n")); } } return 0; } #if defined(ANDROID_WIRELESS_PATCH) static s32 wl_cfg80211_drv_start(struct wiphy *wiphy, struct net_device *dev) { /* struct wl_priv *wl = wiphy_to_wl(wiphy); */ s32 err = 0; printk("Android driver start command\n"); return err; } static s32 wl_cfg80211_drv_stop(struct wiphy *wiphy, struct net_device *dev) { /* struct wl_priv *wl = wiphy_to_wl(wiphy); */ s32 err = 0; printk("Android driver stop command\n"); return err; } #endif /* defined(ANDROID_WIRELESS_PATCH) */ static struct cfg80211_ops wl_cfg80211_ops = { .add_virtual_intf = wl_cfg80211_add_virtual_iface, .del_virtual_intf = wl_cfg80211_del_virtual_iface, .change_virtual_intf = wl_cfg80211_change_virtual_iface, .scan = wl_cfg80211_scan, .set_wiphy_params = wl_cfg80211_set_wiphy_params, .join_ibss = wl_cfg80211_join_ibss, .leave_ibss = wl_cfg80211_leave_ibss, .get_station = wl_cfg80211_get_station, .set_tx_power = wl_cfg80211_set_tx_power, .get_tx_power = wl_cfg80211_get_tx_power, .add_key = wl_cfg80211_add_key, .del_key = wl_cfg80211_del_key, .get_key = wl_cfg80211_get_key, .set_default_key = wl_cfg80211_config_default_key, .set_default_mgmt_key = wl_cfg80211_config_default_mgmt_key, .set_power_mgmt = wl_cfg80211_set_power_mgmt, .connect = wl_cfg80211_connect, .disconnect = wl_cfg80211_disconnect, .suspend = wl_cfg80211_suspend, .resume = wl_cfg80211_resume, .set_pmksa = wl_cfg80211_set_pmksa, .del_pmksa = wl_cfg80211_del_pmksa, .flush_pmksa = wl_cfg80211_flush_pmksa, .remain_on_channel = wl_cfg80211_remain_on_channel, .cancel_remain_on_channel = wl_cfg80211_cancel_remain_on_channel, .mgmt_tx = wl_cfg80211_mgmt_tx, .mgmt_frame_register = wl_cfg80211_mgmt_frame_register, .change_bss = wl_cfg80211_change_bss, .set_channel = wl_cfg80211_set_channel, .set_beacon = wl_cfg80211_set_beacon, #if defined(ANDROID_WIRELESS_PATCH) .drv_start = wl_cfg80211_drv_start, .drv_stop = wl_cfg80211_drv_stop #endif }; static s32 wl_mode_to_nl80211_iftype(s32 mode) { s32 err = 0; switch (mode) { case WL_MODE_BSS: return NL80211_IFTYPE_STATION; case WL_MODE_IBSS: return NL80211_IFTYPE_ADHOC; case WL_MODE_AP: return NL80211_IFTYPE_AP; default: return NL80211_IFTYPE_UNSPECIFIED; } return err; } static struct wireless_dev *wl_alloc_wdev(s32 sizeof_iface, struct device *dev) { struct wireless_dev *wdev; s32 err = 0; struct wl_priv *wl; wdev = kzalloc(sizeof(*wdev), GFP_KERNEL); if (unlikely(!wdev)) { WL_ERR(("Could not allocate wireless device\n")); return ERR_PTR(-ENOMEM); } wdev->wiphy = wiphy_new(&wl_cfg80211_ops, sizeof(struct wl_priv) + sizeof_iface); if (unlikely(!wdev->wiphy)) { WL_ERR(("Couldn not allocate wiphy device\n")); err = -ENOMEM; goto wiphy_new_out; } set_wiphy_dev(wdev->wiphy, dev); wl = wiphy_to_wl(wdev->wiphy); wdev->wiphy->max_scan_ie_len = WL_SCAN_IE_LEN_MAX; wdev->wiphy->max_scan_ssids = WL_NUM_SCAN_MAX; wdev->wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX; wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_MONITOR); wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz; wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a; wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wdev->wiphy->cipher_suites = __wl_cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites); wdev->wiphy->max_remain_on_channel_duration = 5000; wdev->wiphy->mgmt_stypes = wl_cfg80211_default_mgmt_stypes; #ifndef WL_POWERSAVE_DISABLED wdev->wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT; #else wdev->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; #endif /* !WL_POWERSAVE_DISABLED */ wdev->wiphy->flags |= WIPHY_FLAG_NETNS_OK | WIPHY_FLAG_4ADDR_AP | #if LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 39) WIPHY_FLAG_SUPPORTS_SEPARATE_DEFAULT_KEYS | #endif WIPHY_FLAG_4ADDR_STATION; WL_DBG(("Registering custom regulatory)\n")); wdev->wiphy->flags |= WIPHY_FLAG_CUSTOM_REGULATORY; wiphy_apply_custom_regulatory(wdev->wiphy, &brcm_regdom); /* Now we can register wiphy with cfg80211 module */ err = wiphy_register(wdev->wiphy); if (unlikely(err < 0)) { WL_ERR(("Couldn not register wiphy device (%d)\n", err)); goto wiphy_register_out; } return wdev; wiphy_register_out: wiphy_free(wdev->wiphy); wiphy_new_out: kfree(wdev); return ERR_PTR(err); } static void wl_free_wdev(struct wl_priv *wl) { int i; struct wireless_dev *wdev = wl_to_wdev(wl); if (unlikely(!wdev)) { WL_ERR(("wdev is invalid\n")); return; } for (i = 0; i < VWDEV_CNT; i++) { if ((wl->vwdev[i] != NULL)) { kfree(wl->vwdev[i]); wl->vwdev[i] = NULL; } } wiphy_unregister(wdev->wiphy); wiphy_free(wdev->wiphy); kfree(wdev); wl_to_wdev(wl) = NULL; } static s32 wl_inform_bss(struct wl_priv *wl) { struct wl_scan_results *bss_list; struct wl_bss_info *bi = NULL; /* must be initialized */ s32 err = 0; s32 i; bss_list = wl->bss_list; #if 0 if (unlikely(bss_list->version != WL_BSS_INFO_VERSION)) { WL_ERR(("Version %d != WL_BSS_INFO_VERSION\n", bss_list->version)); return -EOPNOTSUPP; } #endif WL_DBG(("scanned AP count (%d)\n", bss_list->count)); bi = next_bss(bss_list, bi); for_each_bss(bss_list, bi, i) { err = wl_inform_single_bss(wl, bi); if (unlikely(err)) break; } return err; } static s32 wl_inform_single_bss(struct wl_priv *wl, struct wl_bss_info *bi) { struct wiphy *wiphy = wiphy_from_scan(wl); struct ieee80211_mgmt *mgmt; struct ieee80211_channel *channel; struct ieee80211_supported_band *band; struct wl_cfg80211_bss_info *notif_bss_info; struct wl_scan_req *sr = wl_to_sr(wl); struct beacon_proberesp *beacon_proberesp; s32 mgmt_type; u32 signal; u32 freq; s32 err = 0; if (unlikely(dtoh32(bi->length) > WL_BSS_INFO_MAX)) { WL_DBG(("Beacon is larger than buffer. Discarding\n")); return err; } notif_bss_info = kzalloc(sizeof(*notif_bss_info) + sizeof(*mgmt) - sizeof(u8) + WL_BSS_INFO_MAX, GFP_KERNEL); if (unlikely(!notif_bss_info)) { WL_ERR(("notif_bss_info alloc failed\n")); return -ENOMEM; } mgmt = (struct ieee80211_mgmt *)notif_bss_info->frame_buf; notif_bss_info->channel = bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(bi->chanspec); if (notif_bss_info->channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; notif_bss_info->rssi = bi->RSSI; memcpy(mgmt->bssid, &bi->BSSID, ETHER_ADDR_LEN); mgmt_type = wl->active_scan ? IEEE80211_STYPE_PROBE_RESP : IEEE80211_STYPE_BEACON; if (!memcmp(bi->SSID, sr->ssid.SSID, bi->SSID_len)) { mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | mgmt_type); } beacon_proberesp = wl->active_scan ? (struct beacon_proberesp *)&mgmt->u.probe_resp : (struct beacon_proberesp *)&mgmt->u.beacon; beacon_proberesp->timestamp = 0; beacon_proberesp->beacon_int = cpu_to_le16(bi->beacon_period); beacon_proberesp->capab_info = cpu_to_le16(bi->capability); wl_rst_ie(wl); /* * wl_add_ie is not necessary because it can only add duplicated * SSID, rate information to frame_buf */ /* * wl_add_ie(wl, WLAN_EID_SSID, bi->SSID_len, bi->SSID); * wl_add_ie(wl, WLAN_EID_SUPP_RATES, bi->rateset.count, * bi->rateset.rates); */ wl_mrg_ie(wl, ((u8 *) bi) + bi->ie_offset, bi->ie_length); wl_cp_ie(wl, beacon_proberesp->variable, WL_BSS_INFO_MAX - offsetof(struct wl_cfg80211_bss_info, frame_buf)); notif_bss_info->frame_len = offsetof(struct ieee80211_mgmt, u.beacon.variable) + wl_get_ielen(wl); #if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 38) && !defined(WL_COMPAT_WIRELESS) freq = ieee80211_channel_to_frequency(notif_bss_info->channel); #else freq = ieee80211_channel_to_frequency(notif_bss_info->channel, band->band); #endif channel = ieee80211_get_channel(wiphy, freq); WL_DBG(("SSID : \"%s\", rssi %d, channel %d, capability : 0x04%x, bssid %pM\n", bi->SSID, notif_bss_info->rssi, notif_bss_info->channel, mgmt->u.beacon.capab_info, &bi->BSSID)); signal = notif_bss_info->rssi * 100; if (unlikely(!cfg80211_inform_bss_frame(wiphy, channel, mgmt, le16_to_cpu (notif_bss_info->frame_len), signal, GFP_KERNEL))) { WL_ERR(("cfg80211_inform_bss_frame error\n")); kfree(notif_bss_info); return -EINVAL; } kfree(notif_bss_info); return err; } static bool wl_is_linkup(struct wl_priv *wl, const wl_event_msg_t *e, struct net_device *ndev) { u32 event = ntoh32(e->event_type); u32 status = ntoh32(e->status); u16 flags = ntoh16(e->flags); WL_DBG(("event %d, status %d\n", event, status)); if (event == WLC_E_SET_SSID) { if (status == WLC_E_STATUS_SUCCESS) { if (!wl_is_ibssmode(wl, ndev)) return true; } } else if (event == WLC_E_LINK) { if (flags & WLC_EVENT_MSG_LINK) return true; } WL_DBG(("wl_is_linkup false\n")); return false; } static bool wl_is_linkdown(struct wl_priv *wl, const wl_event_msg_t *e) { u32 event = ntoh32(e->event_type); u16 flags = ntoh16(e->flags); if (event == WLC_E_DEAUTH_IND || event == WLC_E_DISASSOC_IND || event == WLC_E_DISASSOC || event == WLC_E_DEAUTH) { return true; } else if (event == WLC_E_LINK) { if (!(flags & WLC_EVENT_MSG_LINK)) return true; } return false; } static bool wl_is_nonetwork(struct wl_priv *wl, const wl_event_msg_t *e) { u32 event = ntoh32(e->event_type); u32 status = ntoh32(e->status); if (event == WLC_E_LINK && status == WLC_E_STATUS_NO_NETWORKS) return true; if (event == WLC_E_SET_SSID && status != WLC_E_STATUS_SUCCESS) return true; return false; } static s32 wl_notify_connect_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { bool act; bool isfree = false; s32 err = 0; s32 freq; s32 channel; u8 body[200]; u32 event = ntoh32(e->event_type); u32 reason = ntoh32(e->reason); u32 len = ntoh32(e->datalen); u16 fc = 0; u8 *mgmt_frame; u8 bsscfgidx = e->bsscfgidx; struct ieee80211_supported_band *band; struct ether_addr da; struct ether_addr bssid; struct wiphy *wiphy = wl_to_wiphy(wl); channel_info_t ci; memset(body, 0, sizeof(body)); WL_DBG(("Enter \n")); if (get_mode_by_netdev(wl, ndev) == WL_MODE_AP) { memcpy(body, data, len); wldev_iovar_getbuf_bsscfg(ndev, "cur_etheraddr", &da, sizeof(struct ether_addr), ioctlbuf, sizeof(ioctlbuf), bsscfgidx); wldev_ioctl(ndev, WLC_GET_BSSID, &bssid, ETHER_ADDR_LEN, false); switch (event) { case WLC_E_ASSOC_IND: fc = FC_ASSOC_REQ; break; case WLC_E_REASSOC_IND: fc = FC_REASSOC_REQ; break; case WLC_E_DISASSOC_IND: fc = FC_DISASSOC; break; case WLC_E_DEAUTH_IND: fc = FC_DEAUTH; break; case WLC_E_DEAUTH: fc = FC_DEAUTH; break; default: fc = 0; goto exit; } if ((err = wldev_ioctl(ndev, WLC_GET_CHANNEL, &ci, sizeof(ci), false))) return err; channel = dtoh32(ci.hw_channel); if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; #if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 38) && !defined(WL_COMPAT_WIRELESS) freq = ieee80211_channel_to_frequency(channel); #else freq = ieee80211_channel_to_frequency(channel, band->band); #endif err = wl_frame_get_mgmt(fc, &da, &e->addr, &bssid, &mgmt_frame, &len, body); if (err < 0) goto exit; isfree = true; if (event == WLC_E_ASSOC_IND && reason == DOT11_SC_SUCCESS) { cfg80211_send_rx_assoc(ndev, mgmt_frame, len); } else if (event == WLC_E_DISASSOC_IND) { cfg80211_send_disassoc(ndev, mgmt_frame, len); } else if ((event == WLC_E_DEAUTH_IND) || (event == WLC_E_DEAUTH)) { cfg80211_send_deauth(ndev, mgmt_frame, len); } } else { WL_DBG(("wl_notify_connect_status : event %d status : %d \n", ntoh32(e->event_type), ntoh32(e->status))); if (wl_is_linkup(wl, e, ndev)) { wl_link_up(wl); if (wl_is_ibssmode(wl, ndev)) { printk("cfg80211_ibss_joined"); cfg80211_ibss_joined(ndev, (s8 *)&e->addr, GFP_KERNEL); WL_DBG(("joined in IBSS network\n")); } else { printk("wl_bss_connect_done succeeded"); wl_bss_connect_done(wl, ndev, e, data, true); WL_DBG(("joined in BSS network \"%s\"\n", ((struct wlc_ssid *) wl_read_prof(wl, WL_PROF_SSID))->SSID)); } act = true; wl_update_prof(wl, e, &act, WL_PROF_ACT); } else if (wl_is_linkdown(wl, e)) { if (wl_get_drv_status(wl, CONNECTED)) { printk("link down, call cfg80211_disconnected "); rtnl_lock(); cfg80211_disconnected(ndev, 0, NULL, 0, GFP_KERNEL); wl_clr_drv_status(wl, CONNECTED); wl_link_down(wl); wl_init_prof(wl->profile); rtnl_unlock(); } else if (wl_get_drv_status(wl, CONNECTING)) { printk("link down, during connecting"); wl_bss_connect_done(wl, ndev, e, data, false); } } else if (wl_is_nonetwork(wl, e)) { printk("connect failed e->status 0x%x", (int)ntoh32(e->status)); if (wl_get_drv_status(wl, CONNECTING)) wl_bss_connect_done(wl, ndev, e, data, false); } else { printk("%s nothing\n", __FUNCTION__); } printk("\n"); } exit: if (isfree) kfree(mgmt_frame); return err; } static s32 wl_notify_roaming_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { bool act; s32 err = 0; u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); WL_DBG(("Enter \n")); if (event == WLC_E_ROAM && status == WLC_E_STATUS_SUCCESS) { if (test_bit(WL_STATUS_CONNECTED, &wl->status)) wl_bss_roaming_done(wl, ndev, e, data); else wl_bss_connect_done(wl, ndev, e, data, true); act = true; wl_update_prof(wl, e, &act, WL_PROF_ACT); } return err; } static __used s32 wl_dev_bufvar_set(struct net_device *dev, s8 *name, s8 *buf, s32 len) { struct wl_priv *wl = WL_PRIV_GET(); u32 buflen; buflen = bcm_mkiovar(name, buf, len, wl->ioctl_buf, WL_IOCTL_LEN_MAX); BUG_ON(unlikely(!buflen)); return wldev_ioctl(dev, WLC_SET_VAR, wl->ioctl_buf, buflen, false); } static s32 wl_dev_bufvar_get(struct net_device *dev, s8 *name, s8 *buf, s32 buf_len) { struct wl_priv *wl = WL_PRIV_GET(); u32 len; s32 err = 0; len = bcm_mkiovar(name, NULL, 0, wl->ioctl_buf, WL_IOCTL_LEN_MAX); BUG_ON(unlikely(!len)); err = wldev_ioctl(dev, WLC_GET_VAR, (void *)wl->ioctl_buf, WL_IOCTL_LEN_MAX, false); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); return err; } memcpy(buf, wl->ioctl_buf, buf_len); return err; } static s32 wl_get_assoc_ies(struct wl_priv *wl, struct net_device *ndev) { wl_assoc_info_t assoc_info; struct wl_connect_info *conn_info = wl_to_conn(wl); s32 err = 0; WL_DBG(("Enter \n")); err = wl_dev_bufvar_get(ndev, "assoc_info", wl->extra_buf, WL_ASSOC_INFO_MAX); if (unlikely(err)) { WL_ERR(("could not get assoc info (%d)\n", err)); return err; } memcpy(&assoc_info, wl->extra_buf, sizeof(wl_assoc_info_t)); assoc_info.req_len = htod32(assoc_info.req_len); assoc_info.resp_len = htod32(assoc_info.resp_len); assoc_info.flags = htod32(assoc_info.flags); if (assoc_info.req_len) { err = wl_dev_bufvar_get(ndev, "assoc_req_ies", wl->extra_buf, WL_ASSOC_INFO_MAX); if (unlikely(err)) { WL_ERR(("could not get assoc req (%d)\n", err)); return err; } conn_info->req_ie_len = assoc_info.req_len - sizeof(struct dot11_assoc_req); if (assoc_info.flags & WLC_ASSOC_REQ_IS_REASSOC) { conn_info->req_ie_len -= ETHER_ADDR_LEN; } conn_info->req_ie = kmemdup(wl->extra_buf, conn_info->req_ie_len, GFP_KERNEL); } else { conn_info->req_ie_len = 0; conn_info->req_ie = NULL; } if (assoc_info.resp_len) { err = wl_dev_bufvar_get(ndev, "assoc_resp_ies", wl->extra_buf, WL_ASSOC_INFO_MAX); if (unlikely(err)) { WL_ERR(("could not get assoc resp (%d)\n", err)); return err; } conn_info->resp_ie_len = assoc_info.resp_len -sizeof(struct dot11_assoc_resp); conn_info->resp_ie = kmemdup(wl->extra_buf, conn_info->resp_ie_len, GFP_KERNEL); } else { conn_info->resp_ie_len = 0; conn_info->resp_ie = NULL; } WL_DBG(("req len (%d) resp len (%d)\n", conn_info->req_ie_len, conn_info->resp_ie_len)); return err; } static void wl_ch_to_chanspec(int ch, struct wl_join_params *join_params, size_t *join_params_size) { chanspec_t chanspec = 0; if (ch != 0) { join_params->params.chanspec_num = 1; join_params->params.chanspec_list[0] = ch; if (join_params->params.chanspec_list[0]) chanspec |= WL_CHANSPEC_BAND_2G; else chanspec |= WL_CHANSPEC_BAND_5G; chanspec |= WL_CHANSPEC_BW_20; chanspec |= WL_CHANSPEC_CTL_SB_NONE; *join_params_size += WL_ASSOC_PARAMS_FIXED_SIZE + join_params->params.chanspec_num * sizeof(chanspec_t); join_params->params.chanspec_list[0] &= WL_CHANSPEC_CHAN_MASK; join_params->params.chanspec_list[0] |= chanspec; join_params->params.chanspec_list[0] = htodchanspec(join_params->params.chanspec_list[0]); join_params->params.chanspec_num = htod32(join_params->params.chanspec_num); WL_DBG(("%s join_params->params.chanspec_list[0]= %X\n", __FUNCTION__, join_params->params.chanspec_list[0])); } } static s32 wl_update_bss_info(struct wl_priv *wl, struct net_device *ndev) { struct cfg80211_bss *bss; struct wl_bss_info *bi; struct wlc_ssid *ssid; struct bcm_tlv *tim; u16 beacon_interval; u8 dtim_period; size_t ie_len; u8 *ie; s32 err = 0; struct wiphy *wiphy; wiphy = wl_to_wiphy(wl); if (wl_is_ibssmode(wl, ndev)) return err; ssid = (struct wlc_ssid *)wl_read_prof(wl, WL_PROF_SSID); bss = cfg80211_get_bss(wiphy, NULL, (s8 *)&wl->bssid, ssid->SSID, ssid->SSID_len, WLAN_CAPABILITY_ESS, WLAN_CAPABILITY_ESS); rtnl_lock(); if (unlikely(!bss)) { WL_DBG(("Could not find the AP\n")); *(u32 *) wl->extra_buf = htod32(WL_EXTRA_BUF_MAX); err = wldev_ioctl(wl_to_prmry_ndev(wl), WLC_GET_BSS_INFO, wl->extra_buf, WL_EXTRA_BUF_MAX, false); if (unlikely(err)) { WL_ERR(("Could not get bss info %d\n", err)); goto update_bss_info_out; } bi = (struct wl_bss_info *)(wl->extra_buf + 4); if (unlikely(memcmp(&bi->BSSID, &wl->bssid, ETHER_ADDR_LEN))) { err = -EIO; goto update_bss_info_out; } err = wl_inform_single_bss(wl, bi); if (unlikely(err)) goto update_bss_info_out; ie = ((u8 *)bi) + bi->ie_offset; ie_len = bi->ie_length; beacon_interval = cpu_to_le16(bi->beacon_period); } else { WL_DBG(("Found the AP in the list - BSSID %pM\n", bss->bssid)); ie = bss->information_elements; ie_len = bss->len_information_elements; beacon_interval = bss->beacon_interval; cfg80211_put_bss(bss); } tim = bcm_parse_tlvs(ie, ie_len, WLAN_EID_TIM); if (tim) { dtim_period = tim->data[1]; } else { /* * active scan was done so we could not get dtim * information out of probe response. * so we speficially query dtim information to dongle. */ err = wldev_ioctl(wl_to_prmry_ndev(wl), WLC_GET_DTIMPRD, &dtim_period, sizeof(dtim_period), false); if (unlikely(err)) { WL_ERR(("WLC_GET_DTIMPRD error (%d)\n", err)); goto update_bss_info_out; } } wl_update_prof(wl, NULL, &beacon_interval, WL_PROF_BEACONINT); wl_update_prof(wl, NULL, &dtim_period, WL_PROF_DTIMPERIOD); update_bss_info_out: rtnl_unlock(); return err; } static s32 wl_bss_roaming_done(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { struct wl_connect_info *conn_info = wl_to_conn(wl); s32 err = 0; wl_get_assoc_ies(wl, ndev); memcpy(&wl->bssid, &e->addr, ETHER_ADDR_LEN); wl_update_bss_info(wl, ndev); cfg80211_roamed(ndev, #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39) NULL, #endif (u8 *)&wl->bssid, conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL); WL_DBG(("Report roaming result\n")); wl_set_drv_status(wl, CONNECTED); return err; } static s32 wl_bss_connect_done(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data, bool completed) { struct wl_connect_info *conn_info = wl_to_conn(wl); s32 err = 0; WL_DBG((" enter\n")); wl_get_assoc_ies(wl, ndev); memcpy(&wl->bssid, &e->addr, ETHER_ADDR_LEN); wl_update_bss_info(wl, ndev); if (wl_get_drv_status(wl, CONNECTING)) { wl_clr_drv_status(wl, CONNECTING); cfg80211_connect_result(ndev, (u8 *)&wl->bssid, conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, completed ? WLAN_STATUS_SUCCESS : WLAN_STATUS_AUTH_TIMEOUT, GFP_KERNEL); WL_DBG(("Report connect result - connection %s\n", completed ? "succeeded" : "failed")); } if (completed) wl_set_drv_status(wl, CONNECTED); else { if (wl->scan_request) { wl_cfg80211_scan_abort(wl, ndev); } } return err; } static s32 wl_notify_mic_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { u16 flags = ntoh16(e->flags); enum nl80211_key_type key_type; rtnl_lock(); if (flags & WLC_EVENT_MSG_GROUP) key_type = NL80211_KEYTYPE_GROUP; else key_type = NL80211_KEYTYPE_PAIRWISE; cfg80211_michael_mic_failure(ndev, (u8 *)&e->addr, key_type, -1, NULL, GFP_KERNEL); rtnl_unlock(); return 0; } static s32 wl_notify_scan_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { struct channel_info channel_inform; struct wl_scan_results *bss_list; u32 len = WL_SCAN_BUF_MAX; s32 err = 0; WL_DBG(("Enter \n")); if (wl->iscan_on && wl->iscan_kickstart) return wl_wakeup_iscan(wl_to_iscan(wl)); if (unlikely(!wl_get_drv_status(wl, SCANNING))) { wl_clr_drv_status(wl, SCANNING); WL_DBG(("Scan complete while device not scanning\n")); return -EINVAL; } wl_clr_drv_status(wl, SCANNING); rtnl_lock(); err = wldev_ioctl(ndev, WLC_GET_CHANNEL, &channel_inform, sizeof(channel_inform), false); if (unlikely(err)) { WL_ERR(("scan busy (%d)\n", err)); goto scan_done_out; } channel_inform.scan_channel = dtoh32(channel_inform.scan_channel); if (unlikely(channel_inform.scan_channel)) { WL_DBG(("channel_inform.scan_channel (%d)\n", channel_inform.scan_channel)); } wl->bss_list = wl->scan_results; bss_list = wl->bss_list; memset(bss_list, 0, len); bss_list->buflen = htod32(len); err = wldev_ioctl(ndev, WLC_SCAN_RESULTS, bss_list, len, false); if (unlikely(err)) { WL_ERR(("%s Scan_results error (%d)\n", ndev->name, err)); err = -EINVAL; goto scan_done_out; } bss_list->buflen = dtoh32(bss_list->buflen); bss_list->version = dtoh32(bss_list->version); bss_list->count = dtoh32(bss_list->count); err = wl_inform_bss(wl); if (err) goto scan_done_out; scan_done_out: if (wl->scan_request) { WL_DBG(("cfg80211_scan_done\n")); cfg80211_scan_done(wl->scan_request, false); wl->scan_request = NULL; } rtnl_unlock(); return err; } static s32 wl_frame_get_mgmt(u16 fc, const struct ether_addr *da, const struct ether_addr *sa, const struct ether_addr *bssid, u8 **pheader, u32 *body_len, u8 *pbody) { struct dot11_management_header *hdr; u32 totlen = 0; s32 err = 0; u8 *offset; u32 prebody_len = *body_len; switch (fc) { case FC_ASSOC_REQ: /* capability , listen interval */ totlen = DOT11_ASSOC_REQ_FIXED_LEN; *body_len += DOT11_ASSOC_REQ_FIXED_LEN; break; case FC_REASSOC_REQ: /* capability, listen inteval, ap address */ totlen = DOT11_REASSOC_REQ_FIXED_LEN; *body_len += DOT11_REASSOC_REQ_FIXED_LEN; break; } totlen += DOT11_MGMT_HDR_LEN + prebody_len; *pheader = kzalloc(totlen, GFP_KERNEL); if (*pheader == NULL) { WL_ERR(("memory alloc failed \n")); return -ENOMEM; } hdr = (struct dot11_management_header *) (*pheader); hdr->fc = htol16(fc); hdr->durid = 0; hdr->seq = 0; offset = (u8*)(hdr + 1) + (totlen - DOT11_MGMT_HDR_LEN - prebody_len); bcopy((const char*)da, (u8*)&hdr->da, ETHER_ADDR_LEN); bcopy((const char*)sa, (u8*)&hdr->sa, ETHER_ADDR_LEN); bcopy((const char*)bssid, (u8*)&hdr->bssid, ETHER_ADDR_LEN); bcopy((const char*)pbody, offset, prebody_len); *body_len = totlen; return err; } static s32 wl_notify_rx_mgmt_frame(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { struct ieee80211_supported_band *band; struct wiphy *wiphy = wl_to_wiphy(wl); struct ether_addr da; struct ether_addr bssid; bool isfree = false; s32 err = 0; s32 freq; wl_event_rx_frame_data_t *rxframe = (wl_event_rx_frame_data_t*)data; u32 event = ntoh32(e->event_type); u8 *mgmt_frame; u8 bsscfgidx = e->bsscfgidx; u32 mgmt_frame_len = ntoh32(e->datalen) - sizeof(wl_event_rx_frame_data_t); u16 channel = ((ntoh16(rxframe->channel) & WL_CHANSPEC_CHAN_MASK) & 0x0f); if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; #if LINUX_VERSION_CODE == KERNEL_VERSION(2, 6, 38) && !defined(WL_COMPAT_WIRELESS) freq = ieee80211_channel_to_frequency(channel); #else freq = ieee80211_channel_to_frequency(channel, band->band); #endif if (event == WLC_E_ACTION_FRAME_RX) { wldev_iovar_getbuf_bsscfg(ndev, "cur_etheraddr", &da, sizeof(struct ether_addr), ioctlbuf, sizeof(ioctlbuf), bsscfgidx); wldev_ioctl(ndev, WLC_GET_BSSID, &bssid, ETHER_ADDR_LEN, false); err = wl_frame_get_mgmt(FC_ACTION, &da, &e->addr, &bssid, &mgmt_frame, &mgmt_frame_len, (u8 *)((wl_event_rx_frame_data_t *)rxframe + 1)); if (err < 0) { WL_ERR(("%s: Error in receiving action frame len %d channel %d freq %d\n", __func__, mgmt_frame_len, channel, freq)); goto exit; } isfree = true; } else { mgmt_frame = (u8 *)((wl_event_rx_frame_data_t *)rxframe + 1); } cfg80211_rx_mgmt(ndev, freq, mgmt_frame, mgmt_frame_len, GFP_ATOMIC); WL_DBG(("%s: mgmt_frame_len (%d) , e->datalen (%d), channel (%d), freq (%d)\n", __func__, mgmt_frame_len, ntoh32(e->datalen), channel, freq)); if (isfree) kfree(mgmt_frame); exit: return 0; } static void wl_init_conf(struct wl_conf *conf) { s32 i = 0; WL_DBG(("Enter \n")); for (i = 0; i <= VWDEV_CNT; i++) { conf->mode[i].type = -1; conf->mode[i].ndev = NULL; } conf->frag_threshold = (u32)-1; conf->rts_threshold = (u32)-1; conf->retry_short = (u32)-1; conf->retry_long = (u32)-1; conf->tx_power = -1; } static void wl_init_prof(struct wl_profile *prof) { memset(prof, 0, sizeof(*prof)); } static void wl_init_event_handler(struct wl_priv *wl) { memset(wl->evt_handler, 0, sizeof(wl->evt_handler)); wl->evt_handler[WLC_E_SCAN_COMPLETE] = wl_notify_scan_status; /* wl->evt_handler[WLC_E_JOIN] = wl_notify_connect_status; */ wl->evt_handler[WLC_E_LINK] = wl_notify_connect_status; wl->evt_handler[WLC_E_DEAUTH_IND] = wl_notify_connect_status; wl->evt_handler[WLC_E_DEAUTH] = wl_notify_connect_status; wl->evt_handler[WLC_E_DISASSOC_IND] = wl_notify_connect_status; wl->evt_handler[WLC_E_ASSOC_IND] = wl_notify_connect_status; wl->evt_handler[WLC_E_REASSOC_IND] = wl_notify_connect_status; wl->evt_handler[WLC_E_ROAM] = wl_notify_roaming_status; wl->evt_handler[WLC_E_MIC_ERROR] = wl_notify_mic_status; wl->evt_handler[WLC_E_SET_SSID] = wl_notify_connect_status; wl->evt_handler[WLC_E_ACTION_FRAME_RX] = wl_notify_rx_mgmt_frame; wl->evt_handler[WLC_E_PROBREQ_MSG] = wl_notify_rx_mgmt_frame; wl->evt_handler[WLC_E_P2P_PROBREQ_MSG] = wl_notify_rx_mgmt_frame; wl->evt_handler[WLC_E_P2P_DISC_LISTEN_COMPLETE] = wl_cfgp2p_listen_complete; wl->evt_handler[WLC_E_ACTION_FRAME_COMPLETE] = wl_cfgp2p_action_tx_complete; wl->evt_handler[WLC_E_ACTION_FRAME_OFF_CHAN_COMPLETE] = wl_cfgp2p_action_tx_complete; } static s32 wl_init_priv_mem(struct wl_priv *wl) { WL_DBG(("Enter \n")); wl->scan_results = (void *)kzalloc(WL_SCAN_BUF_MAX, GFP_KERNEL); if (unlikely(!wl->scan_results)) { WL_ERR(("Scan results alloc failed\n")); goto init_priv_mem_out; } wl->conf = (void *)kzalloc(sizeof(*wl->conf), GFP_KERNEL); if (unlikely(!wl->conf)) { WL_ERR(("wl_conf alloc failed\n")); goto init_priv_mem_out; } wl->profile = (void *)kzalloc(sizeof(*wl->profile), GFP_KERNEL); if (unlikely(!wl->profile)) { WL_ERR(("wl_profile alloc failed\n")); goto init_priv_mem_out; } wl->bss_info = (void *)kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (unlikely(!wl->bss_info)) { WL_ERR(("Bss information alloc failed\n")); goto init_priv_mem_out; } wl->scan_req_int = (void *)kzalloc(sizeof(*wl->scan_req_int), GFP_KERNEL); if (unlikely(!wl->scan_req_int)) { WL_ERR(("Scan req alloc failed\n")); goto init_priv_mem_out; } wl->ioctl_buf = (void *)kzalloc(WL_IOCTL_LEN_MAX, GFP_KERNEL); if (unlikely(!wl->ioctl_buf)) { WL_ERR(("Ioctl buf alloc failed\n")); goto init_priv_mem_out; } wl->escan_ioctl_buf = (void *)kzalloc(WL_IOCTL_LEN_MAX, GFP_KERNEL); if (unlikely(!wl->escan_ioctl_buf)) { WL_ERR(("Ioctl buf alloc failed\n")); goto init_priv_mem_out; } wl->extra_buf = (void *)kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (unlikely(!wl->extra_buf)) { WL_ERR(("Extra buf alloc failed\n")); goto init_priv_mem_out; } wl->iscan = (void *)kzalloc(sizeof(*wl->iscan), GFP_KERNEL); if (unlikely(!wl->iscan)) { WL_ERR(("Iscan buf alloc failed\n")); goto init_priv_mem_out; } wl->fw = (void *)kzalloc(sizeof(*wl->fw), GFP_KERNEL); if (unlikely(!wl->fw)) { WL_ERR(("fw object alloc failed\n")); goto init_priv_mem_out; } wl->pmk_list = (void *)kzalloc(sizeof(*wl->pmk_list), GFP_KERNEL); if (unlikely(!wl->pmk_list)) { WL_ERR(("pmk list alloc failed\n")); goto init_priv_mem_out; } return 0; init_priv_mem_out: wl_deinit_priv_mem(wl); return -ENOMEM; } static void wl_deinit_priv_mem(struct wl_priv *wl) { kfree(wl->scan_results); wl->scan_results = NULL; kfree(wl->bss_info); wl->bss_info = NULL; kfree(wl->conf); wl->conf = NULL; kfree(wl->profile); wl->profile = NULL; kfree(wl->scan_req_int); wl->scan_req_int = NULL; kfree(wl->ioctl_buf); wl->ioctl_buf = NULL; kfree(wl->escan_ioctl_buf); wl->escan_ioctl_buf = NULL; kfree(wl->extra_buf); wl->extra_buf = NULL; kfree(wl->iscan); wl->iscan = NULL; kfree(wl->fw); wl->fw = NULL; kfree(wl->pmk_list); wl->pmk_list = NULL; if (wl->ap_info) { kfree(wl->ap_info->wpa_ie); kfree(wl->ap_info->rsn_ie); kfree(wl->ap_info->wps_ie); kfree(wl->ap_info); wl->ap_info = NULL; } } static s32 wl_create_event_handler(struct wl_priv *wl) { WL_DBG(("Enter \n")); sema_init(&wl->event_sync, 0); wl->event_tsk = kthread_run(wl_event_handler, wl, "wl_event_handler"); if (IS_ERR(wl->event_tsk)) { wl->event_tsk = NULL; WL_ERR(("failed to create event thread\n")); return -ENOMEM; } return 0; } static void wl_destroy_event_handler(struct wl_priv *wl) { if (wl->event_tsk) { send_sig(SIGTERM, wl->event_tsk, 1); kthread_stop(wl->event_tsk); wl->event_tsk = NULL; } } static void wl_term_iscan(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl_to_iscan(wl); WL_TRACE(("In\n")); if (wl->iscan_on && iscan->tsk) { iscan->state = WL_ISCAN_STATE_IDLE; WL_INFO(("SIGTERM\n")); send_sig(SIGTERM, iscan->tsk, 1); WL_DBG(("kthread_stop\n")); kthread_stop(iscan->tsk); iscan->tsk = NULL; } } static void wl_notify_iscan_complete(struct wl_iscan_ctrl *iscan, bool aborted) { struct wl_priv *wl = iscan_to_wl(iscan); WL_DBG(("Enter \n")); if (unlikely(!wl_get_drv_status(wl, SCANNING))) { wl_clr_drv_status(wl, SCANNING); WL_ERR(("Scan complete while device not scanning\n")); return; } wl_clr_drv_status(wl, SCANNING); if (likely(wl->scan_request)) { cfg80211_scan_done(wl->scan_request, aborted); wl->scan_request = NULL; } wl->iscan_kickstart = false; } static s32 wl_wakeup_iscan(struct wl_iscan_ctrl *iscan) { if (likely(iscan->state != WL_ISCAN_STATE_IDLE)) { WL_DBG(("wake up iscan\n")); up(&iscan->sync); return 0; } return -EIO; } static s32 wl_get_iscan_results(struct wl_iscan_ctrl *iscan, u32 *status, struct wl_scan_results **bss_list) { struct wl_iscan_results list; struct wl_scan_results *results; struct wl_iscan_results *list_buf; s32 err = 0; WL_DBG(("Enter \n")); memset(iscan->scan_buf, 0, WL_ISCAN_BUF_MAX); list_buf = (struct wl_iscan_results *)iscan->scan_buf; results = &list_buf->results; results->buflen = WL_ISCAN_RESULTS_FIXED_SIZE; results->version = 0; results->count = 0; memset(&list, 0, sizeof(list)); list.results.buflen = htod32(WL_ISCAN_BUF_MAX); err = wldev_iovar_getbuf(iscan->dev, "iscanresults", &list, WL_ISCAN_RESULTS_FIXED_SIZE, iscan->scan_buf, WL_ISCAN_BUF_MAX); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); return err; } results->buflen = dtoh32(results->buflen); results->version = dtoh32(results->version); results->count = dtoh32(results->count); WL_DBG(("results->count = %d\n", results->count)); WL_DBG(("results->buflen = %d\n", results->buflen)); *status = dtoh32(list_buf->status); *bss_list = results; return err; } static s32 wl_iscan_done(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl->iscan; s32 err = 0; iscan->state = WL_ISCAN_STATE_IDLE; rtnl_lock(); wl_inform_bss(wl); wl_notify_iscan_complete(iscan, false); rtnl_unlock(); return err; } static s32 wl_iscan_pending(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl->iscan; s32 err = 0; /* Reschedule the timer */ mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 wl_iscan_inprogress(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl->iscan; s32 err = 0; rtnl_lock(); wl_inform_bss(wl); wl_run_iscan(iscan, NULL, WL_SCAN_ACTION_CONTINUE); rtnl_unlock(); /* Reschedule the timer */ mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 wl_iscan_aborted(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl->iscan; s32 err = 0; iscan->state = WL_ISCAN_STATE_IDLE; rtnl_lock(); wl_notify_iscan_complete(iscan, true); rtnl_unlock(); return err; } static s32 wl_iscan_thread(void *data) { struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1 }; struct wl_iscan_ctrl *iscan = (struct wl_iscan_ctrl *)data; struct wl_priv *wl = iscan_to_wl(iscan); u32 status; int err = 0; sched_setscheduler(current, SCHED_FIFO, ¶m); allow_signal(SIGTERM); status = WL_SCAN_RESULTS_PARTIAL; while (likely(!down_interruptible(&iscan->sync))) { if (kthread_should_stop()) break; if (iscan->timer_on) { del_timer_sync(&iscan->timer); iscan->timer_on = 0; } rtnl_lock(); err = wl_get_iscan_results(iscan, &status, &wl->bss_list); if (unlikely(err)) { status = WL_SCAN_RESULTS_ABORTED; WL_ERR(("Abort iscan\n")); } rtnl_unlock(); iscan->iscan_handler[status] (wl); } if (iscan->timer_on) { del_timer_sync(&iscan->timer); iscan->timer_on = 0; } WL_DBG(("%s was terminated\n", __func__)); return 0; } static void wl_iscan_timer(unsigned long data) { struct wl_iscan_ctrl *iscan = (struct wl_iscan_ctrl *)data; if (iscan) { iscan->timer_on = 0; WL_DBG(("timer expired\n")); wl_wakeup_iscan(iscan); } } static s32 wl_invoke_iscan(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl_to_iscan(wl); int err = 0; if (wl->iscan_on && !iscan->tsk) { iscan->state = WL_ISCAN_STATE_IDLE; sema_init(&iscan->sync, 0); iscan->tsk = kthread_run(wl_iscan_thread, iscan, "wl_iscan"); if (IS_ERR(iscan->tsk)) { WL_ERR(("Could not create iscan thread\n")); iscan->tsk = NULL; return -ENOMEM; } } return err; } static void wl_init_iscan_handler(struct wl_iscan_ctrl *iscan) { memset(iscan->iscan_handler, 0, sizeof(iscan->iscan_handler)); iscan->iscan_handler[WL_SCAN_RESULTS_SUCCESS] = wl_iscan_done; iscan->iscan_handler[WL_SCAN_RESULTS_PARTIAL] = wl_iscan_inprogress; iscan->iscan_handler[WL_SCAN_RESULTS_PENDING] = wl_iscan_pending; iscan->iscan_handler[WL_SCAN_RESULTS_ABORTED] = wl_iscan_aborted; iscan->iscan_handler[WL_SCAN_RESULTS_NO_MEM] = wl_iscan_aborted; } static void wl_notify_escan_complete(struct wl_priv *wl, bool aborted) { WL_DBG(("Enter \n")); if (unlikely(!wl_get_drv_status(wl, SCANNING))) { wl_clr_drv_status(wl, SCANNING); WL_ERR(("Scan complete while device not scanning\n")); return; } wl_clr_drv_status(wl, SCANNING); if (wl->p2p_supported && p2p_on(wl)) wl_clr_p2p_status(wl, SCANNING); if (likely(wl->scan_request)) { cfg80211_scan_done(wl->scan_request, aborted); wl->scan_request = NULL; } } static s32 wl_escan_handler(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { s32 err = BCME_OK; s32 status = ntoh32(e->status); wl_bss_info_t *bi; wl_escan_result_t *escan_result; wl_bss_info_t *bss = NULL; wl_scan_results_t *list; u32 bi_length; u32 i; WL_DBG((" enter event type : %d, status : %d \n", ntoh32(e->event_type), ntoh32(e->status))); if (!wl->escan_on && !wl_get_drv_status(wl, SCANNING)) { WL_ERR(("escan is not ready \n")); return err; } if (status == WLC_E_STATUS_PARTIAL) { WL_INFO(("WLC_E_STATUS_PARTIAL \n")); escan_result = (wl_escan_result_t *) data; if (!escan_result) { WL_ERR(("Invalid escan result (NULL pointer)\n")); goto exit; } if (dtoh16(escan_result->bss_count) != 1) { WL_ERR(("Invalid bss_count %d: ignoring\n", escan_result->bss_count)); goto exit; } bi = escan_result->bss_info; if (!bi) { WL_ERR(("Invalid escan bss info (NULL pointer)\n")); goto exit; } bi_length = dtoh32(bi->length); if (bi_length != (dtoh32(escan_result->buflen) - WL_ESCAN_RESULTS_FIXED_SIZE)) { WL_ERR(("Invalid bss_info length %d: ignoring\n", bi_length)); goto exit; } list = (wl_scan_results_t *)wl->escan_info.escan_buf; if (bi_length > ESCAN_BUF_SIZE - list->buflen) { WL_ERR(("Buffer is too small: ignoring\n")); goto exit; } #define WLC_BSS_RSSI_ON_CHANNEL 0x0002 for (i = 0; i < list->count; i++) { bss = bss ? (wl_bss_info_t *)((uintptr)bss + dtoh32(bss->length)) : list->bss_info; if (!bcmp(&bi->BSSID, &bss->BSSID, ETHER_ADDR_LEN) && CHSPEC_BAND(bi->chanspec) == CHSPEC_BAND(bss->chanspec) && bi->SSID_len == bss->SSID_len && !bcmp(bi->SSID, bss->SSID, bi->SSID_len)) { if ((bss->flags & WLC_BSS_RSSI_ON_CHANNEL) == (bi->flags & WLC_BSS_RSSI_ON_CHANNEL)) { /* preserve max RSSI if the measurements are * both on-channel or both off-channel */ bss->RSSI = MAX(bss->RSSI, bi->RSSI); } else if ((bss->flags & WLC_BSS_RSSI_ON_CHANNEL) && (bi->flags & WLC_BSS_RSSI_ON_CHANNEL) == 0) { /* preserve the on-channel rssi measurement * if the new measurement is off channel */ bss->RSSI = bi->RSSI; bss->flags |= WLC_BSS_RSSI_ON_CHANNEL; } goto exit; } } memcpy(&(wl->escan_info.escan_buf[list->buflen]), bi, bi_length); list->version = dtoh32(bi->version); list->buflen += bi_length; list->count++; } else if (status == WLC_E_STATUS_SUCCESS) { wl->escan_info.escan_state = WL_ESCAN_STATE_IDLE; if (likely(wl->scan_request)) { rtnl_lock(); WL_INFO(("ESCAN COMPLETED\n")); wl->bss_list = (wl_scan_results_t *)wl->escan_info.escan_buf; wl_inform_bss(wl); wl_notify_escan_complete(wl, false); rtnl_unlock(); } } else if (status == WLC_E_STATUS_ABORT) { wl->escan_info.escan_state = WL_ESCAN_STATE_IDLE; if (likely(wl->scan_request)) { rtnl_lock(); WL_INFO(("ESCAN COMPLETED\n")); wl_notify_escan_complete(wl, true); rtnl_unlock(); } } exit: return err; } static s32 wl_init_scan(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl_to_iscan(wl); int err = 0; if (wl->iscan_on) { iscan->dev = wl_to_prmry_ndev(wl); iscan->state = WL_ISCAN_STATE_IDLE; wl_init_iscan_handler(iscan); iscan->timer_ms = WL_ISCAN_TIMER_INTERVAL_MS; init_timer(&iscan->timer); iscan->timer.data = (unsigned long) iscan; iscan->timer.function = wl_iscan_timer; sema_init(&iscan->sync, 0); iscan->tsk = kthread_run(wl_iscan_thread, iscan, "wl_iscan"); if (IS_ERR(iscan->tsk)) { WL_ERR(("Could not create iscan thread\n")); iscan->tsk = NULL; return -ENOMEM; } iscan->data = wl; } else if (wl->escan_on) { wl->evt_handler[WLC_E_ESCAN_RESULT] = wl_escan_handler; wl->escan_info.escan_state = WL_ESCAN_STATE_IDLE; } return err; } static void wl_init_fw(struct wl_fw_ctrl *fw) { fw->status = 0; } static s32 wl_init_priv(struct wl_priv *wl) { struct wiphy *wiphy = wl_to_wiphy(wl); s32 err = 0; s32 i = 0; wl->scan_request = NULL; wl->pwr_save = !!(wiphy->flags & WIPHY_FLAG_PS_ON_BY_DEFAULT); wl->iscan_on = false; wl->escan_on = true; wl->roam_on = false; wl->iscan_kickstart = false; wl->active_scan = true; wl->dongle_up = false; wl->rf_blocked = false; for (i = 0; i < VWDEV_CNT; i++) wl->vwdev[i] = NULL; init_waitqueue_head(&wl->dongle_event_wait); wl_init_eq(wl); err = wl_init_priv_mem(wl); if (unlikely(err)) return err; if (unlikely(wl_create_event_handler(wl))) return -ENOMEM; wl_init_event_handler(wl); mutex_init(&wl->usr_sync); err = wl_init_scan(wl); if (unlikely(err)) return err; wl_init_fw(wl->fw); wl_init_conf(wl->conf); wl_init_prof(wl->profile); wl_link_down(wl); return err; } static void wl_deinit_priv(struct wl_priv *wl) { wl_destroy_event_handler(wl); wl->dongle_up = false; /* dongle down */ wl_flush_eq(wl); wl_link_down(wl); wl_term_iscan(wl); wl_deinit_priv_mem(wl); } #if defined(DHD_P2P_DEV_ADDR_FROM_SYSFS) && defined(CONFIG_SYSCTL) s32 wl_cfg80211_sysctl_export_devaddr(void *data) { /* Export the p2p_dev_addr via sysctl interface * so that wpa_supplicant can access it */ dhd_pub_t *dhd = (dhd_pub_t *)data; struct wl_priv *wl = WL_PRIV_GET(); wl_cfgp2p_generate_bss_mac(&dhd->mac, &wl->p2p->dev_addr, &wl->p2p->int_addr); sprintf((char *)&wl_sysctl_macstring[0], MACSTR, MAC2STR(wl->p2p->dev_addr.octet)); sprintf((char *)&wl_sysctl_macstring[1], MACSTR, MAC2STR(wl->p2p->int_addr.octet)); return 0; } #endif /* CONFIG_SYSCTL */ s32 wl_cfg80211_attach_post(struct net_device *ndev) { struct wl_priv * wl = NULL; s32 err = 0; WL_TRACE(("In\n")); if (unlikely(!ndev)) { WL_ERR(("ndev is invaild\n")); return -ENODEV; } wl = WL_PRIV_GET(); if (wl && !wl_get_drv_status(wl, READY)) { if (wl->wdev && wl_cfgp2p_supported(wl, ndev)) { wl->wdev->wiphy->interface_modes |= (BIT(NL80211_IFTYPE_P2P_CLIENT)| BIT(NL80211_IFTYPE_P2P_GO)); if ((err = wl_cfgp2p_init_priv(wl)) != 0) goto fail; #if defined(DHD_P2P_DEV_ADDR_FROM_SYSFS) && defined(CONFIG_SYSCTL) wl_cfg80211_sysctl_export_devaddr(wl->pub); #endif wl->p2p_supported = true; } } else return -ENODEV; wl_set_drv_status(wl, READY); fail: return err; } s32 wl_cfg80211_attach(struct net_device *ndev, void *data) { struct wireless_dev *wdev; struct wl_priv *wl; struct wl_iface *ci; s32 err = 0; WL_TRACE(("In\n")); if (unlikely(!ndev)) { WL_ERR(("ndev is invaild\n")); return -ENODEV; } wl_cfg80211_dev = kzalloc(sizeof(struct wl_dev), GFP_KERNEL); if (unlikely(!wl_cfg80211_dev)) { WL_ERR(("wl_cfg80211_dev is invalid\n")); return -ENOMEM; } WL_DBG(("func %p\n", wl_cfg80211_get_sdio_func())); wdev = wl_alloc_wdev(sizeof(struct wl_iface), &wl_cfg80211_get_sdio_func()->dev); if (unlikely(IS_ERR(wdev))) return -ENOMEM; wdev->iftype = wl_mode_to_nl80211_iftype(WL_MODE_BSS); wl = wdev_to_wl(wdev); wl->wdev = wdev; wl->pub = data; ci = (struct wl_iface *)wl_to_ci(wl); ci->wl = wl; ndev->ieee80211_ptr = wdev; SET_NETDEV_DEV(ndev, wiphy_dev(wdev->wiphy)); wdev->netdev = ndev; err = wl_init_priv(wl); if (unlikely(err)) { WL_ERR(("Failed to init iwm_priv (%d)\n", err)); goto cfg80211_attach_out; } err = wl_setup_rfkill(wl, TRUE); if (unlikely(err)) { WL_ERR(("Failed to setup rfkill %d\n", err)); goto cfg80211_attach_out; } #if defined(DHD_P2P_DEV_ADDR_FROM_SYSFS) && defined(CONFIG_SYSCTL) if (!(wl_sysctl_hdr = register_sysctl_table(wl_sysctl_table))) { WL_ERR(("%s: sysctl register failed!! \n", __func__)); goto cfg80211_attach_out; } #endif wl_set_drvdata(wl_cfg80211_dev, ci); return err; cfg80211_attach_out: err = wl_setup_rfkill(wl, FALSE); wl_free_wdev(wl); return err; } void wl_cfg80211_detach(void) { struct wl_priv *wl; wl = WL_PRIV_GET(); WL_TRACE(("In\n")); #if defined(DHD_P2P_DEV_ADDR_FROM_SYSFS) && defined(CONFIG_SYSCTL) if (wl_sysctl_hdr) unregister_sysctl_table(wl_sysctl_hdr); #endif wl_setup_rfkill(wl, FALSE); if (wl->p2p_supported) wl_cfgp2p_deinit_priv(wl); wl_deinit_priv(wl); wl_free_wdev(wl); wl_set_drvdata(wl_cfg80211_dev, NULL); kfree(wl_cfg80211_dev); wl_cfg80211_dev = NULL; wl_clear_sdio_func(); } static void wl_wakeup_event(struct wl_priv *wl) { up(&wl->event_sync); } static s32 wl_event_handler(void *data) { struct net_device *netdev; struct wl_priv *wl = (struct wl_priv *)data; struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1 }; struct wl_event_q *e; sched_setscheduler(current, SCHED_FIFO, ¶m); allow_signal(SIGTERM); while (likely(!down_interruptible(&wl->event_sync))) { if (kthread_should_stop()) break; e = wl_deq_event(wl); if (unlikely(!e)) { WL_ERR(("equeue empty..\n")); return 0; } WL_DBG(("event type (%d), if idx: %d\n", e->etype, e->emsg.ifidx)); netdev = dhd_idx2net((struct dhd_pub *)(wl->pub), e->emsg.ifidx); if (!netdev) netdev = wl_to_prmry_ndev(wl); if (wl->evt_handler[e->etype]) { wl->evt_handler[e->etype] (wl, netdev, &e->emsg, e->edata); } else { WL_DBG(("Unknown Event (%d): ignoring\n", e->etype)); } wl_put_event(e); } WL_DBG(("%s was terminated\n", __func__)); return 0; } void wl_cfg80211_event(struct net_device *ndev, const wl_event_msg_t * e, void *data) { u32 event_type = ntoh32(e->event_type); struct wl_priv *wl = WL_PRIV_GET(); #if (WL_DBG_LEVEL > 0) s8 *estr = (event_type <= sizeof(wl_dbg_estr) / WL_DBG_ESTR_MAX - 1) ? wl_dbg_estr[event_type] : (s8 *) "Unknown"; WL_DBG(("event_type (%d):" "WLC_E_" "%s\n", event_type, estr)); #endif /* (WL_DBG_LEVEL > 0) */ if (likely(!wl_enq_event(wl, ndev, event_type, e, data))) wl_wakeup_event(wl); } static void wl_init_eq(struct wl_priv *wl) { wl_init_eq_lock(wl); INIT_LIST_HEAD(&wl->eq_list); } static void wl_flush_eq(struct wl_priv *wl) { struct wl_event_q *e; wl_lock_eq(wl); while (!list_empty(&wl->eq_list)) { e = list_first_entry(&wl->eq_list, struct wl_event_q, eq_list); list_del(&e->eq_list); kfree(e); } wl_unlock_eq(wl); } /* * retrieve first queued event from head */ static struct wl_event_q *wl_deq_event(struct wl_priv *wl) { struct wl_event_q *e = NULL; wl_lock_eq(wl); if (likely(!list_empty(&wl->eq_list))) { e = list_first_entry(&wl->eq_list, struct wl_event_q, eq_list); list_del(&e->eq_list); } wl_unlock_eq(wl); return e; } /* * push event to tail of the queue */ static s32 wl_enq_event(struct wl_priv *wl, struct net_device *ndev, u32 event, const wl_event_msg_t *msg, void *data) { struct wl_event_q *e; s32 err = 0; uint32 evtq_size; uint32 data_len; data_len = 0; if (data) data_len = ntoh32(msg->datalen); evtq_size = sizeof(struct wl_event_q) + data_len; e = kzalloc(evtq_size, GFP_ATOMIC); if (unlikely(!e)) { WL_ERR(("event alloc failed\n")); return -ENOMEM; } e->etype = event; memcpy(&e->emsg, msg, sizeof(wl_event_msg_t)); if (data) memcpy(e->edata, data, data_len); wl_lock_eq(wl); list_add_tail(&e->eq_list, &wl->eq_list); wl_unlock_eq(wl); return err; } static void wl_put_event(struct wl_event_q *e) { kfree(e); } void wl_cfg80211_set_sdio_func(void *func) { cfg80211_sdio_func = (struct sdio_func *)func; } static void wl_clear_sdio_func(void) { cfg80211_sdio_func = NULL; } struct sdio_func *wl_cfg80211_get_sdio_func(void) { return cfg80211_sdio_func; } static s32 wl_dongle_mode(struct wl_priv *wl, struct net_device *ndev, s32 iftype) { s32 infra = 0; s32 err = 0; s32 mode = 0; switch (iftype) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR(("type (%d) : currently we do not support this mode\n", iftype)); err = -EINVAL; return err; case NL80211_IFTYPE_ADHOC: mode = WL_MODE_IBSS; break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: mode = WL_MODE_BSS; infra = 1; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: mode = WL_MODE_AP; infra = 1; break; default: err = -EINVAL; WL_ERR(("invalid type (%d)\n", iftype)); return err; } infra = htod32(infra); err = wldev_ioctl(ndev, WLC_SET_INFRA, &infra, sizeof(infra), false); if (unlikely(err)) { WL_ERR(("WLC_SET_INFRA error (%d)\n", err)); return err; } set_mode_by_netdev(wl, ndev, mode); return 0; } static s32 wl_dongle_add_remove_eventmsg(struct net_device *ndev, u16 event, bool add) { s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; s8 eventmask[WL_EVENTING_MASK_LEN]; s32 err = 0; /* Setup event_msgs */ bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_GET_VAR, iovbuf, sizeof(iovbuf), false); if (unlikely(err)) { WL_ERR(("Get event_msgs error (%d)\n", err)); goto dongle_eventmsg_out; } memcpy(eventmask, iovbuf, WL_EVENTING_MASK_LEN); if (add) { setbit(eventmask, event); } else { clrbit(eventmask, event); } bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (unlikely(err)) { WL_ERR(("Set event_msgs error (%d)\n", err)); goto dongle_eventmsg_out; } dongle_eventmsg_out: return err; } static s32 wl_dongle_eventmsg(struct net_device *ndev) { s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; s8 eventmask[WL_EVENTING_MASK_LEN]; s32 err = 0; /* Setup event_msgs */ bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_GET_VAR, iovbuf, sizeof(iovbuf), false); if (unlikely(err)) { WL_ERR(("Get event_msgs error (%d)\n", err)); goto dongle_eventmsg_out; } memcpy(eventmask, iovbuf, WL_EVENTING_MASK_LEN); setbit(eventmask, WLC_E_SET_SSID); setbit(eventmask, WLC_E_PRUNE); setbit(eventmask, WLC_E_AUTH); setbit(eventmask, WLC_E_REASSOC); setbit(eventmask, WLC_E_REASSOC_IND); setbit(eventmask, WLC_E_DEAUTH_IND); setbit(eventmask, WLC_E_DEAUTH); setbit(eventmask, WLC_E_DISASSOC_IND); setbit(eventmask, WLC_E_DISASSOC); setbit(eventmask, WLC_E_JOIN); setbit(eventmask, WLC_E_ASSOC_IND); setbit(eventmask, WLC_E_PSK_SUP); setbit(eventmask, WLC_E_LINK); setbit(eventmask, WLC_E_NDIS_LINK); setbit(eventmask, WLC_E_MIC_ERROR); setbit(eventmask, WLC_E_PMKID_CACHE); setbit(eventmask, WLC_E_TXFAIL); setbit(eventmask, WLC_E_JOIN_START); setbit(eventmask, WLC_E_SCAN_COMPLETE); setbit(eventmask, WLC_E_ACTION_FRAME_RX); setbit(eventmask, WLC_E_ACTION_FRAME_COMPLETE); setbit(eventmask, WLC_E_ACTION_FRAME_OFF_CHAN_COMPLETE); setbit(eventmask, WLC_E_P2P_PROBREQ_MSG); setbit(eventmask, WLC_E_P2P_DISC_LISTEN_COMPLETE); setbit(eventmask, WLC_E_ESCAN_RESULT); bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (unlikely(err)) { WL_ERR(("Set event_msgs error (%d)\n", err)); goto dongle_eventmsg_out; } dongle_eventmsg_out: return err; } #ifndef EMBEDDED_PLATFORM static s32 wl_dongle_country(struct net_device *ndev, u8 ccode) { s32 err = 0; return err; } static s32 wl_dongle_up(struct net_device *ndev, u32 up) { s32 err = 0; err = wldev_ioctl(ndev, WLC_UP, &up, sizeof(up), false); if (unlikely(err)) { WL_ERR(("WLC_UP error (%d)\n", err)); } return err; } static s32 wl_dongle_power(struct net_device *ndev, u32 power_mode) { s32 err = 0; WL_TRACE(("In\n")); err = wldev_ioctl(ndev, WLC_SET_PM, &power_mode, sizeof(power_mode), false); if (unlikely(err)) { WL_ERR(("WLC_SET_PM error (%d)\n", err)); } return err; } static s32 wl_dongle_glom(struct net_device *ndev, u32 glom, u32 dongle_align) { s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; s32 err = 0; /* Match Host and Dongle rx alignment */ bcm_mkiovar("bus:txglomalign", (char *)&dongle_align, 4, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (unlikely(err)) { WL_ERR(("txglomalign error (%d)\n", err)); goto dongle_glom_out; } /* disable glom option per default */ bcm_mkiovar("bus:txglom", (char *)&glom, 4, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (unlikely(err)) { WL_ERR(("txglom error (%d)\n", err)); goto dongle_glom_out; } dongle_glom_out: return err; } static s32 wl_dongle_roam(struct net_device *ndev, u32 roamvar, u32 bcn_timeout) { s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; s32 err = 0; /* Setup timeout if Beacons are lost and roam is off to report link down */ if (roamvar) { bcm_mkiovar("bcn_timeout", (char *)&bcn_timeout, 4, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (unlikely(err)) { WL_ERR(("bcn_timeout error (%d)\n", err)); goto dongle_rom_out; } } /* Enable/Disable built-in roaming to allow supplicant to take care of roaming */ bcm_mkiovar("roam_off", (char *)&roamvar, 4, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (unlikely(err)) { WL_ERR(("roam_off error (%d)\n", err)); goto dongle_rom_out; } dongle_rom_out: return err; } static s32 wl_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time, s32 scan_unassoc_time) { s32 err = 0; err = wldev_ioctl(ndev, WLC_SET_SCAN_CHANNEL_TIME, &scan_assoc_time, sizeof(scan_assoc_time), false); if (err) { if (err == -EOPNOTSUPP) { WL_INFO(("Scan assoc time is not supported\n")); } else { WL_ERR(("Scan assoc time error (%d)\n", err)); } goto dongle_scantime_out; } err = wldev_ioctl(ndev, WLC_SET_SCAN_UNASSOC_TIME, &scan_unassoc_time, sizeof(scan_unassoc_time), false); if (err) { if (err == -EOPNOTSUPP) { WL_INFO(("Scan unassoc time is not supported\n")); } else { WL_ERR(("Scan unassoc time error (%d)\n", err)); } goto dongle_scantime_out; } dongle_scantime_out: return err; } static s32 wl_dongle_offload(struct net_device *ndev, s32 arpoe, s32 arp_ol) { /* Room for "event_msgs" + '\0' + bitvec */ s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; s32 err = 0; /* Set ARP offload */ bcm_mkiovar("arpoe", (char *)&arpoe, 4, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (err) { if (err == -EOPNOTSUPP) WL_INFO(("arpoe is not supported\n")); else WL_ERR(("arpoe error (%d)\n", err)); goto dongle_offload_out; } bcm_mkiovar("arp_ol", (char *)&arp_ol, 4, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (err) { if (err == -EOPNOTSUPP) WL_INFO(("arp_ol is not supported\n")); else WL_ERR(("arp_ol error (%d)\n", err)); goto dongle_offload_out; } dongle_offload_out: return err; } static s32 wl_pattern_atoh(s8 *src, s8 *dst) { int i; if (strncmp(src, "0x", 2) != 0 && strncmp(src, "0X", 2) != 0) { WL_ERR(("Mask invalid format. Needs to start with 0x\n")); return -1; } src = src + 2; /* Skip past 0x */ if (strlen(src) % 2 != 0) { WL_ERR(("Mask invalid format. Needs to be of even length\n")); return -1; } for (i = 0; *src != '\0'; i++) { char num[3]; strncpy(num, src, 2); num[2] = '\0'; dst[i] = (u8) simple_strtoul(num, NULL, 16); src += 2; } return i; } static s32 wl_dongle_filter(struct net_device *ndev, u32 filter_mode) { /* Room for "event_msgs" + '\0' + bitvec */ s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; const s8 *str; struct wl_pkt_filter pkt_filter; struct wl_pkt_filter *pkt_filterp; s32 buf_len; s32 str_len; u32 mask_size; u32 pattern_size; s8 buf[256]; s32 err = 0; /* add a default packet filter pattern */ str = "pkt_filter_add"; str_len = strlen(str); strncpy(buf, str, str_len); buf[str_len] = '\0'; buf_len = str_len + 1; pkt_filterp = (struct wl_pkt_filter *)(buf + str_len + 1); /* Parse packet filter id. */ pkt_filter.id = htod32(100); /* Parse filter polarity. */ pkt_filter.negate_match = htod32(0); /* Parse filter type. */ pkt_filter.type = htod32(0); /* Parse pattern filter offset. */ pkt_filter.u.pattern.offset = htod32(0); /* Parse pattern filter mask. */ mask_size = htod32(wl_pattern_atoh("0xff", (char *)pkt_filterp->u.pattern. mask_and_pattern)); /* Parse pattern filter pattern. */ pattern_size = htod32(wl_pattern_atoh("0x00", (char *)&pkt_filterp->u.pattern.mask_and_pattern[mask_size])); if (mask_size != pattern_size) { WL_ERR(("Mask and pattern not the same size\n")); err = -EINVAL; goto dongle_filter_out; } pkt_filter.u.pattern.size_bytes = mask_size; buf_len += WL_PKT_FILTER_FIXED_LEN; buf_len += (WL_PKT_FILTER_PATTERN_FIXED_LEN + 2 * mask_size); /* Keep-alive attributes are set in local * variable (keep_alive_pkt), and * then memcpy'ed into buffer (keep_alive_pktp) since there is no * guarantee that the buffer is properly aligned. */ memcpy((char *)pkt_filterp, &pkt_filter, WL_PKT_FILTER_FIXED_LEN + WL_PKT_FILTER_PATTERN_FIXED_LEN); err = wldev_ioctl(ndev, WLC_SET_VAR, buf, buf_len, false); if (err) { if (err == -EOPNOTSUPP) { WL_INFO(("filter not supported\n")); } else { WL_ERR(("filter (%d)\n", err)); } goto dongle_filter_out; } /* set mode to allow pattern */ bcm_mkiovar("pkt_filter_mode", (char *)&filter_mode, 4, iovbuf, sizeof(iovbuf)); err = wldev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf), false); if (err) { if (err == -EOPNOTSUPP) { WL_INFO(("filter_mode not supported\n")); } else { WL_ERR(("filter_mode (%d)\n", err)); } goto dongle_filter_out; } dongle_filter_out: return err; } #endif /* !EMBEDDED_PLATFORM */ s32 wl_config_dongle(struct wl_priv *wl, bool need_lock) { #ifndef DHD_SDALIGN #define DHD_SDALIGN 32 #endif struct net_device *ndev; struct wireless_dev *wdev; s32 err = 0; WL_TRACE(("In\n")); if (wl->dongle_up) { WL_ERR(("Dongle is already up\n")); return err; } ndev = wl_to_prmry_ndev(wl); wdev = ndev->ieee80211_ptr; if (need_lock) rtnl_lock(); err = wl_dongle_eventmsg(ndev); if (unlikely(err)) { WL_ERR(("wl_dongle_eventmsg failed\n")); goto default_conf_out; } #ifndef EMBEDDED_PLATFORM err = wl_dongle_up(ndev, 0); if (unlikely(err)) { WL_ERR(("wl_dongle_up failed\n")); goto default_conf_out; } err = wl_dongle_country(ndev, 0); if (unlikely(err)) { WL_ERR(("wl_dongle_country failed\n")); goto default_conf_out; } err = wl_dongle_power(ndev, PM_FAST); if (unlikely(err)) { WL_ERR(("wl_dongle_power failed\n")); goto default_conf_out; } err = wl_dongle_glom(ndev, 0, DHD_SDALIGN); if (unlikely(err)) { WL_ERR(("wl_dongle_glom failed\n")); goto default_conf_out; } err = wl_dongle_roam(ndev, (wl->roam_on ? 0 : 1), 3); if (unlikely(err)) { WL_ERR(("wl_dongle_roam failed\n")); goto default_conf_out; } err = wl_dongle_eventmsg(ndev); if (unlikely(err)) { WL_ERR(("wl_dongle_eventmsg failed\n")); goto default_conf_out; } wl_dongle_scantime(ndev, 40, 80); wl_dongle_offload(ndev, 1, 0xf); wl_dongle_filter(ndev, 1); #endif /* !EMBEDDED_PLATFORM */ err = wl_dongle_mode(wl, ndev, wdev->iftype); if (unlikely(err && err != -EINPROGRESS)) { WL_ERR(("wl_dongle_mode failed\n")); goto default_conf_out; } err = wl_dongle_probecap(wl); if (unlikely(err)) { WL_ERR(("wl_dongle_probecap failed\n")); goto default_conf_out; } /* -EINPROGRESS: Call commit handler */ default_conf_out: if (need_lock) rtnl_unlock(); wl->dongle_up = true; return err; } static s32 wl_update_wiphybands(struct wl_priv *wl) { struct wiphy *wiphy; s32 phy_list; s8 phy; s32 err = 0; err = wldev_ioctl(wl_to_prmry_ndev(wl), WLC_GET_PHYLIST, &phy_list, sizeof(phy_list), false); if (unlikely(err)) { WL_ERR(("error (%d)\n", err)); return err; } phy = ((char *)&phy_list)[1]; WL_DBG(("%c phy\n", phy)); if (phy == 'a') { wiphy = wl_to_wiphy(wl); wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a; } else if (phy == 'n') { wiphy = wl_to_wiphy(wl); wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_n; } return err; } static s32 __wl_cfg80211_up(struct wl_priv *wl) { s32 err = 0; WL_TRACE(("In\n")); wl_debugfs_add_netdev_params(wl); err = wl_config_dongle(wl, false); if (unlikely(err)) return err; dhd_monitor_init(wl->pub); wl_invoke_iscan(wl); wl_set_drv_status(wl, READY); return err; } static s32 __wl_cfg80211_down(struct wl_priv *wl) { s32 err = 0; WL_TRACE(("In\n")); /* Check if cfg80211 interface is already down */ if (!wl_get_drv_status(wl, READY)) return err; /* it is even not ready */ wl_set_drv_status(wl, SCAN_ABORTING); wl_term_iscan(wl); if (wl->scan_request) { cfg80211_scan_done(wl->scan_request, true); wl->scan_request = NULL; } wl_clr_drv_status(wl, READY); wl_clr_drv_status(wl, SCANNING); wl_clr_drv_status(wl, SCAN_ABORTING); wl_clr_drv_status(wl, CONNECTED); if (wl_get_drv_status(wl, AP_CREATED)) { wl_clr_drv_status(wl, AP_CREATED); wl_clr_drv_status(wl, AP_CREATING); wl_to_prmry_ndev(wl)->ieee80211_ptr->iftype = NL80211_IFTYPE_STATION; } wl->dongle_up = false; wl_flush_eq(wl); wl_link_down(wl); if (wl->p2p_supported) wl_cfgp2p_down(wl); dhd_monitor_uninit(); wl_debugfs_remove_netdev(wl); return err; } s32 wl_cfg80211_up(void) { struct wl_priv *wl; s32 err = 0; WL_TRACE(("In\n")); wl = WL_PRIV_GET(); mutex_lock(&wl->usr_sync); wl_cfg80211_attach_post(wl_to_prmry_ndev(wl)); err = __wl_cfg80211_up(wl); if (err) WL_ERR(("__wl_cfg80211_up failed\n")); mutex_unlock(&wl->usr_sync); return err; } s32 wl_cfg80211_down(void) { struct wl_priv *wl; s32 err = 0; WL_TRACE(("In\n")); wl = WL_PRIV_GET(); mutex_lock(&wl->usr_sync); err = __wl_cfg80211_down(wl); mutex_unlock(&wl->usr_sync); return err; } static s32 wl_dongle_probecap(struct wl_priv *wl) { s32 err = 0; err = wl_update_wiphybands(wl); if (unlikely(err)) return err; return err; } static void *wl_read_prof(struct wl_priv *wl, s32 item) { switch (item) { case WL_PROF_SEC: return &wl->profile->sec; case WL_PROF_ACT: return &wl->profile->active; case WL_PROF_BSSID: return &wl->profile->bssid; case WL_PROF_SSID: return &wl->profile->ssid; } WL_ERR(("invalid item (%d)\n", item)); return NULL; } static s32 wl_update_prof(struct wl_priv *wl, const wl_event_msg_t *e, void *data, s32 item) { s32 err = 0; struct wlc_ssid *ssid; switch (item) { case WL_PROF_SSID: ssid = (wlc_ssid_t *) data; memset(wl->profile->ssid.SSID, 0, sizeof(wl->profile->ssid.SSID)); memcpy(wl->profile->ssid.SSID, ssid->SSID, ssid->SSID_len); wl->profile->ssid.SSID_len = ssid->SSID_len; break; case WL_PROF_BSSID: if (data) memcpy(wl->profile->bssid, data, ETHER_ADDR_LEN); else memset(wl->profile->bssid, 0, ETHER_ADDR_LEN); break; case WL_PROF_SEC: memcpy(&wl->profile->sec, data, sizeof(wl->profile->sec)); break; case WL_PROF_ACT: wl->profile->active = *(bool *)data; break; case WL_PROF_BEACONINT: wl->profile->beacon_interval = *(u16 *)data; break; case WL_PROF_DTIMPERIOD: wl->profile->dtim_period = *(u8 *)data; break; default: WL_ERR(("unsupported item (%d)\n", item)); err = -EOPNOTSUPP; break; } return err; } void wl_cfg80211_dbg_level(u32 level) { /* * prohibit to change debug level * by insmod parameter. * eventually debug level will be configured * in compile time by using CONFIG_XXX */ /* wl_dbg_level = level; */ } static bool wl_is_ibssmode(struct wl_priv *wl, struct net_device *ndev) { return get_mode_by_netdev(wl, ndev) == WL_MODE_IBSS; } static __used bool wl_is_ibssstarter(struct wl_priv *wl) { return wl->ibss_starter; } static void wl_rst_ie(struct wl_priv *wl) { struct wl_ie *ie = wl_to_ie(wl); ie->offset = 0; } static __used s32 wl_add_ie(struct wl_priv *wl, u8 t, u8 l, u8 *v) { struct wl_ie *ie = wl_to_ie(wl); s32 err = 0; if (unlikely(ie->offset + l + 2 > WL_TLV_INFO_MAX)) { WL_ERR(("ei crosses buffer boundary\n")); return -ENOSPC; } ie->buf[ie->offset] = t; ie->buf[ie->offset + 1] = l; memcpy(&ie->buf[ie->offset + 2], v, l); ie->offset += l + 2; return err; } static s32 wl_mrg_ie(struct wl_priv *wl, u8 *ie_stream, u16 ie_size) { struct wl_ie *ie = wl_to_ie(wl); s32 err = 0; if (unlikely(ie->offset + ie_size > WL_TLV_INFO_MAX)) { WL_ERR(("ei_stream crosses buffer boundary\n")); return -ENOSPC; } memcpy(&ie->buf[ie->offset], ie_stream, ie_size); ie->offset += ie_size; return err; } static s32 wl_cp_ie(struct wl_priv *wl, u8 *dst, u16 dst_size) { struct wl_ie *ie = wl_to_ie(wl); s32 err = 0; if (unlikely(ie->offset > dst_size)) { WL_ERR(("dst_size is not enough\n")); return -ENOSPC; } memcpy(dst, &ie->buf[0], ie->offset); return err; } static u32 wl_get_ielen(struct wl_priv *wl) { struct wl_ie *ie = wl_to_ie(wl); return ie->offset; } static void wl_link_up(struct wl_priv *wl) { wl->link_up = true; } static void wl_link_down(struct wl_priv *wl) { struct wl_connect_info *conn_info = wl_to_conn(wl); WL_DBG(("In\n")); wl->link_up = false; kfree(conn_info->req_ie); conn_info->req_ie = NULL; conn_info->req_ie_len = 0; kfree(conn_info->resp_ie); conn_info->resp_ie = NULL; conn_info->resp_ie_len = 0; } static void wl_lock_eq(struct wl_priv *wl) { spin_lock_irq(&wl->eq_lock); } static void wl_unlock_eq(struct wl_priv *wl) { spin_unlock_irq(&wl->eq_lock); } static void wl_init_eq_lock(struct wl_priv *wl) { spin_lock_init(&wl->eq_lock); } static void wl_delay(u32 ms) { if (ms < 1000 / HZ) { cond_resched(); mdelay(ms); } else { msleep(ms); } } static void wl_set_drvdata(struct wl_dev *dev, void *data) { dev->driver_data = data; } static void *wl_get_drvdata(struct wl_dev *dev) { return dev->driver_data; } s32 wl_cfg80211_read_fw(s8 *buf, u32 size) { const struct firmware *fw_entry; struct wl_priv *wl; wl = WL_PRIV_GET(); fw_entry = wl->fw->fw_entry; if (fw_entry->size < wl->fw->ptr + size) size = fw_entry->size - wl->fw->ptr; memcpy(buf, &fw_entry->data[wl->fw->ptr], size); wl->fw->ptr += size; return size; } void wl_cfg80211_release_fw(void) { struct wl_priv *wl; wl = WL_PRIV_GET(); release_firmware(wl->fw->fw_entry); wl->fw->ptr = 0; } void *wl_cfg80211_request_fw(s8 *file_name) { struct wl_priv *wl; const struct firmware *fw_entry = NULL; s32 err = 0; WL_TRACE(("In\n")); WL_DBG(("file name : \"%s\"\n", file_name)); wl = WL_PRIV_GET(); if (!test_bit(WL_FW_LOADING_DONE, &wl->fw->status)) { err = request_firmware(&wl->fw->fw_entry, file_name, &wl_cfg80211_get_sdio_func()->dev); if (unlikely(err)) { WL_ERR(("Could not download fw (%d)\n", err)); goto req_fw_out; } set_bit(WL_FW_LOADING_DONE, &wl->fw->status); fw_entry = wl->fw->fw_entry; if (fw_entry) { WL_DBG(("fw size (%zd), data (%p)\n", fw_entry->size, fw_entry->data)); } } else if (!test_bit(WL_NVRAM_LOADING_DONE, &wl->fw->status)) { err = request_firmware(&wl->fw->fw_entry, file_name, &wl_cfg80211_get_sdio_func()->dev); if (unlikely(err)) { WL_ERR(("Could not download nvram (%d)\n", err)); goto req_fw_out; } set_bit(WL_NVRAM_LOADING_DONE, &wl->fw->status); fw_entry = wl->fw->fw_entry; if (fw_entry) { WL_DBG(("nvram size (%zd), data (%p)\n", fw_entry->size, fw_entry->data)); } } else { WL_DBG(("Downloading already done. Nothing to do more\n")); err = -EPERM; } req_fw_out: if (unlikely(err)) { return NULL; } wl->fw->ptr = 0; return (void *)fw_entry->data; } s8 *wl_cfg80211_get_fwname(void) { struct wl_priv *wl; wl = WL_PRIV_GET(); strcpy(wl->fw->fw_name, WL_4329_FW_FILE); return wl->fw->fw_name; } s8 *wl_cfg80211_get_nvramname(void) { struct wl_priv *wl; wl = WL_PRIV_GET(); strcpy(wl->fw->nvram_name, WL_4329_NVRAM_FILE); return wl->fw->nvram_name; } s32 wl_cfg80211_get_p2p_dev_addr(struct net_device *net, struct ether_addr *p2pdev_addr) { struct wl_priv *wl; dhd_pub_t *dhd_pub; struct ether_addr p2pif_addr; wl = WL_PRIV_GET(); dhd_pub = (dhd_pub_t *)wl->pub; wl_cfgp2p_generate_bss_mac(&dhd_pub->mac, p2pdev_addr, &p2pif_addr); return 0; } static __used void wl_dongle_poweron(struct wl_priv *wl) { WL_DBG(("Enter \n")); dhd_customer_gpio_wlan_ctrl(WLAN_RESET_ON); #if defined(BCMLXSDMMC) sdioh_start(NULL, 0); #endif #if defined(BCMLXSDMMC) sdioh_start(NULL, 1); #endif wl_cfg80211_resume(wl_to_wiphy(wl)); } static __used void wl_dongle_poweroff(struct wl_priv *wl) { WL_DBG(("Enter \n")); #if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 39) wl_cfg80211_suspend(wl_to_wiphy(wl), NULL); #else wl_cfg80211_suspend(wl_to_wiphy(wl)); #endif #if defined(BCMLXSDMMC) sdioh_stop(NULL); #endif /* clean up dtim_skip setting */ dhd_customer_gpio_wlan_ctrl(WLAN_RESET_OFF); } static int wl_debugfs_add_netdev_params(struct wl_priv *wl) { char buf[10+IFNAMSIZ]; struct dentry *fd; s32 err = 0; WL_TRACE(("In\n")); sprintf(buf, "netdev:%s", wl_to_prmry_ndev(wl)->name); wl->debugfsdir = debugfs_create_dir(buf, wl_to_wiphy(wl)->debugfsdir); fd = debugfs_create_u16("beacon_int", S_IRUGO, wl->debugfsdir, (u16 *)&wl->profile->beacon_interval); if (!fd) { err = -ENOMEM; goto err_out; } fd = debugfs_create_u8("dtim_period", S_IRUGO, wl->debugfsdir, (u8 *)&wl->profile->dtim_period); if (!fd) { err = -ENOMEM; goto err_out; } err_out: return err; } static void wl_debugfs_remove_netdev(struct wl_priv *wl) { WL_DBG(("Enter \n")); } static const struct rfkill_ops wl_rfkill_ops = { .set_block = wl_rfkill_set }; static int wl_rfkill_set(void *data, bool blocked) { struct wl_priv *wl = (struct wl_priv *)data; WL_DBG(("Enter \n")); WL_DBG(("RF %s\n", blocked ? "blocked" : "unblocked")); if (!wl) return -EINVAL; wl->rf_blocked = blocked; return 0; } static int wl_setup_rfkill(struct wl_priv *wl, bool setup) { s32 err = 0; WL_DBG(("Enter \n")); if (!wl) return -EINVAL; if (setup) { wl->rfkill = rfkill_alloc("brcmfmac-wifi", &wl_cfg80211_get_sdio_func()->dev, RFKILL_TYPE_WLAN, &wl_rfkill_ops, (void *)wl); if (!wl->rfkill) { err = -ENOMEM; goto err_out; } err = rfkill_register(wl->rfkill); if (err) rfkill_destroy(wl->rfkill); } else { if (!wl->rfkill) { err = -ENOMEM; goto err_out; } rfkill_unregister(wl->rfkill); rfkill_destroy(wl->rfkill); } err_out: return err; }