/* * (C) Copyright 2009 * Marvell Semiconductor * Written-by: Prafulla Wadaskar * * (C) Copyright 2003 * Ingo Assmus * * based on - Driver for MV64360X ethernet ports * Copyright (C) 2002 rabeeh@galileo.co.il * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include "kirkwood_egiga.h" #define KIRKWOOD_PHY_ADR_REQUEST 0xee /* * smi_reg_read - miiphy_read callback function. * * Returns 16bit phy register value, or 0xffff on error */ static int smi_reg_read(char *devname, u8 phy_adr, u8 reg_ofs, u16 * data) { struct eth_device *dev = eth_get_dev_by_name(devname); struct kwgbe_device *dkwgbe = to_dkwgbe(dev); struct kwgbe_registers *regs = dkwgbe->regs; u32 smi_reg; u32 timeout; /* Phyadr read request */ if (phy_adr == KIRKWOOD_PHY_ADR_REQUEST && reg_ofs == KIRKWOOD_PHY_ADR_REQUEST) { /* */ *data = (u16) (KWGBEREG_RD(regs->phyadr) & PHYADR_MASK); return 0; } /* check parameters */ if (phy_adr > PHYADR_MASK) { printf("Err..(%s) Invalid PHY address %d\n", __FUNCTION__, phy_adr); return -EFAULT; } if (reg_ofs > PHYREG_MASK) { printf("Err..(%s) Invalid register offset %d\n", __FUNCTION__, reg_ofs); return -EFAULT; } timeout = KWGBE_PHY_SMI_TIMEOUT; /* wait till the SMI is not busy */ do { /* read smi register */ smi_reg = KWGBEREG_RD(regs->smi); if (timeout-- == 0) { printf("Err..(%s) SMI busy timeout\n", __FUNCTION__); return -EFAULT; } } while (smi_reg & KWGBE_PHY_SMI_BUSY_MASK); /* fill the phy address and regiser offset and read opcode */ smi_reg = (phy_adr << KWGBE_PHY_SMI_DEV_ADDR_OFFS) | (reg_ofs << KWGBE_SMI_REG_ADDR_OFFS) | KWGBE_PHY_SMI_OPCODE_READ; /* write the smi register */ KWGBEREG_WR(regs->smi, smi_reg); /*wait till read value is ready */ timeout = KWGBE_PHY_SMI_TIMEOUT; do { /* read smi register */ smi_reg = KWGBEREG_RD(regs->smi); if (timeout-- == 0) { printf("Err..(%s) SMI read ready timeout\n", __FUNCTION__); return -EFAULT; } } while (!(smi_reg & KWGBE_PHY_SMI_READ_VALID_MASK)); /* Wait for the data to update in the SMI register */ for (timeout = 0; timeout < KWGBE_PHY_SMI_TIMEOUT; timeout++) ; *data = (u16) (KWGBEREG_RD(regs->smi) & KWGBE_PHY_SMI_DATA_MASK); debug("%s:(adr %d, off %d) value= %04x\n", __FUNCTION__, phy_adr, reg_ofs, *data); return 0; } /* * smi_reg_write - imiiphy_write callback function. * * Returns 0 if write succeed, -EINVAL on bad parameters * -ETIME on timeout */ static int smi_reg_write(char *devname, u8 phy_adr, u8 reg_ofs, u16 data) { struct eth_device *dev = eth_get_dev_by_name(devname); struct kwgbe_device *dkwgbe = to_dkwgbe(dev); struct kwgbe_registers *regs = dkwgbe->regs; u32 smi_reg; u32 timeout; /* Phyadr write request*/ if (phy_adr == KIRKWOOD_PHY_ADR_REQUEST && reg_ofs == KIRKWOOD_PHY_ADR_REQUEST) { KWGBEREG_WR(regs->phyadr, data); return 0; } /* check parameters */ if (phy_adr > PHYADR_MASK) { printf("Err..(%s) Invalid phy address\n", __FUNCTION__); return -EINVAL; } if (reg_ofs > PHYREG_MASK) { printf("Err..(%s) Invalid register offset\n", __FUNCTION__); return -EINVAL; } /* wait till the SMI is not busy */ timeout = KWGBE_PHY_SMI_TIMEOUT; do { /* read smi register */ smi_reg = KWGBEREG_RD(regs->smi); if (timeout-- == 0) { printf("Err..(%s) SMI busy timeout\n", __FUNCTION__); return -ETIME; } } while (smi_reg & KWGBE_PHY_SMI_BUSY_MASK); /* fill the phy addr and reg offset and write opcode and data */ smi_reg = (data << KWGBE_PHY_SMI_DATA_OFFS); smi_reg |= (phy_adr << KWGBE_PHY_SMI_DEV_ADDR_OFFS) | (reg_ofs << KWGBE_SMI_REG_ADDR_OFFS); smi_reg &= ~KWGBE_PHY_SMI_OPCODE_READ; /* write the smi register */ KWGBEREG_WR(regs->smi, smi_reg); return 0; } /* Stop and checks all queues */ static void stop_queue(u32 * qreg) { u32 reg_data; reg_data = readl(qreg); if (reg_data & 0xFF) { /* Issue stop command for active channels only */ writel((reg_data << 8), qreg); /* Wait for all queue activity to terminate. */ do { /* * Check port cause register that all queues * are stopped */ reg_data = readl(qreg); } while (reg_data & 0xFF); } } /* * set_access_control - Config address decode parameters for Ethernet unit * * This function configures the address decode parameters for the Gigabit * Ethernet Controller according the given parameters struct. * * @regs Register struct pointer. * @param Address decode parameter struct. */ static void set_access_control(struct kwgbe_registers *regs, struct kwgbe_winparam *param) { u32 access_prot_reg; /* Set access control register */ access_prot_reg = KWGBEREG_RD(regs->epap); /* clear window permission */ access_prot_reg &= (~(3 << (param->win * 2))); access_prot_reg |= (param->access_ctrl << (param->win * 2)); KWGBEREG_WR(regs->epap, access_prot_reg); /* Set window Size reg (SR) */ KWGBEREG_WR(regs->barsz[param->win].size, (((param->size / 0x10000) - 1) << 16)); /* Set window Base address reg (BA) */ KWGBEREG_WR(regs->barsz[param->win].bar, (param->target | param->attrib | param->base_addr)); /* High address remap reg (HARR) */ if (param->win < 4) KWGBEREG_WR(regs->ha_remap[param->win], param->high_addr); /* Base address enable reg (BARER) */ if (param->enable == 1) KWGBEREG_BITS_RESET(regs->bare, (1 << param->win)); else KWGBEREG_BITS_SET(regs->bare, (1 << param->win)); } static void set_dram_access(struct kwgbe_registers *regs) { struct kwgbe_winparam win_param; int i; for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { /* Set access parameters for DRAM bank i */ win_param.win = i; /* Use Ethernet window i */ /* Window target - DDR */ win_param.target = KWGBE_TARGET_DRAM; /* Enable full access */ win_param.access_ctrl = EWIN_ACCESS_FULL; win_param.high_addr = 0; /* Get bank base */ win_param.base_addr = kw_sdram_bar(i); win_param.size = kw_sdram_bs(i); /* Get bank size */ if (win_param.size == 0) win_param.enable = 0; else win_param.enable = 1; /* Enable the access */ /* Enable DRAM bank */ switch (i) { case 0: win_param.attrib = EBAR_DRAM_CS0; break; case 1: win_param.attrib = EBAR_DRAM_CS1; break; case 2: win_param.attrib = EBAR_DRAM_CS2; break; case 3: win_param.attrib = EBAR_DRAM_CS3; break; default: /* invalide bank, disable access */ win_param.enable = 0; win_param.attrib = 0; break; } /* Set the access control for address window(EPAPR) RD/WR */ set_access_control(regs, &win_param); } } /* * port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables * * Go through all the DA filter tables (Unicast, Special Multicast & Other * Multicast) and set each entry to 0. */ static void port_init_mac_tables(struct kwgbe_registers *regs) { int table_index; /* Clear DA filter unicast table (Ex_dFUT) */ for (table_index = 0; table_index < 4; ++table_index) KWGBEREG_WR(regs->dfut[table_index], 0); for (table_index = 0; table_index < 64; ++table_index) { /* Clear DA filter special multicast table (Ex_dFSMT) */ KWGBEREG_WR(regs->dfsmt[table_index], 0); /* Clear DA filter other multicast table (Ex_dFOMT) */ KWGBEREG_WR(regs->dfomt[table_index], 0); } } /* * port_uc_addr - This function Set the port unicast address table * * This function locates the proper entry in the Unicast table for the * specified MAC nibble and sets its properties according to function * parameters. * This function add/removes MAC addresses from the port unicast address * table. * * @uc_nibble Unicast MAC Address last nibble. * @option 0 = Add, 1 = remove address. * * RETURN: 1 if output succeeded. 0 if option parameter is invalid. */ static int port_uc_addr(struct kwgbe_registers *regs, u8 uc_nibble, int option) { u32 unicast_reg; u32 tbl_offset; u32 reg_offset; /* Locate the Unicast table entry */ uc_nibble = (0xf & uc_nibble); /* Register offset from unicast table base */ tbl_offset = (uc_nibble / 4); /* Entry offset within the above register */ reg_offset = uc_nibble % 4; switch (option) { case REJECT_MAC_ADDR: /* * Clear accepts frame bit at specified unicast * DA table entry */ unicast_reg = KWGBEREG_RD(regs->dfut[tbl_offset]); unicast_reg &= (0xFF << (8 * reg_offset)); KWGBEREG_WR(regs->dfut[tbl_offset], unicast_reg); break; case ACCEPT_MAC_ADDR: /* Set accepts frame bit at unicast DA filter table entry */ unicast_reg = KWGBEREG_RD(regs->dfut[tbl_offset]); unicast_reg &= (0xFF << (8 * reg_offset)); unicast_reg |= ((0x01 | (RXUQ << 1)) << (8 * reg_offset)); KWGBEREG_WR(regs->dfut[tbl_offset], unicast_reg); break; default: return 0; } return 1; } /* * port_uc_addr_set - This function Set the port Unicast address. */ static void port_uc_addr_set(struct kwgbe_registers *regs, u8 * p_addr) { u32 mac_h; u32 mac_l; mac_l = (p_addr[4] << 8) | (p_addr[5]); mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) | (p_addr[3] << 0); KWGBEREG_WR(regs->macal, mac_l); KWGBEREG_WR(regs->macah, mac_h); /* Accept frames of this address */ port_uc_addr(regs, p_addr[5], ACCEPT_MAC_ADDR); } /* * kwgbe_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory. */ static void kwgbe_init_rx_desc_ring(struct kwgbe_device *dkwgbe) { struct kwgbe_rxdesc *p_rx_desc; int i; /* initialize the Rx descriptors ring */ p_rx_desc = dkwgbe->p_rxdesc; for (i = 0; i < RINGSZ; i++) { p_rx_desc->cmd_sts = KWGBE_BUFFER_OWNED_BY_DMA | KWGBE_RX_EN_INTERRUPT; p_rx_desc->buf_size = PKTSIZE_ALIGN; p_rx_desc->byte_cnt = 0; p_rx_desc->buf_ptr = dkwgbe->p_rxbuf + i * PKTSIZE_ALIGN; if (i == (RINGSZ - 1)) p_rx_desc->nxtdesc_p = dkwgbe->p_rxdesc; else { p_rx_desc->nxtdesc_p = (struct kwgbe_rxdesc *) ((u32) p_rx_desc + KW_RXQ_DESC_ALIGNED_SIZE); p_rx_desc = p_rx_desc->nxtdesc_p; } } dkwgbe->p_rxdesc_curr = dkwgbe->p_rxdesc; } static int kwgbe_init(struct eth_device *dev) { struct kwgbe_device *dkwgbe = to_dkwgbe(dev); struct kwgbe_registers *regs = dkwgbe->regs; #if (defined (CONFIG_MII) || defined (CONFIG_CMD_MII)) \ && defined (CONFIG_SYS_FAULT_ECHO_LINK_DOWN) int i; #endif /* setup RX rings */ kwgbe_init_rx_desc_ring(dkwgbe); /* Clear the ethernet port interrupts */ KWGBEREG_WR(regs->ic, 0); KWGBEREG_WR(regs->ice, 0); /* Unmask RX buffer and TX end interrupt */ KWGBEREG_WR(regs->pim, INT_CAUSE_UNMASK_ALL); /* Unmask phy and link status changes interrupts */ KWGBEREG_WR(regs->peim, INT_CAUSE_UNMASK_ALL_EXT); set_dram_access(regs); port_init_mac_tables(regs); port_uc_addr_set(regs, dkwgbe->dev.enetaddr); /* Assign port configuration and command. */ KWGBEREG_WR(regs->pxc, PRT_CFG_VAL); KWGBEREG_WR(regs->pxcx, PORT_CFG_EXTEND_VALUE); KWGBEREG_WR(regs->psc0, PORT_SERIAL_CONTROL_VALUE); /* Disable port initially */ KWGBEREG_BITS_SET(regs->psc0, KWGBE_SERIAL_PORT_EN); /* Assign port SDMA configuration */ KWGBEREG_WR(regs->sdc, PORT_SDMA_CFG_VALUE); KWGBEREG_WR(regs->tqx[0].qxttbc, QTKNBKT_DEF_VAL); KWGBEREG_WR(regs->tqx[0].tqxtbc, (QMTBS_DEF_VAL << 16) | QTKNRT_DEF_VAL); /* Turn off the port/RXUQ bandwidth limitation */ KWGBEREG_WR(regs->pmtu, 0); /* Set maximum receive buffer to 9700 bytes */ KWGBEREG_WR(regs->psc0, KWGBE_MAX_RX_PACKET_9700BYTE | (KWGBEREG_RD(regs->psc0) & MRU_MASK)); /* * Set ethernet MTU for leaky bucket mechanism to 0 - this will * disable the leaky bucket mechanism . */ KWGBEREG_WR(regs->pmtu, 0); /* Assignment of Rx CRDB of given RXUQ */ KWGBEREG_WR(regs->rxcdp[RXUQ].rxcdp, (u32) dkwgbe->p_rxdesc_curr); /* Enable port Rx. */ KWGBEREG_WR(regs->rqc, (1 << RXUQ)); #if (defined (CONFIG_MII) || defined (CONFIG_CMD_MII)) \ && defined (CONFIG_SYS_FAULT_ECHO_LINK_DOWN) /* Wait up to 5s for the link status */ for (i = 0; i < 5; i++) { u16 phyadr; miiphy_read(dev->name, KIRKWOOD_PHY_ADR_REQUEST, KIRKWOOD_PHY_ADR_REQUEST, &phyadr); /* Return if we get link up */ if (miiphy_link(dev->name, phyadr)) return 0; udelay(1000000); } printf("No link on %s\n", dev->name); return -1; #endif return 0; } static int kwgbe_halt(struct eth_device *dev) { struct kwgbe_device *dkwgbe = to_dkwgbe(dev); struct kwgbe_registers *regs = dkwgbe->regs; /* Disable all gigE address decoder */ KWGBEREG_WR(regs->bare, 0x3f); stop_queue(®s->tqc); stop_queue(®s->rqc); /* Enable port */ KWGBEREG_BITS_RESET(regs->psc0, KWGBE_SERIAL_PORT_EN); /* Set port is not reset */ KWGBEREG_BITS_RESET(regs->psc1, 1 << 4); #ifdef CONFIG_SYS_MII_MODE /* Set MMI interface up */ KWGBEREG_BITS_RESET(regs->psc1, 1 << 3); #endif /* Disable & mask ethernet port interrupts */ KWGBEREG_WR(regs->ic, 0); KWGBEREG_WR(regs->ice, 0); KWGBEREG_WR(regs->pim, 0); KWGBEREG_WR(regs->peim, 0); return 0; } static int kwgbe_send(struct eth_device *dev, volatile void *dataptr, int datasize) { struct kwgbe_device *dkwgbe = to_dkwgbe(dev); struct kwgbe_registers *regs = dkwgbe->regs; struct kwgbe_txdesc *p_txdesc = dkwgbe->p_txdesc; void *p = (void *)dataptr; u32 cmd_sts; /* Copy buffer if it's misaligned */ if ((u32) dataptr & 0x07) { if (datasize > PKTSIZE_ALIGN) { printf("Non-aligned data too large (%d)\n", datasize); return -1; } memcpy(dkwgbe->p_aligned_txbuf, p, datasize); p = dkwgbe->p_aligned_txbuf; } p_txdesc->cmd_sts = KWGBE_ZERO_PADDING | KWGBE_GEN_CRC; p_txdesc->cmd_sts |= KWGBE_TX_FIRST_DESC | KWGBE_TX_LAST_DESC; p_txdesc->cmd_sts |= KWGBE_BUFFER_OWNED_BY_DMA; p_txdesc->cmd_sts |= KWGBE_TX_EN_INTERRUPT; p_txdesc->buf_ptr = (u8 *) p; p_txdesc->byte_cnt = datasize; /* Apply send command using zeroth RXUQ */ KWGBEREG_WR(regs->tcqdp[TXUQ], (u32) p_txdesc); KWGBEREG_WR(regs->tqc, (1 << TXUQ)); /* * wait for packet xmit completion */ cmd_sts = readl(&p_txdesc->cmd_sts); while (cmd_sts & KWGBE_BUFFER_OWNED_BY_DMA) { /* return fail if error is detected */ if ((cmd_sts & (KWGBE_ERROR_SUMMARY | KWGBE_TX_LAST_FRAME)) == (KWGBE_ERROR_SUMMARY | KWGBE_TX_LAST_FRAME) && cmd_sts & (KWGBE_UR_ERROR | KWGBE_RL_ERROR)) { printf("Err..(%s) in xmit packet\n", __FUNCTION__); return -1; } cmd_sts = readl(&p_txdesc->cmd_sts); }; return 0; } static int kwgbe_recv(struct eth_device *dev) { struct kwgbe_device *dkwgbe = to_dkwgbe(dev); struct kwgbe_rxdesc *p_rxdesc_curr = dkwgbe->p_rxdesc_curr; u32 cmd_sts; u32 timeout = 0; /* wait untill rx packet available or timeout */ do { if (timeout < KWGBE_PHY_SMI_TIMEOUT) timeout++; else { debug("%s time out...\n", __FUNCTION__); return -1; } } while (readl(&p_rxdesc_curr->cmd_sts) & KWGBE_BUFFER_OWNED_BY_DMA); if (p_rxdesc_curr->byte_cnt != 0) { debug("%s: Received %d byte Packet @ 0x%x (cmd_sts= %08x)\n", __FUNCTION__, (u32) p_rxdesc_curr->byte_cnt, (u32) p_rxdesc_curr->buf_ptr, (u32) p_rxdesc_curr->cmd_sts); } /* * In case received a packet without first/last bits on * OR the error summary bit is on, * the packets needs to be dropeed. */ cmd_sts = readl(&p_rxdesc_curr->cmd_sts); if ((cmd_sts & (KWGBE_RX_FIRST_DESC | KWGBE_RX_LAST_DESC)) != (KWGBE_RX_FIRST_DESC | KWGBE_RX_LAST_DESC)) { printf("Err..(%s) Dropping packet spread on" " multiple descriptors\n", __FUNCTION__); } else if (cmd_sts & KWGBE_ERROR_SUMMARY) { printf("Err..(%s) Dropping packet with errors\n", __FUNCTION__); } else { /* !!! call higher layer processing */ debug("%s: Sending Received packet to" " upper layer (NetReceive)\n", __FUNCTION__); /* let the upper layer handle the packet */ NetReceive((p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET), (int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET)); } /* * free these descriptors and point next in the ring */ p_rxdesc_curr->cmd_sts = KWGBE_BUFFER_OWNED_BY_DMA | KWGBE_RX_EN_INTERRUPT; p_rxdesc_curr->buf_size = PKTSIZE_ALIGN; p_rxdesc_curr->byte_cnt = 0; writel((unsigned)p_rxdesc_curr->nxtdesc_p, &dkwgbe->p_rxdesc_curr); return 0; } int kirkwood_egiga_initialize(bd_t * bis) { struct kwgbe_device *dkwgbe; struct eth_device *dev; int devnum; char *s; u8 used_ports[MAX_KWGBE_DEVS] = CONFIG_KIRKWOOD_EGIGA_PORTS; for (devnum = 0; devnum < MAX_KWGBE_DEVS; devnum++) { /*skip if port is configured not to use */ if (used_ports[devnum] == 0) continue; if (!(dkwgbe = malloc(sizeof(struct kwgbe_device)))) goto error1; memset(dkwgbe, 0, sizeof(struct kwgbe_device)); if (!(dkwgbe->p_rxdesc = (struct kwgbe_rxdesc *)memalign(PKTALIGN, KW_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1))) goto error2; if (!(dkwgbe->p_rxbuf = (u8 *) memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1))) goto error3; if (!(dkwgbe->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN))) goto error4; if (!(dkwgbe->p_txdesc = (struct kwgbe_txdesc *) memalign(PKTALIGN, sizeof(struct kwgbe_txdesc) + 1))) { free(dkwgbe->p_aligned_txbuf); error4: free(dkwgbe->p_rxbuf); error3: free(dkwgbe->p_rxdesc); error2: free(dkwgbe); error1: printf("Err.. %s Failed to allocate memory\n", __FUNCTION__); return -1; } dev = &dkwgbe->dev; /* must be less than NAMESIZE (16) */ sprintf(dev->name, "egiga%d", devnum); /* Extract the MAC address from the environment */ switch (devnum) { case 0: dkwgbe->regs = (void *)KW_EGIGA0_BASE; s = "ethaddr"; break; case 1: dkwgbe->regs = (void *)KW_EGIGA1_BASE; s = "eth1addr"; break; default: /* this should never happen */ printf("Err..(%s) Invalid device number %d\n", __FUNCTION__, devnum); return -1; } while (!eth_getenv_enetaddr(s, dev->enetaddr)) { /* Generate Random Private MAC addr if not set */ dev->enetaddr[0] = 0x02; dev->enetaddr[1] = 0x50; dev->enetaddr[2] = 0x43; dev->enetaddr[3] = get_random_hex(); dev->enetaddr[4] = get_random_hex(); dev->enetaddr[5] = get_random_hex(); eth_setenv_enetaddr(s, dev->enetaddr); } dev->init = (void *)kwgbe_init; dev->halt = (void *)kwgbe_halt; dev->send = (void *)kwgbe_send; dev->recv = (void *)kwgbe_recv; eth_register(dev); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) miiphy_register(dev->name, smi_reg_read, smi_reg_write); /* Set phy address of the port */ miiphy_write(dev->name, KIRKWOOD_PHY_ADR_REQUEST, KIRKWOOD_PHY_ADR_REQUEST, PHY_BASE_ADR + devnum); #endif } return 0; }