/* * Copyright © 2007, 2011, 2013, 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Daniel Vetter * */ #ifndef ANDROID #define _GNU_SOURCE #else #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drmtest.h" #include "i915_drm.h" #include "intel_chipset.h" #include "intel_io.h" #include "igt_debugfs.h" #include "config.h" #include "ioctl_wrappers.h" /** * SECTION:ioctl_wrappers * @short_description: ioctl wrappers and related functions * @title: ioctl wrappers * @include: igt.h * * This helper library contains simple functions to wrap the raw drm/i915 kernel * ioctls. The normal versions never pass any error codes to the caller and use * igt_assert() to check for error conditions instead. For some ioctls raw * wrappers which do pass on error codes are available. These raw wrappers have * a __ prefix. * * For wrappers which check for feature bits there can also be two versions: The * normal one simply returns a boolean to the caller. But when skipping the * testcase entirely is the right action then it's better to use igt_skip() * directly in the wrapper. Such functions have _require_ in their name to * distinguish them. */ /** * gem_handle_to_libdrm_bo: * @bufmgr: libdrm buffer manager instance * @fd: open i915 drm file descriptor * @name: buffer name in libdrm * @handle: gem buffer object handle * * This helper function imports a raw gem buffer handle into the libdrm buffer * manager. * * Returns: The imported libdrm buffer manager object. */ drm_intel_bo * gem_handle_to_libdrm_bo(drm_intel_bufmgr *bufmgr, int fd, const char *name, uint32_t handle) { struct drm_gem_flink flink; int ret; drm_intel_bo *bo; memset(&flink, 0, sizeof(handle)); flink.handle = handle; ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink); igt_assert(ret == 0); errno = 0; bo = drm_intel_bo_gem_create_from_name(bufmgr, name, flink.name); igt_assert(bo); return bo; } /** * gem_get_tiling: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @tiling: (out) tiling mode of the gem buffer * @swizzle: (out) bit 6 swizzle mode * * This wraps the GET_TILING ioctl. */ void gem_get_tiling(int fd, uint32_t handle, uint32_t *tiling, uint32_t *swizzle) { struct drm_i915_gem_get_tiling get_tiling; int ret; memset(&get_tiling, 0, sizeof(get_tiling)); get_tiling.handle = handle; ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling); igt_assert(ret == 0); *tiling = get_tiling.tiling_mode; *swizzle = get_tiling.swizzle_mode; } int __gem_set_tiling(int fd, uint32_t handle, uint32_t tiling, uint32_t stride) { struct drm_i915_gem_set_tiling st; int ret; memset(&st, 0, sizeof(st)); do { st.handle = handle; st.tiling_mode = tiling; st.stride = tiling ? stride : 0; ret = ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &st); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret != 0) return -errno; errno = 0; igt_assert(st.tiling_mode == tiling); return 0; } /** * gem_set_tiling: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @tiling: tiling mode bits * @stride: stride of the buffer when using a tiled mode, otherwise must be 0 * * This wraps the SET_TILING ioctl. */ void gem_set_tiling(int fd, uint32_t handle, uint32_t tiling, uint32_t stride) { igt_assert(__gem_set_tiling(fd, handle, tiling, stride) == 0); } struct local_drm_i915_gem_caching { uint32_t handle; uint32_t caching; }; #define LOCAL_DRM_I915_GEM_SET_CACHEING 0x2f #define LOCAL_DRM_I915_GEM_GET_CACHEING 0x30 #define LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING \ DRM_IOW(DRM_COMMAND_BASE + LOCAL_DRM_I915_GEM_SET_CACHEING, struct local_drm_i915_gem_caching) #define LOCAL_DRM_IOCTL_I915_GEM_GET_CACHEING \ DRM_IOWR(DRM_COMMAND_BASE + LOCAL_DRM_I915_GEM_GET_CACHEING, struct local_drm_i915_gem_caching) /** * gem_set_caching: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @caching: caching mode bits * * This wraps the SET_CACHING ioctl. Note that this function internally calls * igt_require() when SET_CACHING isn't available, hence automatically skips the * test. Therefore always extract test logic which uses this into its own * subtest. */ void gem_set_caching(int fd, uint32_t handle, uint32_t caching) { struct local_drm_i915_gem_caching arg; int ret; memset(&arg, 0, sizeof(arg)); arg.handle = handle; arg.caching = caching; ret = drmIoctl(fd, LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING, &arg); igt_assert(ret == 0 || (errno == ENOTTY || errno == EINVAL)); igt_require(ret == 0); errno = 0; } /** * gem_get_caching: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * * This wraps the GET_CACHING ioctl. * * Returns: The current caching mode bits. */ uint32_t gem_get_caching(int fd, uint32_t handle) { struct local_drm_i915_gem_caching arg; int ret; arg.handle = handle; arg.caching = 0; ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_GET_CACHEING, &arg); igt_assert(ret == 0); errno = 0; return arg.caching; } /** * gem_open: * @fd: open i915 drm file descriptor * @name: flink buffer name * * This wraps the GEM_OPEN ioctl, which is used to import an flink name. * * Returns: gem file-private buffer handle of the open object. */ uint32_t gem_open(int fd, uint32_t name) { struct drm_gem_open open_struct; int ret; memset(&open_struct, 0, sizeof(open_struct)); open_struct.name = name; ret = ioctl(fd, DRM_IOCTL_GEM_OPEN, &open_struct); igt_assert(ret == 0); igt_assert(open_struct.handle != 0); errno = 0; return open_struct.handle; } /** * gem_flink: * @fd: open i915 drm file descriptor * @handle: file-private gem buffer object handle * * This wraps the GEM_FLINK ioctl, which is used to export a gem buffer object * into the device-global flink namespace. See gem_open() for opening such a * buffer name on a different i915 drm file descriptor. * * Returns: The created flink buffer name. */ uint32_t gem_flink(int fd, uint32_t handle) { struct drm_gem_flink flink; int ret; memset(&flink, 0, sizeof(flink)); flink.handle = handle; ret = ioctl(fd, DRM_IOCTL_GEM_FLINK, &flink); igt_assert(ret == 0); errno = 0; return flink.name; } /** * gem_close: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * * This wraps the GEM_CLOSE ioctl, which to release a file-private gem buffer * handle. */ void gem_close(int fd, uint32_t handle) { struct drm_gem_close close_bo; igt_assert_neq(handle, 0); memset(&close_bo, 0, sizeof(close_bo)); close_bo.handle = handle; do_ioctl(fd, DRM_IOCTL_GEM_CLOSE, &close_bo); } /** * gem_write: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @offset: offset within the buffer of the subrange * @buf: pointer to the data to write into the buffer * @length: size of the subrange * * This wraps the PWRITE ioctl, which is to upload a linear data to a subrange * of a gem buffer object. */ void gem_write(int fd, uint32_t handle, uint64_t offset, const void *buf, uint64_t length) { struct drm_i915_gem_pwrite gem_pwrite; memset(&gem_pwrite, 0, sizeof(gem_pwrite)); gem_pwrite.handle = handle; gem_pwrite.offset = offset; gem_pwrite.size = length; gem_pwrite.data_ptr = (uintptr_t)buf; do_ioctl(fd, DRM_IOCTL_I915_GEM_PWRITE, &gem_pwrite); } /** * gem_read: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @offset: offset within the buffer of the subrange * @buf: pointer to the data to read into * @length: size of the subrange * * This wraps the PREAD ioctl, which is to download a linear data to a subrange * of a gem buffer object. */ void gem_read(int fd, uint32_t handle, uint64_t offset, void *buf, uint64_t length) { struct drm_i915_gem_pread gem_pread; memset(&gem_pread, 0, sizeof(gem_pread)); gem_pread.handle = handle; gem_pread.offset = offset; gem_pread.size = length; gem_pread.data_ptr = (uintptr_t)buf; do_ioctl(fd, DRM_IOCTL_I915_GEM_PREAD, &gem_pread); } /** * gem_set_domain: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @read_domains: gem domain bits for read access * @write_domain: gem domain bit for write access * * This wraps the SET_DOMAIN ioctl, which is used to control the coherency of * the gem buffer object between the cpu and gtt mappings. It is also use to * synchronize with outstanding rendering in general, but for that use-case * please have a look at gem_sync(). */ void gem_set_domain(int fd, uint32_t handle, uint32_t read_domains, uint32_t write_domain) { struct drm_i915_gem_set_domain set_domain; memset(&set_domain, 0, sizeof(set_domain)); set_domain.handle = handle; set_domain.read_domains = read_domains; set_domain.write_domain = write_domain; do_ioctl(fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &set_domain); } /** * gem_sync: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * * This functions waits for outstanding rendering to complete. */ void gem_sync(int fd, uint32_t handle) { struct drm_i915_gem_wait wait; memset(&wait, 0, sizeof(wait)); wait.bo_handle = handle; wait.timeout_ns =-1; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_WAIT, &wait) == 0) { errno = 0; return; } gem_set_domain(fd, handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); } bool gem_create__has_stolen_support(int fd) { static int has_stolen_support = -1; struct drm_i915_getparam gp; int val = -1; if (has_stolen_support < 0) { memset(&gp, 0, sizeof(gp)); gp.param = 36; /* CREATE_VERSION */ gp.value = &val; /* Do we have the extended gem_create_ioctl? */ ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); has_stolen_support = val >= 2; } return has_stolen_support; } struct local_i915_gem_create_v2 { uint64_t size; uint32_t handle; uint32_t pad; #define I915_CREATE_PLACEMENT_STOLEN (1<<0) uint32_t flags; }; #define LOCAL_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct local_i915_gem_create_v2) uint32_t __gem_create_stolen(int fd, uint64_t size) { struct local_i915_gem_create_v2 create; int ret; memset(&create, 0, sizeof(create)); create.handle = 0; create.size = size; create.flags = I915_CREATE_PLACEMENT_STOLEN; ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_CREATE, &create); if (ret < 0) return 0; errno = 0; return create.handle; } /** * gem_create_stolen: * @fd: open i915 drm file descriptor * @size: desired size of the buffer * * This wraps the new GEM_CREATE ioctl, which allocates a new gem buffer * object of @size and placement in stolen memory region. * * Returns: The file-private handle of the created buffer object */ uint32_t gem_create_stolen(int fd, uint64_t size) { struct local_i915_gem_create_v2 create; memset(&create, 0, sizeof(create)); create.handle = 0; create.size = size; create.flags = I915_CREATE_PLACEMENT_STOLEN; do_ioctl(fd, LOCAL_IOCTL_I915_GEM_CREATE, &create); igt_assert(create.handle); return create.handle; } uint32_t __gem_create(int fd, int size) { struct drm_i915_gem_create create; int ret; memset(&create, 0, sizeof(create)); create.handle = 0; create.size = size; ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create); if (ret < 0) return 0; errno = 0; return create.handle; } /** * gem_create: * @fd: open i915 drm file descriptor * @size: desired size of the buffer * * This wraps the GEM_CREATE ioctl, which allocates a new gem buffer object of * @size. * * Returns: The file-private handle of the created buffer object */ uint32_t gem_create(int fd, uint64_t size) { struct drm_i915_gem_create create; memset(&create, 0, sizeof(create)); create.handle = 0; create.size = size; do_ioctl(fd, DRM_IOCTL_I915_GEM_CREATE, &create); igt_assert(create.handle); return create.handle; } /** * __gem_execbuf: * @fd: open i915 drm file descriptor * @execbuf: execbuffer data structure * * This wraps the EXECBUFFER2 ioctl, which submits a batchbuffer for the gpu to * run. This is allowed to fail, with -errno returned. */ int __gem_execbuf(int fd, struct drm_i915_gem_execbuffer2 *execbuf) { int err = 0; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, execbuf)) err = -errno; return err; } /** * gem_execbuf: * @fd: open i915 drm file descriptor * @execbuf: execbuffer data structure * * This wraps the EXECBUFFER2 ioctl, which submits a batchbuffer for the gpu to * run. */ void gem_execbuf(int fd, struct drm_i915_gem_execbuffer2 *execbuf) { igt_assert_eq(__gem_execbuf(fd, execbuf), 0); errno = 0; } /** * __gem_mmap__gtt: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @size: size of the gem buffer * @prot: memory protection bits as used by mmap() * * This functions wraps up procedure to establish a memory mapping through the * GTT. * * Returns: A pointer to the created memory mapping, NULL on failure. */ void *__gem_mmap__gtt(int fd, uint32_t handle, uint64_t size, unsigned prot) { struct drm_i915_gem_mmap_gtt mmap_arg; void *ptr; memset(&mmap_arg, 0, sizeof(mmap_arg)); mmap_arg.handle = handle; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg)) return NULL; ptr = mmap64(0, size, prot, MAP_SHARED, fd, mmap_arg.offset); if (ptr == MAP_FAILED) ptr = NULL; else errno = 0; return ptr; } /** * gem_mmap__gtt: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @size: size of the gem buffer * @prot: memory protection bits as used by mmap() * * Like __gem_mmap__gtt() except we assert on failure. * * Returns: A pointer to the created memory mapping */ void *gem_mmap__gtt(int fd, uint32_t handle, uint64_t size, unsigned prot) { void *ptr = __gem_mmap__gtt(fd, handle, size, prot); igt_assert(ptr); return ptr; } struct local_i915_gem_mmap_v2 { uint32_t handle; uint32_t pad; uint64_t offset; uint64_t size; uint64_t addr_ptr; uint64_t flags; #define I915_MMAP_WC 0x1 }; #define LOCAL_IOCTL_I915_GEM_MMAP_v2 DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct local_i915_gem_mmap_v2) bool gem_mmap__has_wc(int fd) { static int has_wc = -1; if (has_wc == -1) { struct drm_i915_getparam gp; int val = -1; has_wc = 0; memset(&gp, 0, sizeof(gp)); gp.param = 30; /* MMAP_VERSION */ gp.value = &val; /* Do we have the new mmap_ioctl? */ ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); if (val >= 1) { struct local_i915_gem_mmap_v2 arg; /* Does this device support wc-mmaps ? */ memset(&arg, 0, sizeof(arg)); arg.handle = gem_create(fd, 4096); arg.offset = 0; arg.size = 4096; arg.flags = I915_MMAP_WC; has_wc = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_MMAP_v2, &arg) == 0; gem_close(fd, arg.handle); } errno = 0; } return has_wc > 0; } /** * __gem_mmap__wc: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @offset: offset in the gem buffer of the mmap arena * @size: size of the mmap arena * @prot: memory protection bits as used by mmap() * * This functions wraps up procedure to establish a memory mapping through * direct cpu access, bypassing the gpu and cpu caches completely and also * bypassing the GTT system agent (i.e. there is no automatic tiling of * the mmapping through the fence registers). * * Returns: A pointer to the created memory mapping, NULL on failure. */ void *__gem_mmap__wc(int fd, uint32_t handle, uint64_t offset, uint64_t size, unsigned prot) { struct local_i915_gem_mmap_v2 arg; if (!gem_mmap__has_wc(fd)) { errno = ENOSYS; return NULL; } memset(&arg, 0, sizeof(arg)); arg.handle = handle; arg.offset = offset; arg.size = size; arg.flags = I915_MMAP_WC; if (drmIoctl(fd, LOCAL_IOCTL_I915_GEM_MMAP_v2, &arg)) return NULL; errno = 0; return (void *)(uintptr_t)arg.addr_ptr; } /** * gem_mmap__wc: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @offset: offset in the gem buffer of the mmap arena * @size: size of the mmap arena * @prot: memory protection bits as used by mmap() * * Like __gem_mmap__wc() except we assert on failure. * * Returns: A pointer to the created memory mapping */ void *gem_mmap__wc(int fd, uint32_t handle, uint64_t offset, uint64_t size, unsigned prot) { void *ptr = __gem_mmap__wc(fd, handle, offset, size, prot); igt_assert(ptr); return ptr; } /** * __gem_mmap__cpu: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @offset: offset in the gem buffer of the mmap arena * @size: size of the mmap arena * @prot: memory protection bits as used by mmap() * * This functions wraps up procedure to establish a memory mapping through * direct cpu access, bypassing the gpu completely. * * Returns: A pointer to the created memory mapping, NULL on failure. */ void *__gem_mmap__cpu(int fd, uint32_t handle, uint64_t offset, uint64_t size, unsigned prot) { struct drm_i915_gem_mmap mmap_arg; memset(&mmap_arg, 0, sizeof(mmap_arg)); mmap_arg.handle = handle; mmap_arg.offset = offset; mmap_arg.size = size; if (drmIoctl(fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg)) return NULL; errno = 0; return (void *)(uintptr_t)mmap_arg.addr_ptr; } /** * gem_mmap__cpu: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @offset: offset in the gem buffer of the mmap arena * @size: size of the mmap arena * @prot: memory protection bits as used by mmap() * * Like __gem_mmap__cpu() except we assert on failure. * * Returns: A pointer to the created memory mapping */ void *gem_mmap__cpu(int fd, uint32_t handle, uint64_t offset, uint64_t size, unsigned prot) { void *ptr = __gem_mmap__cpu(fd, handle, offset, size, prot); igt_assert(ptr); return ptr; } /** * gem_madvise: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * @state: desired madvise state * * This is a wraps the MADVISE ioctl, which is used in libdrm to implement * opportunistic buffer object caching. Objects in the cache are set to DONTNEED * (internally in the kernel tracked as purgeable objects). When such a cached * object is in need again it must be set back to WILLNEED before first use. * * Returns: When setting the madvise state to WILLNEED this returns whether the * backing storage was still available or not. */ int gem_madvise(int fd, uint32_t handle, int state) { struct drm_i915_gem_madvise madv; memset(&madv, 0, sizeof(madv)); madv.handle = handle; madv.madv = state; madv.retained = 1; do_ioctl(fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } /** * gem_context_create: * @fd: open i915 drm file descriptor * * This is a wraps the CONTEXT_CREATE ioctl, which is used to allocate a new * hardware context. Not that similarly to gem_set_caching() this wrapper calls * igt_require() internally to correctly skip on kernels and platforms where hw * context support is not available. * * Returns: The id of the allocated hw context. */ uint32_t gem_context_create(int fd) { struct drm_i915_gem_context_create create; memset(&create, 0, sizeof(create)); if (drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create)) { int err = -errno; igt_skip_on(err == -ENODEV || errno == -EINVAL); igt_assert_eq(err, 0); } igt_assert(create.ctx_id != 0); errno = 0; return create.ctx_id; } int __gem_context_destroy(int fd, uint32_t ctx_id) { struct drm_i915_gem_context_destroy destroy; int ret; memset(&destroy, 0, sizeof(destroy)); destroy.ctx_id = ctx_id; ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &destroy); if (ret) return -errno; return 0; } /** * gem_context_destroy: * @fd: open i915 drm file descriptor * @ctx_id: i915 hw context id * * This is a wraps the CONTEXT_DESTROY ioctl, which is used to free a hardware * context. */ void gem_context_destroy(int fd, uint32_t ctx_id) { struct drm_i915_gem_context_destroy destroy; memset(&destroy, 0, sizeof(destroy)); destroy.ctx_id = ctx_id; do_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &destroy); } /** * gem_context_get_param: * @fd: open i915 drm file descriptor * @p: i915 hw context parameter * * This is a wraps the CONTEXT_GET_PARAM ioctl, which is used to free a hardware * context. Not that similarly to gem_set_caching() this wrapper calls * igt_require() internally to correctly skip on kernels and platforms where hw * context parameter support is not available. */ void gem_context_get_param(int fd, struct local_i915_gem_context_param *p) { #define LOCAL_I915_GEM_CONTEXT_GETPARAM 0x34 #define LOCAL_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + LOCAL_I915_GEM_CONTEXT_GETPARAM, struct local_i915_gem_context_param) do_ioctl(fd, LOCAL_IOCTL_I915_GEM_CONTEXT_GETPARAM, p); } int __gem_context_set_param(int fd, struct local_i915_gem_context_param *p) { #define LOCAL_I915_GEM_CONTEXT_SETPARAM 0x35 #define LOCAL_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + LOCAL_I915_GEM_CONTEXT_SETPARAM, struct local_i915_gem_context_param) if (drmIoctl(fd, LOCAL_IOCTL_I915_GEM_CONTEXT_SETPARAM, p)) return -errno; errno = 0; return 0; } /** * gem_context_set_param: * @fd: open i915 drm file descriptor * @p: i915 hw context parameter * * This is a wraps the CONTEXT_SET_PARAM ioctl, which is used to free a hardware * context. Not that similarly to gem_set_caching() this wrapper calls * igt_require() internally to correctly skip on kernels and platforms where hw * context parameter support is not available. */ void gem_context_set_param(int fd, struct local_i915_gem_context_param *p) { igt_assert(__gem_context_set_param(fd, p) == 0); } /** * gem_context_require_param: * @fd: open i915 drm file descriptor * @param: i915 hw context parameter * * Feature test macro to query whether hw context parameter support for @param * is available. Automatically skips through igt_require() if not. */ void gem_context_require_param(int fd, uint64_t param) { struct local_i915_gem_context_param p; p.context = 0; p.param = param; p.value = 0; p.size = 0; igt_require(drmIoctl(fd, LOCAL_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p) == 0); } void gem_context_require_ban_period(int fd) { static int has_ban_period = -1; if (has_ban_period < 0) { struct local_i915_gem_context_param p; p.context = 0; p.param = LOCAL_CONTEXT_PARAM_BAN_PERIOD; p.value = 0; p.size = 0; has_ban_period = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p) == 0; } igt_require(has_ban_period); } int __gem_userptr(int fd, void *ptr, int size, int read_only, uint32_t flags, uint32_t *handle) { struct local_i915_gem_userptr userptr; int ret; memset(&userptr, 0, sizeof(userptr)); userptr.user_ptr = (uintptr_t)ptr; userptr.user_size = size; userptr.flags = flags; if (read_only) userptr.flags |= LOCAL_I915_USERPTR_READ_ONLY; ret = drmIoctl(fd, LOCAL_IOCTL_I915_GEM_USERPTR, &userptr); if (ret) ret = errno; igt_skip_on_f(ret == ENODEV && (flags & LOCAL_I915_USERPTR_UNSYNCHRONIZED) == 0 && !read_only, "Skipping, synchronized mappings with no kernel CONFIG_MMU_NOTIFIER?"); if (ret == 0) *handle = userptr.handle; return ret; } /** * gem_userptr: * @fd: open i915 drm file descriptor * @ptr: userptr pointer to be passed * @size: desired size of the buffer * @read_only: specify whether userptr is opened read only * @flags: other userptr flags * @handle: returned handle for the object * * Returns userptr handle for the GEM object. */ void gem_userptr(int fd, void *ptr, int size, int read_only, uint32_t flags, uint32_t *handle) { igt_assert_eq(__gem_userptr(fd, ptr, size, read_only, flags, handle), 0); } /** * gem_sw_finish: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * * This is a wraps the SW_FINISH ioctl, which is used to flush out frontbuffer * rendering done through the direct cpu memory mappings. Shipping userspace * does _not_ call this after frontbuffer rendering through gtt memory mappings. */ void gem_sw_finish(int fd, uint32_t handle) { struct drm_i915_gem_sw_finish finish; memset(&finish, 0, sizeof(finish)); finish.handle = handle; do_ioctl(fd, DRM_IOCTL_I915_GEM_SW_FINISH, &finish); } /** * gem_bo_busy: * @fd: open i915 drm file descriptor * @handle: gem buffer object handle * * This is a wraps the BUSY ioctl, which tells whether a buffer object is still * actively used by the gpu in a execbuffer. * * Returns: The busy state of the buffer object. */ bool gem_bo_busy(int fd, uint32_t handle) { struct drm_i915_gem_busy busy; memset(&busy, 0, sizeof(busy)); busy.handle = handle; do_ioctl(fd, DRM_IOCTL_I915_GEM_BUSY, &busy); return !!busy.busy; } /* feature test helpers */ /** * gem_gtt_type: * @fd: open i915 drm file descriptor * * Feature test macro to check what type of gtt is being used by the kernel: * 0 - global gtt * 1 - aliasing ppgtt * 2 - full ppgtt, limited to 32bit address space * 3 - full ppgtt, 64bit address space * * Returns: Type of gtt being used. */ int gem_gtt_type(int fd) { struct drm_i915_getparam gp; int val = 0; memset(&gp, 0, sizeof(gp)); gp.param = 18; /* HAS_ALIASING_PPGTT */ gp.value = &val; if (ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp))) return 0; errno = 0; return val; } /** * gem_uses_ppgtt: * @fd: open i915 drm file descriptor * * Feature test macro to check whether the kernel internally uses ppgtt to * execute batches. Note that this is also true when we're using full ppgtt. * * Returns: Whether batches are run through ppgtt. */ bool gem_uses_ppgtt(int fd) { return gem_gtt_type(fd) > 0; } /** * gem_uses_full_ppgtt: * @fd: open i915 drm file descriptor * * Feature test macro to check whether the kernel internally uses full * per-process gtt to execute batches. Note that this is also true when we're * using full 64b ppgtt. * * Returns: Whether batches are run through full ppgtt. */ bool gem_uses_full_ppgtt(int fd) { return gem_gtt_type(fd) > 1; } /** * gem_available_fences: * @fd: open i915 drm file descriptor * * Feature test macro to query the kernel for the number of available fences * usable in a batchbuffer. Only relevant for pre-gen4. * * Returns: The number of available fences. */ int gem_available_fences(int fd) { static int num_fences = -1; if (num_fences < 0) { struct drm_i915_getparam gp; memset(&gp, 0, sizeof(gp)); gp.param = I915_PARAM_NUM_FENCES_AVAIL; gp.value = &num_fences; num_fences = 0; ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)); errno = 0; } return num_fences; } bool gem_has_llc(int fd) { static int has_llc = -1; if (has_llc < 0) { struct drm_i915_getparam gp; memset(&gp, 0, sizeof(gp)); gp.param = I915_PARAM_HAS_LLC; gp.value = &has_llc; has_llc = 0; ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)); errno = 0; } return has_llc; } /** * gem_get_num_rings: * @fd: open i915 drm file descriptor * * Feature test macro to query the number of available rings. This is useful in * test loops which need to step through all rings and similar logic. * * For more explicit tests of ring availability see gem_has_enable_ring() and * the ring specific versions like gem_has_bsd(). * * Returns: The number of available rings. */ int gem_get_num_rings(int fd) { static int num_rings = -1; if (num_rings < 0) { num_rings = 1; /* render ring is always available */ if (gem_has_bsd(fd)) num_rings++; else goto skip; if (gem_has_blt(fd)) num_rings++; else goto skip; if (gem_has_vebox(fd)) num_rings++; else goto skip; } skip: return num_rings; } /** * gem_has_enable_ring: * @fd: open i915 drm file descriptor * @param: ring flag bit as used in gem_execbuf() * * Feature test macro to query whether a specific ring is available. * * Returns: Whether the ring is available or not. */ bool gem_has_enable_ring(int fd,int param) { drm_i915_getparam_t gp; int tmp = 0; memset(&gp, 0, sizeof(gp)); gp.value = &tmp; gp.param = param; if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) return false; errno = 0; return tmp > 0; } /** * gem_has_bsd: * @fd: open i915 drm file descriptor * * Feature test macro to query whether the BSD ring is available. This is simply * a specific version of gem_has_enable_ring() for the BSD ring. * * Note that recent Bspec calls this the VCS ring for Video Command Submission. * * Returns: Whether the BSD ring is available or not. */ bool gem_has_bsd(int fd) { static int has_bsd = -1; if (has_bsd < 0) has_bsd = gem_has_enable_ring(fd,I915_PARAM_HAS_BSD); return has_bsd; } /** * gem_has_blt: * @fd: open i915 drm file descriptor * * Feature test macro to query whether the blitter ring is available. This is simply * a specific version of gem_has_enable_ring() for the blitter ring. * * Note that recent Bspec calls this the BCS ring for Blitter Command Submission. * * Returns: Whether the blitter ring is available or not. */ bool gem_has_blt(int fd) { static int has_blt = -1; if (has_blt < 0) has_blt = gem_has_enable_ring(fd,I915_PARAM_HAS_BLT); return has_blt; } #define LOCAL_I915_PARAM_HAS_VEBOX 22 /** * gem_has_vebox: * @fd: open i915 drm file descriptor * * Feature test macro to query whether the vebox ring is available. This is simply * a specific version of gem_has_enable_ring() for the vebox ring. * * Note that recent Bspec calls this the VECS ring for Video Enhancement Command * Submission. * * Returns: Whether the vebox ring is available or not. */ bool gem_has_vebox(int fd) { static int has_vebox = -1; if (has_vebox < 0) has_vebox = gem_has_enable_ring(fd,LOCAL_I915_PARAM_HAS_VEBOX); return has_vebox; } #define LOCAL_I915_PARAM_HAS_BSD2 31 /** * gem_has_bsd2: * @fd: open i915 drm file descriptor * * Feature test macro to query whether the BSD2 ring is available. This is simply * a specific version of gem_has_enable_ring() for the BSD2 ring. * * Note that recent Bspec calls this the VCS ring for Video Command Submission. * * Returns: Whether the BSD ring is avaible or not. */ bool gem_has_bsd2(int fd) { static int has_bsd2 = -1; if (has_bsd2 < 0) has_bsd2 = gem_has_enable_ring(fd,LOCAL_I915_PARAM_HAS_BSD2); return has_bsd2; } /** * gem_available_aperture_size: * @fd: open i915 drm file descriptor * * Feature test macro to query the kernel for the available gpu aperture size * usable in a batchbuffer. * * Returns: The available gtt address space size. */ uint64_t gem_available_aperture_size(int fd) { struct drm_i915_gem_get_aperture aperture; memset(&aperture, 0, sizeof(aperture)); aperture.aper_size = 256*1024*1024; do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture); return aperture.aper_available_size; } /** * gem_aperture_size: * @fd: open i915 drm file descriptor * * Feature test macro to query the kernel for the total gpu aperture size. * * Returns: The total gtt address space size. */ uint64_t gem_aperture_size(int fd) { static uint64_t aperture_size = 0; if (aperture_size == 0) { struct local_i915_gem_context_param p; memset(&p, 0, sizeof(p)); p.param = 0x3; if (ioctl(fd, LOCAL_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p) == 0) { aperture_size = p.value; } else { struct drm_i915_gem_get_aperture aperture; memset(&aperture, 0, sizeof(aperture)); aperture.aper_size = 256*1024*1024; do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture); aperture_size = aperture.aper_size; } } return aperture_size; } /** * gem_mappable_aperture_size: * * Feature test macro to query the kernel for the mappable gpu aperture size. * This is the area available for GTT memory mappings. * * Returns: The mappable gtt address space size. */ uint64_t gem_mappable_aperture_size(void) { struct pci_device *pci_dev = intel_get_pci_device(); int bar; if (intel_gen(pci_dev->device_id) < 3) bar = 0; else bar = 2; return pci_dev->regions[bar].size; } /** * gem_global_aperture_size: * * Feature test macro to query the kernel for the global gpu aperture size. * This is the area available for the kernel to perform address translations. * * Returns: The mappable gtt address space size. */ uint64_t gem_global_aperture_size(int fd) { struct drm_i915_gem_get_aperture aperture; memset(&aperture, 0, sizeof(aperture)); aperture.aper_size = 256*1024*1024; do_ioctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture); return aperture.aper_size; } #define LOCAL_I915_PARAM_HAS_EXEC_SOFTPIN 37 /** * gem_has_softpin: * @fd: open i915 drm file descriptor * * Feature test macro to query whether the softpinning functionality is * supported. * * Returns: Whether softpin support is available */ bool gem_has_softpin(int fd) { static int has_softpin = -1; if (has_softpin < 0) { struct drm_i915_getparam gp; memset(&gp, 0, sizeof(gp)); gp.param = LOCAL_I915_PARAM_HAS_EXEC_SOFTPIN; gp.value = &has_softpin; has_softpin = 0; ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp, sizeof(gp)); errno = 0; } return has_softpin; } /** * gem_require_caching: * @fd: open i915 drm file descriptor * * Feature test macro to query whether buffer object caching control is * available. Automatically skips through igt_require() if not. */ void gem_require_caching(int fd) { struct local_drm_i915_gem_caching arg; int ret; memset(&arg, 0, sizeof(arg)); arg.handle = gem_create(fd, 4096); igt_assert(arg.handle != 0); arg.caching = 0; ret = ioctl(fd, LOCAL_DRM_IOCTL_I915_GEM_SET_CACHEING, &arg); gem_close(fd, arg.handle); igt_require(ret == 0); errno = 0; } static int gem_has_ring(int fd, int ring) { uint32_t bbe = MI_BATCH_BUFFER_END; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 exec; int ret; memset(&exec, 0, sizeof(exec)); exec.handle = gem_create(fd, 4096); gem_write(fd, exec.handle, 0, &bbe, sizeof(bbe)); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = (uintptr_t)&exec; execbuf.buffer_count = 1; execbuf.flags = ring; ret = __gem_execbuf(fd, &execbuf); gem_close(fd, exec.handle); return ret == 0; } /** * gem_require_ring: * @fd: open i915 drm file descriptor * @ring_id: ring flag bit as used in gem_execbuf() * * Feature test macro to query whether a specific ring is available. * In contrast to gem_has_enable_ring() this automagically skips if the ring * isn't available by calling igt_require(). */ void gem_require_ring(int fd, int ring_id) { igt_require(gem_has_ring(fd, ring_id)); /* silly ABI, the kernel thinks everyone who has BSD also has BSD2 */ if ((ring_id & ~(3<<13)) == I915_EXEC_BSD) { if (ring_id & (3 << 13)) igt_require(gem_has_bsd2(fd)); } } /* prime */ /** * prime_handle_to_fd: * @fd: open i915 drm file descriptor * @handle: file-private gem buffer object handle * * This wraps the PRIME_HANDLE_TO_FD ioctl, which is used to export a gem buffer * object into a global (i.e. potentially cross-device) dma-buf file-descriptor * handle. * * Returns: The created dma-buf fd handle. */ int prime_handle_to_fd(int fd, uint32_t handle) { struct drm_prime_handle args; memset(&args, 0, sizeof(args)); args.handle = handle; args.flags = DRM_CLOEXEC; args.fd = -1; do_ioctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args); return args.fd; } /** * prime_handle_to_fd_for_mmap: * @fd: open i915 drm file descriptor * @handle: file-private gem buffer object handle * * Same as prime_handle_to_fd above but with DRM_RDWR capabilities, which can * be useful for writing into the mmap'ed dma-buf file-descriptor. * * Returns: The created dma-buf fd handle or -1 if the ioctl fails. */ int prime_handle_to_fd_for_mmap(int fd, uint32_t handle) { struct drm_prime_handle args; memset(&args, 0, sizeof(args)); args.handle = handle; args.flags = DRM_CLOEXEC | DRM_RDWR; args.fd = -1; if (drmIoctl(fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args) != 0) return -1; return args.fd; } /** * prime_fd_to_handle: * @fd: open i915 drm file descriptor * @dma_buf_fd: dma-buf fd handle * * This wraps the PRIME_FD_TO_HANDLE ioctl, which is used to import a dma-buf * file-descriptor into a gem buffer object. * * Returns: The created gem buffer object handle. */ uint32_t prime_fd_to_handle(int fd, int dma_buf_fd) { struct drm_prime_handle args; memset(&args, 0, sizeof(args)); args.fd = dma_buf_fd; args.flags = 0; args.handle = 0; do_ioctl(fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args); return args.handle; } /** * prime_get_size: * @dma_buf_fd: dma-buf fd handle * * This wraps the lseek() protocol used to query the invariant size of a * dma-buf. Not all kernels support this, which is check with igt_require() and * so will result in automagic test skipping. * * Returns: The lifetime-invariant size of the dma-buf object. */ off_t prime_get_size(int dma_buf_fd) { off_t ret; ret = lseek(dma_buf_fd, 0, SEEK_END); igt_assert(ret >= 0 || errno == ESPIPE); igt_require(ret >= 0); errno = 0; return ret; } /** * prime_sync_start * @dma_buf_fd: dma-buf fd handle */ void prime_sync_start(int dma_buf_fd) { struct local_dma_buf_sync sync_start; memset(&sync_start, 0, sizeof(sync_start)); sync_start.flags = LOCAL_DMA_BUF_SYNC_START | LOCAL_DMA_BUF_SYNC_RW; do_ioctl(dma_buf_fd, LOCAL_DMA_BUF_IOCTL_SYNC, &sync_start); } /** * prime_sync_end * @dma_buf_fd: dma-buf fd handle */ void prime_sync_end(int dma_buf_fd) { struct local_dma_buf_sync sync_end; memset(&sync_end, 0, sizeof(sync_end)); sync_end.flags = LOCAL_DMA_BUF_SYNC_END | LOCAL_DMA_BUF_SYNC_RW; do_ioctl(dma_buf_fd, LOCAL_DMA_BUF_IOCTL_SYNC, &sync_end); } /** * igt_require_fb_modifiers: * @fd: Open DRM file descriptor. * * Requires presence of DRM_CAP_ADDFB2_MODIFIERS. */ void igt_require_fb_modifiers(int fd) { static bool has_modifiers, cap_modifiers_tested; if (!cap_modifiers_tested) { uint64_t cap_modifiers; int ret; ret = drmGetCap(fd, LOCAL_DRM_CAP_ADDFB2_MODIFIERS, &cap_modifiers); igt_assert(ret == 0 || errno == EINVAL); has_modifiers = ret == 0 && cap_modifiers == 1; cap_modifiers_tested = true; } igt_require(has_modifiers); } int __kms_addfb(int fd, uint32_t handle, uint32_t width, uint32_t height, uint32_t stride, uint32_t pixel_format, uint64_t modifier, uint32_t flags, uint32_t *buf_id) { struct local_drm_mode_fb_cmd2 f; int ret; igt_require_fb_modifiers(fd); memset(&f, 0, sizeof(f)); f.width = width; f.height = height; f.pixel_format = pixel_format; f.flags = flags; f.handles[0] = handle; f.pitches[0] = stride; f.modifier[0] = modifier; ret = drmIoctl(fd, LOCAL_DRM_IOCTL_MODE_ADDFB2, &f); *buf_id = f.fb_id; return ret < 0 ? -errno : ret; }