diff options
Diffstat (limited to 'lib/intel_allocator.c')
-rw-r--r-- | lib/intel_allocator.c | 1341 |
1 files changed, 1341 insertions, 0 deletions
diff --git a/lib/intel_allocator.c b/lib/intel_allocator.c new file mode 100644 index 00000000..9ab541d1 --- /dev/null +++ b/lib/intel_allocator.c @@ -0,0 +1,1341 @@ +// SPDX-License-Identifier: MIT +/* + * Copyright © 2021 Intel Corporation + */ + +#include <sys/types.h> +#include <sys/stat.h> +#include <sys/ipc.h> +#include <sys/msg.h> +#include <fcntl.h> +#include <pthread.h> +#include <signal.h> +#include <stdlib.h> +#include <unistd.h> +#include "igt.h" +#include "igt_map.h" +#include "intel_allocator.h" +#include "intel_allocator_msgchannel.h" + +//#define ALLOCDBG +#ifdef ALLOCDBG +#define alloc_info igt_info +#define alloc_debug igt_debug +static const char *reqtype_str[] = { + [REQ_STOP] = "stop", + [REQ_OPEN] = "open", + [REQ_OPEN_AS] = "open as", + [REQ_CLOSE] = "close", + [REQ_ADDRESS_RANGE] = "address range", + [REQ_ALLOC] = "alloc", + [REQ_FREE] = "free", + [REQ_IS_ALLOCATED] = "is allocated", + [REQ_RESERVE] = "reserve", + [REQ_UNRESERVE] = "unreserve", + [REQ_RESERVE_IF_NOT_ALLOCATED] = "reserve-ina", + [REQ_IS_RESERVED] = "is reserved", +}; +static inline const char *reqstr(enum reqtype request_type) +{ + igt_assert(request_type >= REQ_STOP && request_type <= REQ_IS_RESERVED); + return reqtype_str[request_type]; +} +#else +#define alloc_info(...) {} +#define alloc_debug(...) {} +#endif + +struct allocator { + int fd; + uint32_t ctx; + uint32_t vm; + _Atomic(int32_t) refcount; + struct intel_allocator *ial; +}; + +struct handle_entry { + uint64_t handle; + struct allocator *al; +}; + +struct intel_allocator *intel_allocator_reloc_create(int fd); +struct intel_allocator *intel_allocator_random_create(int fd); +struct intel_allocator *intel_allocator_simple_create(int fd); +struct intel_allocator * +intel_allocator_simple_create_full(int fd, uint64_t start, uint64_t end, + enum allocator_strategy strategy); + +/* + * Instead of trying to find first empty handle just get new one. Assuming + * our counter is incremented 2^32 times per second (4GHz clock and handle + * assignment takes single clock) 64-bit counter would wrap around after + * ~68 years. + * + * allocator + * handles <fd, ctx> intel allocator + * +-----+ +--------+ +-------------+ + * | 1 +---------->+ fd: 3 +--------->+ data: ... | + * +-----+ +---->+ ctx: 1 | | refcount: 2 | + * | 2 +-----+ | ref: 2 | +-------------+ + * +-----+ +--------+ + * | 3 +--+ +--------+ intel allocator + * +-----+ | | fd: 3 | +-------------+ + * | ... | +------->| ctx: 2 +--------->+ data: ... | + * +-----+ | ref: 1 | | refcount: 1 | + * | n +--------+ +--------+ +-------------+ + * +-----+ | + * | ... +-----+ | allocator + * +-----+ | | <fd, vm> intel allocator + * | ... +--+ | | +--------+ +-------------+ + * + + | | +->+ fd: 3 +-----+--->+ data: ... | + * | +---->+ vm: 1 | | | refcount: 3 | + * | | ref: 2 | | +-------------+ + * | +--------+ | + * | +--------+ | + * | | fd: 3 | | + * +------->+ vm: 2 +-----+ + * | ref: 1 | + * +--------+ + */ +static _Atomic(uint64_t) next_handle; +static struct igt_map *handles; +static struct igt_map *ctx_map; +static struct igt_map *vm_map; +static pthread_mutex_t map_mutex = PTHREAD_MUTEX_INITIALIZER; +#define GET_MAP(vm) ((vm) ? vm_map : ctx_map) + +static bool multiprocess; +static pthread_t allocator_thread; + +static bool warn_if_not_empty; + +/* For allocator purposes we need to track pid/tid */ +static pid_t allocator_pid = -1; +extern pid_t child_pid; +extern __thread pid_t child_tid; + +/* + * - for parent process we have child_pid == -1 + * - for child which calls intel_allocator_init() allocator_pid == child_pid + */ +static inline bool is_same_process(void) +{ + return child_pid == -1 || allocator_pid == child_pid; +} + +static struct msg_channel *channel; + +static int send_alloc_stop(struct msg_channel *msgchan) +{ + struct alloc_req req = {0}; + + req.request_type = REQ_STOP; + + return msgchan->send_req(msgchan, &req); +} + +static int send_req(struct msg_channel *msgchan, pid_t tid, + struct alloc_req *request) +{ + request->tid = tid; + return msgchan->send_req(msgchan, request); +} + +static int recv_req(struct msg_channel *msgchan, struct alloc_req *request) +{ + return msgchan->recv_req(msgchan, request); +} + +static int send_resp(struct msg_channel *msgchan, + pid_t tid, struct alloc_resp *response) +{ + response->tid = tid; + return msgchan->send_resp(msgchan, response); +} + +static int recv_resp(struct msg_channel *msgchan, + pid_t tid, struct alloc_resp *response) +{ + response->tid = tid; + return msgchan->recv_resp(msgchan, response); +} + +static inline void map_entry_free_func(struct igt_map_entry *entry) +{ + free(entry->data); +} + +static uint64_t __handle_create(struct allocator *al) +{ + struct handle_entry *h = malloc(sizeof(*h)); + + igt_assert(h); + h->handle = atomic_fetch_add(&next_handle, 1); + h->al = al; + igt_map_insert(handles, h, h); + + return h->handle; +} + +static void __handle_destroy(uint64_t handle) +{ + struct handle_entry he = { .handle = handle }; + + igt_map_remove(handles, &he, map_entry_free_func); +} + +static struct allocator *__allocator_find(int fd, uint32_t ctx, uint32_t vm) +{ + struct allocator al = { .fd = fd, .ctx = ctx, .vm = vm }; + struct igt_map *map = GET_MAP(vm); + + return igt_map_search(map, &al); +} + +static struct allocator *__allocator_find_by_handle(uint64_t handle) +{ + struct handle_entry *h, he = { .handle = handle }; + + h = igt_map_search(handles, &he); + if (!h) + return NULL; + + return h->al; +} + +static struct allocator *__allocator_create(int fd, uint32_t ctx, uint32_t vm, + struct intel_allocator *ial) +{ + struct igt_map *map = GET_MAP(vm); + struct allocator *al = malloc(sizeof(*al)); + + igt_assert(al); + igt_assert(fd == ial->fd); + al->fd = fd; + al->ctx = ctx; + al->vm = vm; + atomic_init(&al->refcount, 0); + al->ial = ial; + + igt_map_insert(map, al, al); + + return al; +} + +static void __allocator_destroy(struct allocator *al) +{ + struct igt_map *map = GET_MAP(al->vm); + + igt_map_remove(map, al, map_entry_free_func); +} + +static int __allocator_get(struct allocator *al) +{ + struct intel_allocator *ial = al->ial; + int refcount; + + atomic_fetch_add(&al->refcount, 1); + refcount = atomic_fetch_add(&ial->refcount, 1); + igt_assert(refcount >= 0); + + return refcount; +} + +static bool __allocator_put(struct allocator *al) +{ + struct intel_allocator *ial = al->ial; + bool released = false; + int refcount, al_refcount; + + al_refcount = atomic_fetch_sub(&al->refcount, 1); + refcount = atomic_fetch_sub(&ial->refcount, 1); + igt_assert(refcount >= 1); + if (refcount == 1) { + if (!ial->is_empty(ial) && warn_if_not_empty) + igt_warn("Allocator not clear before destroy!\n"); + + /* Check allocator has also refcount == 1 */ + igt_assert_eq(al_refcount, 1); + + released = true; + } + + return released; +} + +static struct intel_allocator *intel_allocator_create(int fd, + uint64_t start, uint64_t end, + uint8_t allocator_type, + uint8_t allocator_strategy) +{ + struct intel_allocator *ial = NULL; + + switch (allocator_type) { + /* + * Few words of explanation is required here. + * + * INTEL_ALLOCATOR_NONE allows keeping information in the code (intel-bb + * is an example) we're not using IGT allocator itself and likely + * we rely on relocations. + * So trying to create NONE allocator doesn't makes sense and below + * assertion catches such invalid usage. + */ + case INTEL_ALLOCATOR_NONE: + igt_assert_f(allocator_type != INTEL_ALLOCATOR_NONE, + "We cannot use NONE allocator\n"); + break; + case INTEL_ALLOCATOR_RELOC: + ial = intel_allocator_reloc_create(fd); + break; + case INTEL_ALLOCATOR_RANDOM: + ial = intel_allocator_random_create(fd); + break; + case INTEL_ALLOCATOR_SIMPLE: + if (!start && !end) + ial = intel_allocator_simple_create(fd); + else + ial = intel_allocator_simple_create_full(fd, start, end, + allocator_strategy); + break; + default: + igt_assert_f(ial, "Allocator type %d not implemented\n", + allocator_type); + break; + } + + igt_assert(ial); + + ial->type = allocator_type; + ial->strategy = allocator_strategy; + pthread_mutex_init(&ial->mutex, NULL); + + return ial; +} + +static void intel_allocator_destroy(struct intel_allocator *ial) +{ + alloc_info("Destroying allocator (empty: %d)\n", ial->is_empty(ial)); + + ial->destroy(ial); +} + +static struct allocator *allocator_open(int fd, uint32_t ctx, uint32_t vm, + uint64_t start, uint64_t end, + uint8_t allocator_type, + uint8_t allocator_strategy, + uint64_t *ahndp) +{ + struct intel_allocator *ial; + struct allocator *al; + const char *idstr = vm ? "vm" : "ctx"; + + igt_assert(ahndp); + + al = __allocator_find(fd, ctx, vm); + if (!al) { + alloc_info("Allocator fd: %d, ctx: %u, vm: %u, <0x%llx : 0x%llx> " + "not found, creating one\n", + fd, ctx, vm, (long long) start, (long long) end); + ial = intel_allocator_create(fd, start, end, allocator_type, + allocator_strategy); + al = __allocator_create(fd, ctx, vm, ial); + } + + ial = al->ial; + + igt_assert_f(ial->type == allocator_type, + "Allocator type must be same for fd/%s\n", idstr); + + igt_assert_f(ial->strategy == allocator_strategy, + "Allocator strategy must be same or fd/%s\n", idstr); + + __allocator_get(al); + *ahndp = __handle_create(al); + + return al; +} + +static struct allocator *allocator_open_as(struct allocator *base, + uint32_t new_vm, uint64_t *ahndp) +{ + struct allocator *al; + + igt_assert(ahndp); + al = __allocator_create(base->fd, base->ctx, new_vm, base->ial); + __allocator_get(al); + *ahndp = __handle_create(al); + + return al; +} + +static bool allocator_close(uint64_t ahnd) +{ + struct allocator *al; + bool released, is_empty = false; + + al = __allocator_find_by_handle(ahnd); + if (!al) { + igt_warn("Cannot find handle: %llx\n", (long long) ahnd); + return false; + } + + released = __allocator_put(al); + if (released) { + is_empty = al->ial->is_empty(al->ial); + intel_allocator_destroy(al->ial); + } + + if (!atomic_load(&al->refcount)) + __allocator_destroy(al); + + __handle_destroy(ahnd); + + return is_empty; +} + +static int send_req_recv_resp(struct msg_channel *msgchan, + struct alloc_req *request, + struct alloc_resp *response) +{ + int ret; + + ret = send_req(msgchan, child_tid, request); + if (ret < 0) { + igt_warn("Error sending request [type: %d]: err = %d [%s]\n", + request->request_type, errno, strerror(errno)); + + return ret; + } + + ret = recv_resp(msgchan, child_tid, response); + if (ret < 0) + igt_warn("Error receiving response [type: %d]: err = %d [%s]\n", + request->request_type, errno, strerror(errno)); + + /* + * This is main assumption - we receive message which size must be > 0. + * If this is fulfilled we return 0 as a success. + */ + if (ret > 0) + ret = 0; + + return ret; +} + +static int handle_request(struct alloc_req *req, struct alloc_resp *resp) +{ + int ret; + long refcnt; + + memset(resp, 0, sizeof(*resp)); + + if (is_same_process()) { + struct intel_allocator *ial; + struct allocator *al; + uint64_t start, end, size, ahnd; + uint32_t ctx, vm; + bool allocated, reserved, unreserved; + /* Used when debug is on, so avoid compilation warnings */ + (void) ctx; + (void) vm; + (void) refcnt; + + /* + * Mutex only work on allocator instance, not stop/open/close + */ + if (req->request_type > REQ_CLOSE) { + /* + * We have to lock map mutex because concurrent open + * can lead to resizing the map. + */ + pthread_mutex_lock(&map_mutex); + al = __allocator_find_by_handle(req->allocator_handle); + pthread_mutex_unlock(&map_mutex); + igt_assert(al); + + ial = al->ial; + igt_assert(ial); + pthread_mutex_lock(&ial->mutex); + } + + switch (req->request_type) { + case REQ_STOP: + alloc_info("<stop>\n"); + break; + + case REQ_OPEN: + pthread_mutex_lock(&map_mutex); + al = allocator_open(req->open.fd, + req->open.ctx, req->open.vm, + req->open.start, req->open.end, + req->open.allocator_type, + req->open.allocator_strategy, + &ahnd); + refcnt = atomic_load(&al->refcount); + ret = atomic_load(&al->ial->refcount); + pthread_mutex_unlock(&map_mutex); + + resp->response_type = RESP_OPEN; + resp->open.allocator_handle = ahnd; + + alloc_info("<open> [tid: %ld] fd: %d, ahnd: %" PRIx64 + ", ctx: %u, vm: %u" + ", alloc_type: %u, al->refcnt: %ld->%ld" + ", refcnt: %d->%d\n", + (long) req->tid, req->open.fd, ahnd, + req->open.ctx, + req->open.vm, req->open.allocator_type, + refcnt - 1, refcnt, ret - 1, ret); + break; + + case REQ_OPEN_AS: + /* lock first to avoid concurrent close */ + pthread_mutex_lock(&map_mutex); + + al = __allocator_find_by_handle(req->allocator_handle); + resp->response_type = RESP_OPEN_AS; + + if (!al) { + alloc_info("<open as> [tid: %ld] ahnd: %" PRIx64 + " -> no handle\n", + (long) req->tid, req->allocator_handle); + pthread_mutex_unlock(&map_mutex); + break; + } + + if (!al->vm) { + alloc_info("<open as> [tid: %ld] ahnd: %" PRIx64 + " -> only open as for <fd, vm> is possible\n", + (long) req->tid, req->allocator_handle); + pthread_mutex_unlock(&map_mutex); + break; + } + + + al = allocator_open_as(al, req->open_as.new_vm, &ahnd); + refcnt = atomic_load(&al->refcount); + ret = atomic_load(&al->ial->refcount); + pthread_mutex_unlock(&map_mutex); + + resp->response_type = RESP_OPEN_AS; + resp->open.allocator_handle = ahnd; + + alloc_info("<open as> [tid: %ld] fd: %d, ahnd: %" PRIx64 + ", ctx: %u, vm: %u" + ", alloc_type: %u, al->refcnt: %ld->%ld" + ", refcnt: %d->%d\n", + (long) req->tid, al->fd, ahnd, + al->ctx, al->vm, al->ial->type, + refcnt - 1, refcnt, ret - 1, ret); + break; + + case REQ_CLOSE: + pthread_mutex_lock(&map_mutex); + al = __allocator_find_by_handle(req->allocator_handle); + resp->response_type = RESP_CLOSE; + + if (!al) { + alloc_info("<close> [tid: %ld] ahnd: %" PRIx64 + " -> no handle\n", + (long) req->tid, req->allocator_handle); + pthread_mutex_unlock(&map_mutex); + break; + } + + resp->response_type = RESP_CLOSE; + ctx = al->ctx; + vm = al->vm; + + refcnt = atomic_load(&al->refcount); + ret = atomic_load(&al->ial->refcount); + resp->close.is_empty = allocator_close(req->allocator_handle); + pthread_mutex_unlock(&map_mutex); + + alloc_info("<close> [tid: %ld] ahnd: %" PRIx64 + ", ctx: %u, vm: %u" + ", is_empty: %d, al->refcount: %ld->%ld" + ", refcnt: %d->%d\n", + (long) req->tid, req->allocator_handle, + ctx, vm, resp->close.is_empty, + refcnt, refcnt - 1, ret, ret - 1); + + break; + + case REQ_ADDRESS_RANGE: + resp->response_type = RESP_ADDRESS_RANGE; + ial->get_address_range(ial, &start, &end); + resp->address_range.start = start; + resp->address_range.end = end; + alloc_info("<address range> [tid: %ld] ahnd: %" PRIx64 + ", ctx: %u, vm: %u" + ", start: 0x%" PRIx64 ", end: 0x%" PRId64 "\n", + (long) req->tid, req->allocator_handle, + al->ctx, al->vm, start, end); + break; + + case REQ_ALLOC: + resp->response_type = RESP_ALLOC; + resp->alloc.offset = ial->alloc(ial, + req->alloc.handle, + req->alloc.size, + req->alloc.alignment); + alloc_info("<alloc> [tid: %ld] ahnd: %" PRIx64 + ", ctx: %u, vm: %u, handle: %u" + ", size: 0x%" PRIx64 ", offset: 0x%" PRIx64 + ", alignment: 0x%" PRIx64 "\n", + (long) req->tid, req->allocator_handle, + al->ctx, al->vm, + req->alloc.handle, req->alloc.size, + resp->alloc.offset, req->alloc.alignment); + break; + + case REQ_FREE: + resp->response_type = RESP_FREE; + resp->free.freed = ial->free(ial, req->free.handle); + alloc_info("<free> [tid: %ld] ahnd: %" PRIx64 + ", ctx: %u, vm: %u" + ", handle: %u, freed: %d\n", + (long) req->tid, req->allocator_handle, + al->ctx, al->vm, + req->free.handle, resp->free.freed); + break; + + case REQ_IS_ALLOCATED: + resp->response_type = RESP_IS_ALLOCATED; + allocated = ial->is_allocated(ial, + req->is_allocated.handle, + req->is_allocated.size, + req->is_allocated.offset); + resp->is_allocated.allocated = allocated; + alloc_info("<is allocated> [tid: %ld] ahnd: %" PRIx64 + ", ctx: %u, vm: %u" + ", offset: 0x%" PRIx64 + ", allocated: %d\n", (long) req->tid, + req->allocator_handle, al->ctx, al->vm, + req->is_allocated.offset, allocated); + break; + + case REQ_RESERVE: + resp->response_type = RESP_RESERVE; + reserved = ial->reserve(ial, + req->reserve.handle, + req->reserve.start, + req->reserve.end); + resp->reserve.reserved = reserved; + alloc_info("<reserve> [tid: %ld] ahnd: %" PRIx64 + ", ctx: %u, vm: %u, handle: %u" + ", start: 0x%" PRIx64 ", end: 0x%" PRIx64 + ", reserved: %d\n", + (long) req->tid, req->allocator_handle, + al->ctx, al->vm, req->reserve.handle, + req->reserve.start, req->reserve.end, reserved); + break; + + case REQ_UNRESERVE: + resp->response_type = RESP_UNRESERVE; + unreserved = ial->unreserve(ial, + req->unreserve.handle, + req->unreserve.start, + req->unreserve.end); + resp->unreserve.unreserved = unreserved; + alloc_info("<unreserve> [tid: %ld] ahnd: %" PRIx64 + ", ctx: %u, vm: %u, handle: %u" + ", start: 0x%" PRIx64 ", end: 0x%" PRIx64 + ", unreserved: %d\n", + (long) req->tid, req->allocator_handle, + al->ctx, al->vm, req->unreserve.handle, + req->unreserve.start, req->unreserve.end, + unreserved); + break; + + case REQ_IS_RESERVED: + resp->response_type = RESP_IS_RESERVED; + reserved = ial->is_reserved(ial, + req->is_reserved.start, + req->is_reserved.end); + resp->is_reserved.reserved = reserved; + alloc_info("<is reserved> [tid: %ld] ahnd: %" PRIx64 + ", ctx: %u, vm: %u" + ", start: 0x%" PRIx64 ", end: 0x%" PRIx64 + ", reserved: %d\n", + (long) req->tid, req->allocator_handle, + al->ctx, al->vm, req->is_reserved.start, + req->is_reserved.end, reserved); + break; + + case REQ_RESERVE_IF_NOT_ALLOCATED: + resp->response_type = RESP_RESERVE_IF_NOT_ALLOCATED; + size = req->reserve.end - req->reserve.start; + + allocated = ial->is_allocated(ial, req->reserve.handle, + size, req->reserve.start); + if (allocated) { + resp->reserve_if_not_allocated.allocated = allocated; + alloc_info("<reserve if not allocated> [tid: %ld] " + "ahnd: %" PRIx64 ", ctx: %u, vm: %u" + ", handle: %u, size: 0x%lx" + ", start: 0x%" PRIx64 ", end: 0x%" PRIx64 + ", allocated: %d, reserved: %d\n", + (long) req->tid, req->allocator_handle, + al->ctx, al->vm, req->reserve.handle, + (long) size, req->reserve.start, + req->reserve.end, allocated, false); + break; + } + + reserved = ial->reserve(ial, + req->reserve.handle, + req->reserve.start, + req->reserve.end); + resp->reserve_if_not_allocated.reserved = reserved; + alloc_info("<reserve if not allocated> [tid: %ld] " + "ahnd: %" PRIx64 ", ctx: %u, vm: %u" + ", handle: %u, start: 0x%" PRIx64 ", end: 0x%" PRIx64 + ", allocated: %d, reserved: %d\n", + (long) req->tid, req->allocator_handle, + al->ctx, al->vm, + req->reserve.handle, + req->reserve.start, req->reserve.end, + false, reserved); + break; + } + + if (req->request_type > REQ_CLOSE) + pthread_mutex_unlock(&ial->mutex); + + return 0; + } + + ret = send_req_recv_resp(channel, req, resp); + + if (ret < 0) + exit(0); + + return ret; +} + +static void *allocator_thread_loop(void *data) +{ + struct alloc_req req; + struct alloc_resp resp; + int ret; + (void) data; + + alloc_info("Allocator pid: %ld, tid: %ld\n", + (long) allocator_pid, (long) gettid()); + alloc_info("Entering allocator loop\n"); + + while (1) { + ret = recv_req(channel, &req); + + if (ret == -1) { + igt_warn("Error receiving request in thread, ret = %d [%s]\n", + ret, strerror(errno)); + igt_waitchildren_timeout(1, "Stopping children, error receiving request\n"); + return (void *) -1; + } + + /* Fake message to stop the thread */ + if (req.request_type == REQ_STOP) { + alloc_info("<stop request>\n"); + break; + } + + ret = handle_request(&req, &resp); + if (ret) { + igt_warn("Error handling request in thread, ret = %d [%s]\n", + ret, strerror(errno)); + break; + } + + ret = send_resp(channel, req.tid, &resp); + if (ret) { + igt_warn("Error sending response in thread, ret = %d [%s]\n", + ret, strerror(errno)); + + igt_waitchildren_timeout(1, "Stopping children, error sending response\n"); + return (void *) -1; + } + } + + return NULL; +} + +/** + * intel_allocator_multiprocess_start: + * + * Function turns on intel_allocator multiprocess mode what means + * all allocations from children processes are performed in a separate thread + * within main igt process. Children are aware of the situation and use + * some interprocess communication channel to send/receive messages + * (open, close, alloc, free, ...) to/from allocator thread. + * + * Must be used when you want to use an allocator in non single-process code. + * All allocations in threads spawned in main igt process are handled by + * mutexing, not by sending/receiving messages to/from allocator thread. + * + * Note. This destroys all previously created allocators and theirs content. + */ +void intel_allocator_multiprocess_start(void) +{ + alloc_info("allocator multiprocess start\n"); + + igt_assert_f(child_pid == -1, + "Allocator thread can be spawned only in main IGT process\n"); + intel_allocator_init(); + + multiprocess = true; + channel->init(channel); + + pthread_create(&allocator_thread, NULL, + allocator_thread_loop, NULL); +} + +/** + * intel_allocator_multiprocess_stop: + * + * Function turns off intel_allocator multiprocess mode what means + * stopping allocator thread and deinitializing its data. + */ +void intel_allocator_multiprocess_stop(void) +{ + alloc_info("allocator multiprocess stop\n"); + + if (multiprocess) { + send_alloc_stop(channel); + /* Deinit, this should stop all blocked syscalls, if any */ + channel->deinit(channel); + pthread_join(allocator_thread, NULL); + /* But we're not sure does child will stuck */ + igt_waitchildren_timeout(5, "Stopping children"); + multiprocess = false; + } +} + +static uint64_t __intel_allocator_open_full(int fd, uint32_t ctx, + uint32_t vm, + uint64_t start, uint64_t end, + uint8_t allocator_type, + enum allocator_strategy strategy) +{ + struct alloc_req req = { .request_type = REQ_OPEN, + .open.fd = fd, + .open.ctx = ctx, + .open.vm = vm, + .open.start = start, + .open.end = end, + .open.allocator_type = allocator_type, + .open.allocator_strategy = strategy }; + struct alloc_resp resp; + + /* Get child_tid only once at open() */ + if (child_tid == -1) + child_tid = gettid(); + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.open.allocator_handle); + igt_assert(resp.response_type == RESP_OPEN); + + return resp.open.allocator_handle; +} + +/** + * intel_allocator_open_full: + * @fd: i915 descriptor + * @ctx: context + * @start: address of the beginning + * @end: address of the end + * @allocator_type: one of INTEL_ALLOCATOR_* define + * @strategy: passed to the allocator to define the strategy (like order + * of allocation, see notes below). + * + * Function opens an allocator instance within <@start, @end) vm for given + * @fd and @ctx and returns its handle. If the allocator for such pair + * doesn't exist it is created with refcount = 1. + * Parallel opens returns same handle bumping its refcount. + * + * Returns: unique handle to the currently opened allocator. + * + * Notes: + * Strategy is generally used internally by the underlying allocator: + * + * For SIMPLE allocator: + * - ALLOC_STRATEGY_HIGH_TO_LOW means topmost addresses are allocated first, + * - ALLOC_STRATEGY_LOW_TO_HIGH opposite, allocation starts from lowest + * addresses. + * + * For RANDOM allocator: + * - none of strategy is currently implemented. + */ +uint64_t intel_allocator_open_full(int fd, uint32_t ctx, + uint64_t start, uint64_t end, + uint8_t allocator_type, + enum allocator_strategy strategy) +{ + return __intel_allocator_open_full(fd, ctx, 0, start, end, + allocator_type, strategy); +} + +uint64_t intel_allocator_open_vm_full(int fd, uint32_t vm, + uint64_t start, uint64_t end, + uint8_t allocator_type, + enum allocator_strategy strategy) +{ + igt_assert(vm != 0); + return __intel_allocator_open_full(fd, 0, vm, start, end, + allocator_type, strategy); +} + +/** + * intel_allocator_open: + * @fd: i915 descriptor + * @ctx: context + * @allocator_type: one of INTEL_ALLOCATOR_* define + * + * Function opens an allocator instance for given @fd and @ctx and returns + * its handle. If the allocator for such pair doesn't exist it is created + * with refcount = 1. Parallel opens returns same handle bumping its refcount. + * + * Returns: unique handle to the currently opened allocator. + * + * Notes: we pass ALLOC_STRATEGY_HIGH_TO_LOW as default, playing with higher + * addresses makes easier to find addressing issues (like passing non-canonical + * offsets, which won't be catched unless 47-bit is set). + */ +uint64_t intel_allocator_open(int fd, uint32_t ctx, uint8_t allocator_type) +{ + return intel_allocator_open_full(fd, ctx, 0, 0, allocator_type, + ALLOC_STRATEGY_HIGH_TO_LOW); +} + +uint64_t intel_allocator_open_vm(int fd, uint32_t vm, uint8_t allocator_type) +{ + return intel_allocator_open_vm_full(fd, vm, 0, 0, allocator_type, + ALLOC_STRATEGY_HIGH_TO_LOW); +} + +uint64_t intel_allocator_open_vm_as(uint64_t allocator_handle, uint32_t new_vm) +{ + struct alloc_req req = { .request_type = REQ_OPEN_AS, + .allocator_handle = allocator_handle, + .open_as.new_vm = new_vm }; + struct alloc_resp resp; + + /* Get child_tid only once at open() */ + if (child_tid == -1) + child_tid = gettid(); + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.open_as.allocator_handle); + igt_assert(resp.response_type == RESP_OPEN_AS); + + return resp.open.allocator_handle; +} + +/** + * intel_allocator_close: + * @allocator_handle: handle to the allocator that will be closed + * + * Function decreases an allocator refcount for the given @handle. + * When refcount reaches zero allocator is closed (destroyed) and all + * allocated / reserved areas are freed. + * + * Returns: true if closed allocator was empty, false otherwise. + */ +bool intel_allocator_close(uint64_t allocator_handle) +{ + struct alloc_req req = { .request_type = REQ_CLOSE, + .allocator_handle = allocator_handle }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_CLOSE); + + return resp.close.is_empty; +} + +/** + * intel_allocator_get_address_range: + * @allocator_handle: handle to an allocator + * @startp: pointer to the variable where function writes starting offset + * @endp: pointer to the variable where function writes ending offset + * + * Function fills @startp, @endp with respectively, starting and ending offset + * of the allocator working virtual address space range. + * + * Note. Allocators working ranges can differ depending on the device or + * the allocator type so before reserving a specific offset a good practise + * is to ensure that address is between accepted range. + */ +void intel_allocator_get_address_range(uint64_t allocator_handle, + uint64_t *startp, uint64_t *endp) +{ + struct alloc_req req = { .request_type = REQ_ADDRESS_RANGE, + .allocator_handle = allocator_handle }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_ADDRESS_RANGE); + + if (startp) + *startp = resp.address_range.start; + + if (endp) + *endp = resp.address_range.end; +} + +/** + * __intel_allocator_alloc: + * @allocator_handle: handle to an allocator + * @handle: handle to an object + * @size: size of an object + * @alignment: determines object alignment + * + * Function finds and returns the most suitable offset with given @alignment + * for an object with @size identified by the @handle. + * + * Returns: currently assigned address for a given object. If an object was + * already allocated returns same address. If allocator can't find suitable + * range returns ALLOC_INVALID_ADDRESS. + */ +uint64_t __intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle, + uint64_t size, uint64_t alignment) +{ + struct alloc_req req = { .request_type = REQ_ALLOC, + .allocator_handle = allocator_handle, + .alloc.handle = handle, + .alloc.size = size, + .alloc.alignment = alignment }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_ALLOC); + + return resp.alloc.offset; +} + +/** + * intel_allocator_alloc: + * @allocator_handle: handle to an allocator + * @handle: handle to an object + * @size: size of an object + * @alignment: determines object alignment + * + * Same as __intel_allocator_alloc() but asserts if allocator can't return + * valid address. + */ +uint64_t intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle, + uint64_t size, uint64_t alignment) +{ + uint64_t offset; + + offset = __intel_allocator_alloc(allocator_handle, handle, + size, alignment); + igt_assert(offset != ALLOC_INVALID_ADDRESS); + + return offset; +} + +/** + * intel_allocator_free: + * @allocator_handle: handle to an allocator + * @handle: handle to an object to be freed + * + * Function free object identified by the @handle in allocator what makes it + * offset again allocable. + * + * Note. Reserved objects can only be freed by an #intel_allocator_unreserve + * function. + * + * Returns: true if the object was successfully freed, otherwise false. + */ +bool intel_allocator_free(uint64_t allocator_handle, uint32_t handle) +{ + struct alloc_req req = { .request_type = REQ_FREE, + .allocator_handle = allocator_handle, + .free.handle = handle }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_FREE); + + return resp.free.freed; +} + +/** + * intel_allocator_is_allocated: + * @allocator_handle: handle to an allocator + * @handle: handle to an object + * @size: size of an object + * @offset: address of an object + * + * Function checks whether the object identified by the @handle and @size + * is allocated at the @offset. + * + * Returns: true if the object is currently allocated at the @offset, + * otherwise false. + */ +bool intel_allocator_is_allocated(uint64_t allocator_handle, uint32_t handle, + uint64_t size, uint64_t offset) +{ + struct alloc_req req = { .request_type = REQ_IS_ALLOCATED, + .allocator_handle = allocator_handle, + .is_allocated.handle = handle, + .is_allocated.size = size, + .is_allocated.offset = offset }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_IS_ALLOCATED); + + return resp.is_allocated.allocated; +} + +/** + * intel_allocator_reserve: + * @allocator_handle: handle to an allocator + * @handle: handle to an object + * @size: size of an object + * @offset: address of an object + * + * Function reserves space that starts at the @offset and has @size. + * Optionally we can pass @handle to mark that space is for a specific + * object, otherwise pass -1. + * + * Note. Reserved space is identified by offset and size, not a handle. + * So an object can have multiple reserved spaces with its handle. + * + * Returns: true if space is successfully reserved, otherwise false. + */ +bool intel_allocator_reserve(uint64_t allocator_handle, uint32_t handle, + uint64_t size, uint64_t offset) +{ + struct alloc_req req = { .request_type = REQ_RESERVE, + .allocator_handle = allocator_handle, + .reserve.handle = handle, + .reserve.start = offset, + .reserve.end = offset + size }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_RESERVE); + + return resp.reserve.reserved; +} + +/** + * intel_allocator_unreserve: + * @allocator_handle: handle to an allocator + * @handle: handle to an object + * @size: size of an object + * @offset: address of an object + * + * Function unreserves space that starts at the @offset, @size and @handle. + * + * Note. @handle, @size and @offset have to match those used in reservation. + * i.e. check with the same offset but even smaller size will fail. + * + * Returns: true if the space is successfully unreserved, otherwise false. + */ +bool intel_allocator_unreserve(uint64_t allocator_handle, uint32_t handle, + uint64_t size, uint64_t offset) +{ + struct alloc_req req = { .request_type = REQ_UNRESERVE, + .allocator_handle = allocator_handle, + .unreserve.handle = handle, + .unreserve.start = offset, + .unreserve.end = offset + size }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_UNRESERVE); + + return resp.unreserve.unreserved; +} + +/** + * intel_allocator_is_reserved: + * @allocator_handle: handle to an allocator + * @size: size of an object + * @offset: address of an object + * + * Function checks whether space starting at the @offset and @size is + * currently under reservation. + * + * Note. @size and @offset have to match those used in reservation, + * i.e. check with the same offset but even smaller size will fail. + * + * Returns: true if space is reserved, othwerise false. + */ +bool intel_allocator_is_reserved(uint64_t allocator_handle, + uint64_t size, uint64_t offset) +{ + struct alloc_req req = { .request_type = REQ_IS_RESERVED, + .allocator_handle = allocator_handle, + .is_reserved.start = offset, + .is_reserved.end = offset + size }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_IS_RESERVED); + + return resp.is_reserved.reserved; +} + +/** + * intel_allocator_reserve_if_not_allocated: + * @allocator_handle: handle to an allocator + * @handle: handle to an object + * @size: size of an object + * @offset: address of an object + * @is_allocatedp: if not NULL function writes there object allocation status + * (true/false) + * + * Function checks whether the object identified by the @handle and @size + * is allocated at the @offset and writes the result to @is_allocatedp. + * If it's not it reserves it at the given @offset. + * + * Returns: true if the space for an object was reserved, otherwise false. + */ +bool intel_allocator_reserve_if_not_allocated(uint64_t allocator_handle, + uint32_t handle, + uint64_t size, uint64_t offset, + bool *is_allocatedp) +{ + struct alloc_req req = { .request_type = REQ_RESERVE_IF_NOT_ALLOCATED, + .allocator_handle = allocator_handle, + .reserve.handle = handle, + .reserve.start = offset, + .reserve.end = offset + size }; + struct alloc_resp resp; + + igt_assert(handle_request(&req, &resp) == 0); + igt_assert(resp.response_type == RESP_RESERVE_IF_NOT_ALLOCATED); + + if (is_allocatedp) + *is_allocatedp = resp.reserve_if_not_allocated.allocated; + + return resp.reserve_if_not_allocated.reserved; +} + +/** + * intel_allocator_print: + * @allocator_handle: handle to an allocator + * + * Function prints statistics and content of the allocator. + * Mainly for debugging purposes. + * + * Note. Printing possible only in the main process. + **/ +void intel_allocator_print(uint64_t allocator_handle) +{ + igt_assert(allocator_handle); + + if (!multiprocess || is_same_process()) { + struct allocator *al; + + al = __allocator_find_by_handle(allocator_handle); + pthread_mutex_lock(&map_mutex); + al->ial->print(al->ial, true); + pthread_mutex_unlock(&map_mutex); + } else { + igt_warn("Print stats is in main process only\n"); + } +} + +static int equal_handles(const void *key1, const void *key2) +{ + const struct handle_entry *h1 = key1, *h2 = key2; + + alloc_debug("h1: %llx, h2: %llx\n", + (long long) h1->handle, (long long) h2->handle); + + return h1->handle == h2->handle; +} + +static int equal_ctx(const void *key1, const void *key2) +{ + const struct allocator *a1 = key1, *a2 = key2; + + alloc_debug("a1: <fd: %d, ctx: %u>, a2 <fd: %d, ctx: %u>\n", + a1->fd, a1->ctx, a2->fd, a2->ctx); + + return a1->fd == a2->fd && a1->ctx == a2->ctx; +} + +static int equal_vm(const void *key1, const void *key2) +{ + const struct allocator *a1 = key1, *a2 = key2; + + alloc_debug("a1: <fd: %d, vm: %u>, a2 <fd: %d, vm: %u>\n", + a1->fd, a1->vm, a2->fd, a2->vm); + + return a1->fd == a2->fd && a1->vm == a2->vm; +} + +/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ +#define GOLDEN_RATIO_PRIME_32 0x9e370001UL + +static inline uint32_t hash_handles(const void *val) +{ + uint32_t hash = ((struct handle_entry *) val)->handle; + + hash = hash * GOLDEN_RATIO_PRIME_32; + return hash; +} + +static inline uint32_t hash_instance(const void *val) +{ + uint64_t hash = ((struct allocator *) val)->fd; + + hash = hash * GOLDEN_RATIO_PRIME_32; + return hash; +} + +static void __free_maps(struct igt_map *map, bool close_allocators) +{ + struct igt_map_entry *pos; + const struct handle_entry *h; + + if (!map) + return; + + if (close_allocators) + igt_map_foreach(map, pos) { + h = pos->key; + allocator_close(h->handle); + } + + igt_map_destroy(map, map_entry_free_func); +} + +/** + * intel_allocator_init: + * + * Function initializes the allocators infrastructure. The second call will + * override current infra and destroy existing there allocators. It is called + * in igt_constructor. + **/ +void intel_allocator_init(void) +{ + alloc_info("Prepare an allocator infrastructure\n"); + + allocator_pid = getpid(); + alloc_info("Allocator pid: %ld\n", (long) allocator_pid); + + __free_maps(handles, true); + __free_maps(ctx_map, false); + __free_maps(vm_map, false); + + atomic_init(&next_handle, 1); + handles = igt_map_create(hash_handles, equal_handles); + ctx_map = igt_map_create(hash_instance, equal_ctx); + vm_map = igt_map_create(hash_instance, equal_vm); + igt_assert(handles && ctx_map && vm_map); + + channel = intel_allocator_get_msgchannel(CHANNEL_SYSVIPC_MSGQUEUE); +} + +igt_constructor { + intel_allocator_init(); +} |