/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "igt.h" #include "igt_dummyload.h" #define MAX_REG 0x200000 #define NUM_REGS (MAX_REG / sizeof(uint32_t)) #define PAGE_ALIGN(x) ALIGN(x, 4096) #define DIRTY1 0x1 #define DIRTY2 0x2 #define RESET 0x4 #define BIT(x) (1ul << (x)) #define ENGINE(x, y) BIT(4*(x) + (y)) enum { RCS0 = ENGINE(I915_ENGINE_CLASS_RENDER, 0), BCS0 = ENGINE(I915_ENGINE_CLASS_COPY, 0), VCS0 = ENGINE(I915_ENGINE_CLASS_VIDEO, 0), VCS1 = ENGINE(I915_ENGINE_CLASS_VIDEO, 1), VCS2 = ENGINE(I915_ENGINE_CLASS_VIDEO, 2), VCS3 = ENGINE(I915_ENGINE_CLASS_VIDEO, 3), VECS0 = ENGINE(I915_ENGINE_CLASS_VIDEO_ENHANCE, 0), }; #define ALL ~0u #define GEN_RANGE(x, y) ((ALL >> (32 - (y - x + 1))) << x) #define GEN4 (ALL << 4) #define GEN5 (ALL << 5) #define GEN6 (ALL << 6) #define GEN7 (ALL << 7) #define GEN8 (ALL << 8) #define GEN9 (ALL << 9) #define GEN10 (ALL << 10) #define GEN11 (ALL << 11) #define NOCTX 0 #define LAST_KNOWN_GEN 11 static const struct named_register { const char *name; unsigned int gen_mask; /* on which gen the register exists */ unsigned int engine_mask; /* preferred engine / powerwell */ uint32_t offset; /* address of register, from bottom of mmio bar */ uint32_t count; uint32_t ignore_bits; uint32_t write_mask; /* some registers bits do not exist */ bool masked; } nonpriv_registers[] = { { "NOPID", NOCTX, RCS0, 0x2094 }, { "MI_PREDICATE_RESULT_2", NOCTX, RCS0, 0x23bc }, { "INSTPM", GEN6, RCS0, 0x20c0, .ignore_bits = BIT(8) /* ro counter */, .write_mask = BIT(8) /* rsvd varies between gen */, .masked = true, }, { "IA_VERTICES_COUNT", GEN4, RCS0, 0x2310, 2 }, { "IA_PRIMITIVES_COUNT", GEN4, RCS0, 0x2318, 2 }, { "VS_INVOCATION_COUNT", GEN4, RCS0, 0x2320, 2 }, { "HS_INVOCATION_COUNT", GEN4, RCS0, 0x2300, 2 }, { "DS_INVOCATION_COUNT", GEN4, RCS0, 0x2308, 2 }, { "GS_INVOCATION_COUNT", GEN4, RCS0, 0x2328, 2 }, { "GS_PRIMITIVES_COUNT", GEN4, RCS0, 0x2330, 2 }, { "CL_INVOCATION_COUNT", GEN4, RCS0, 0x2338, 2 }, { "CL_PRIMITIVES_COUNT", GEN4, RCS0, 0x2340, 2 }, { "PS_INVOCATION_COUNT_0", GEN4, RCS0, 0x22c8, 2, .write_mask = ~0x3 }, { "PS_DEPTH_COUNT_0", GEN4, RCS0, 0x22d8, 2 }, { "GPUGPU_DISPATCHDIMX", GEN8, RCS0, 0x2500 }, { "GPUGPU_DISPATCHDIMY", GEN8, RCS0, 0x2504 }, { "GPUGPU_DISPATCHDIMZ", GEN8, RCS0, 0x2508 }, { "MI_PREDICATE_SRC0", GEN8, RCS0, 0x2400, 2 }, { "MI_PREDICATE_SRC1", GEN8, RCS0, 0x2408, 2 }, { "MI_PREDICATE_DATA", GEN8, RCS0, 0x2410, 2 }, { "MI_PRED_RESULT", GEN8, RCS0, 0x2418, .write_mask = 0x1 }, { "3DPRIM_END_OFFSET", GEN6, RCS0, 0x2420 }, { "3DPRIM_START_VERTEX", GEN6, RCS0, 0x2430 }, { "3DPRIM_VERTEX_COUNT", GEN6, RCS0, 0x2434 }, { "3DPRIM_INSTANCE_COUNT", GEN6, RCS0, 0x2438 }, { "3DPRIM_START_INSTANCE", GEN6, RCS0, 0x243c }, { "3DPRIM_BASE_VERTEX", GEN6, RCS0, 0x2440 }, { "GPGPU_THREADS_DISPATCHED", GEN8, RCS0, 0x2290, 2 }, { "PS_INVOCATION_COUNT_1", GEN8, RCS0, 0x22f0, 2, .write_mask = ~0x3 }, { "PS_DEPTH_COUNT_1", GEN8, RCS0, 0x22f8, 2 }, { "BB_OFFSET", GEN8, RCS0, 0x2158, .ignore_bits = 0x7 }, { "MI_PREDICATE_RESULT_1", GEN8, RCS0, 0x241c }, { "CS_GPR", GEN8, RCS0, 0x2600, 32 }, { "OA_CTX_CONTROL", GEN8, RCS0, 0x2360 }, { "OACTXID", GEN8, RCS0, 0x2364 }, { "PS_INVOCATION_COUNT_2", GEN8, RCS0, 0x2448, 2, .write_mask = ~0x3 }, { "PS_DEPTH_COUNT_2", GEN8, RCS0, 0x2450, 2 }, { "Cache_Mode_0", GEN7, RCS0, 0x7000, .masked = true }, { "Cache_Mode_1", GEN7, RCS0, 0x7004, .masked = true }, { "GT_MODE", GEN8, RCS0, 0x7008, .masked = true }, { "L3_Config", GEN8, RCS0, 0x7034 }, { "TD_CTL", GEN8, RCS0, 0xe400, .write_mask = 0xffff }, { "TD_CTL2", GEN8, RCS0, 0xe404 }, { "SO_NUM_PRIMS_WRITTEN0", GEN6, RCS0, 0x5200, 2 }, { "SO_NUM_PRIMS_WRITTEN1", GEN6, RCS0, 0x5208, 2 }, { "SO_NUM_PRIMS_WRITTEN2", GEN6, RCS0, 0x5210, 2 }, { "SO_NUM_PRIMS_WRITTEN3", GEN6, RCS0, 0x5218, 2 }, { "SO_PRIM_STORAGE_NEEDED0", GEN6, RCS0, 0x5240, 2 }, { "SO_PRIM_STORAGE_NEEDED1", GEN6, RCS0, 0x5248, 2 }, { "SO_PRIM_STORAGE_NEEDED2", GEN6, RCS0, 0x5250, 2 }, { "SO_PRIM_STORAGE_NEEDED3", GEN6, RCS0, 0x5258, 2 }, { "SO_WRITE_OFFSET0", GEN7, RCS0, 0x5280, .write_mask = ~0x3 }, { "SO_WRITE_OFFSET1", GEN7, RCS0, 0x5284, .write_mask = ~0x3 }, { "SO_WRITE_OFFSET2", GEN7, RCS0, 0x5288, .write_mask = ~0x3 }, { "SO_WRITE_OFFSET3", GEN7, RCS0, 0x528c, .write_mask = ~0x3 }, { "OA_CONTROL", NOCTX, RCS0, 0x2b00 }, { "PERF_CNT_1", NOCTX, RCS0, 0x91b8, 2 }, { "PERF_CNT_2", NOCTX, RCS0, 0x91c0, 2 }, { "CTX_PREEMPT", NOCTX /* GEN10 */, RCS0, 0x2248 }, { "CS_CHICKEN1", GEN11, RCS0, 0x2580, .masked = true }, { "HDC_CHICKEN1", GEN_RANGE(10, 10), RCS0, 0x7304, .masked = true }, /* Privileged (enabled by w/a + FORCE_TO_NONPRIV) */ { "CTX_PREEMPT", NOCTX /* GEN9 */, RCS0, 0x2248 }, { "CS_CHICKEN1", GEN_RANGE(9, 10), RCS0, 0x2580, .masked = true }, { "HDC_CHICKEN1", GEN_RANGE(9, 9), RCS0, 0x7304, .masked = true }, { "L3SQREG4", NOCTX /* GEN9:skl,kbl */, RCS0, 0xb118, .write_mask = ~0x1ffff0 }, { "HALF_SLICE_CHICKEN7", GEN_RANGE(11, 11), RCS0, 0xe194, .masked = true }, { "SAMPLER_MODE", GEN_RANGE(11, 11), RCS0, 0xe18c, .masked = true }, { "BCS_GPR", GEN9, BCS0, 0x22600, 32 }, { "BCS_SWCTRL", GEN8, BCS0, 0x22200, .write_mask = 0x3, .masked = true }, { "MFC_VDBOX1", NOCTX, VCS0, 0x12800, 64 }, { "MFC_VDBOX2", NOCTX, VCS1, 0x1c800, 64 }, { "VCS0_GPR", GEN_RANGE(9, 10), VCS0, 0x12600, 32 }, { "VCS1_GPR", GEN_RANGE(9, 10), VCS1, 0x1c600, 32 }, { "VECS_GPR", GEN_RANGE(9, 10), VECS0, 0x1a600, 32 }, { "VCS0_GPR", GEN11, VCS0, 0x1c0600, 32 }, { "VCS1_GPR", GEN11, VCS1, 0x1c4600, 32 }, { "VCS2_GPR", GEN11, VCS2, 0x1d0600, 32 }, { "VCS3_GPR", GEN11, VCS3, 0x1d4600, 32 }, { "VECS_GPR", GEN11, VECS0, 0x1c8600, 32 }, {} }, ignore_registers[] = { { "RCS timestamp", GEN6, ~0u, 0x2358 }, { "BCS timestamp", GEN7, ~0u, 0x22358 }, { "VCS0 timestamp", GEN_RANGE(7, 10), ~0u, 0x12358 }, { "VCS1 timestamp", GEN_RANGE(7, 10), ~0u, 0x1c358 }, { "VECS timestamp", GEN_RANGE(8, 10), ~0u, 0x1a358 }, { "VCS0 timestamp", GEN11, ~0u, 0x1c0358 }, { "VCS1 timestamp", GEN11, ~0u, 0x1c4358 }, { "VCS2 timestamp", GEN11, ~0u, 0x1d0358 }, { "VCS3 timestamp", GEN11, ~0u, 0x1d4358 }, { "VECS timestamp", GEN11, ~0u, 0x1c8358 }, {} }; static const char *register_name(uint32_t offset, char *buf, size_t len) { for (const struct named_register *r = nonpriv_registers; r->name; r++) { unsigned int width = r->count ? 4*r->count : 4; if (offset >= r->offset && offset < r->offset + width) { if (r->count <= 1) return r->name; snprintf(buf, len, "%s[%d]", r->name, (offset - r->offset)/4); return buf; } } return "unknown"; } static const struct named_register *lookup_register(uint32_t offset) { for (const struct named_register *r = nonpriv_registers; r->name; r++) { unsigned int width = r->count ? 4*r->count : 4; if (offset >= r->offset && offset < r->offset + width) return r; } return NULL; } static bool ignore_register(uint32_t offset) { for (const struct named_register *r = ignore_registers; r->name; r++) { unsigned int width = r->count ? 4*r->count : 4; if (offset >= r->offset && offset < r->offset + width) return true; } return false; } static void tmpl_regs(int fd, uint32_t ctx, const struct intel_execution_engine2 *e, uint32_t handle, uint32_t value) { const unsigned int gen_bit = 1 << intel_gen(intel_get_drm_devid(fd)); const unsigned int engine_bit = ENGINE(e->class, e->instance); unsigned int regs_size; uint32_t *regs; regs_size = NUM_REGS * sizeof(uint32_t); regs_size = PAGE_ALIGN(regs_size); regs = gem_mmap__cpu(fd, handle, 0, regs_size, PROT_WRITE); gem_set_domain(fd, handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); for (const struct named_register *r = nonpriv_registers; r->name; r++) { if (!(r->engine_mask & engine_bit)) continue; if (!(r->gen_mask & gen_bit)) continue; for (unsigned count = r->count ?: 1, offset = r->offset; count--; offset += 4) { uint32_t x = value; if (r->write_mask) x &= r->write_mask; if (r->masked) x &= 0xffff; regs[offset/sizeof(*regs)] = x; } } munmap(regs, regs_size); } static uint32_t read_regs(int fd, uint32_t ctx, const struct intel_execution_engine2 *e, unsigned int flags) { const unsigned int gen = intel_gen(intel_get_drm_devid(fd)); const unsigned int gen_bit = 1 << gen; const unsigned int engine_bit = ENGINE(e->class, e->instance); const bool r64b = gen >= 8; struct drm_i915_gem_exec_object2 obj[2]; struct drm_i915_gem_relocation_entry *reloc; struct drm_i915_gem_execbuffer2 execbuf; unsigned int regs_size, batch_size, n; uint32_t *batch, *b; reloc = calloc(NUM_REGS, sizeof(*reloc)); igt_assert(reloc); regs_size = NUM_REGS * sizeof(uint32_t); regs_size = PAGE_ALIGN(regs_size); batch_size = NUM_REGS * 4 * sizeof(uint32_t) + 4; batch_size = PAGE_ALIGN(batch_size); memset(obj, 0, sizeof(obj)); obj[0].handle = gem_create(fd, regs_size); obj[1].handle = gem_create(fd, batch_size); obj[1].relocs_ptr = to_user_pointer(reloc); b = batch = gem_mmap__cpu(fd, obj[1].handle, 0, batch_size, PROT_WRITE); gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); n = 0; for (const struct named_register *r = nonpriv_registers; r->name; r++) { if (!(r->engine_mask & engine_bit)) continue; if (!(r->gen_mask & gen_bit)) continue; for (unsigned count = r->count ?: 1, offset = r->offset; count--; offset += 4) { *b++ = 0x24 << 23 | (1 + r64b); /* SRM */ *b++ = offset; reloc[n].target_handle = obj[0].handle; reloc[n].presumed_offset = 0; reloc[n].offset = (b - batch) * sizeof(*b); reloc[n].delta = offset; reloc[n].read_domains = I915_GEM_DOMAIN_RENDER; reloc[n].write_domain = I915_GEM_DOMAIN_RENDER; *b++ = offset; if (r64b) *b++ = 0; n++; } } obj[1].relocation_count = n; *b++ = MI_BATCH_BUFFER_END; munmap(batch, batch_size); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(obj); execbuf.buffer_count = 2; execbuf.flags = gem_class_instance_to_eb_flags(fd, e->class, e->instance); execbuf.rsvd1 = ctx; gem_execbuf(fd, &execbuf); gem_close(fd, obj[1].handle); free(reloc); return obj[0].handle; } static void write_regs(int fd, uint32_t ctx, const struct intel_execution_engine2 *e, unsigned int flags, uint32_t value) { const unsigned int gen_bit = 1 << intel_gen(intel_get_drm_devid(fd)); const unsigned int engine_bit = ENGINE(e->class, e->instance); struct drm_i915_gem_exec_object2 obj; struct drm_i915_gem_execbuffer2 execbuf; unsigned int batch_size; uint32_t *batch, *b; batch_size = NUM_REGS * 3 * sizeof(uint32_t) + 4; batch_size = PAGE_ALIGN(batch_size); memset(&obj, 0, sizeof(obj)); obj.handle = gem_create(fd, batch_size); b = batch = gem_mmap__cpu(fd, obj.handle, 0, batch_size, PROT_WRITE); gem_set_domain(fd, obj.handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); for (const struct named_register *r = nonpriv_registers; r->name; r++) { if (!(r->engine_mask & engine_bit)) continue; if (!(r->gen_mask & gen_bit)) continue; for (unsigned count = r->count ?: 1, offset = r->offset; count--; offset += 4) { uint32_t x = value; if (r->write_mask) x &= r->write_mask; if (r->masked) x |= 0xffffu << 16; *b++ = 0x22 << 23 | 1; /* LRI */ *b++ = offset; *b++ = x; } } *b++ = MI_BATCH_BUFFER_END; munmap(batch, batch_size); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj); execbuf.buffer_count = 1; execbuf.flags = gem_class_instance_to_eb_flags(fd, e->class, e->instance); execbuf.rsvd1 = ctx; gem_execbuf(fd, &execbuf); gem_close(fd, obj.handle); } static void restore_regs(int fd, uint32_t ctx, const struct intel_execution_engine2 *e, unsigned int flags, uint32_t regs) { const unsigned int gen = intel_gen(intel_get_drm_devid(fd)); const unsigned int gen_bit = 1 << gen; const unsigned int engine_bit = ENGINE(e->class, e->instance); const bool r64b = gen >= 8; struct drm_i915_gem_exec_object2 obj[2]; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_relocation_entry *reloc; unsigned int batch_size, n; uint32_t *batch, *b; if (gen < 7) /* no LRM */ return; reloc = calloc(NUM_REGS, sizeof(*reloc)); igt_assert(reloc); batch_size = NUM_REGS * 3 * sizeof(uint32_t) + 4; batch_size = PAGE_ALIGN(batch_size); memset(obj, 0, sizeof(obj)); obj[0].handle = regs; obj[1].handle = gem_create(fd, batch_size); obj[1].relocs_ptr = to_user_pointer(reloc); b = batch = gem_mmap__cpu(fd, obj[1].handle, 0, batch_size, PROT_WRITE); gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); n = 0; for (const struct named_register *r = nonpriv_registers; r->name; r++) { if (!(r->engine_mask & engine_bit)) continue; if (!(r->gen_mask & gen_bit)) continue; for (unsigned count = r->count ?: 1, offset = r->offset; count--; offset += 4) { *b++ = 0x29 << 23 | (1 + r64b); /* LRM */ *b++ = offset; reloc[n].target_handle = obj[0].handle; reloc[n].presumed_offset = 0; reloc[n].offset = (b - batch) * sizeof(*b); reloc[n].delta = offset; reloc[n].read_domains = I915_GEM_DOMAIN_RENDER; reloc[n].write_domain = 0; *b++ = offset; if (r64b) *b++ = 0; n++; } } obj[1].relocation_count = n; *b++ = MI_BATCH_BUFFER_END; munmap(batch, batch_size); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(obj); execbuf.buffer_count = 2; execbuf.flags = gem_class_instance_to_eb_flags(fd, e->class, e->instance); execbuf.rsvd1 = ctx; gem_execbuf(fd, &execbuf); gem_close(fd, obj[1].handle); } __attribute__((unused)) static void dump_regs(int fd, const struct intel_execution_engine2 *e, unsigned int regs) { const int gen = intel_gen(intel_get_drm_devid(fd)); const unsigned int gen_bit = 1 << gen; const unsigned int engine_bit = ENGINE(e->class, e->instance); unsigned int regs_size; uint32_t *out; regs_size = NUM_REGS * sizeof(uint32_t); regs_size = PAGE_ALIGN(regs_size); out = gem_mmap__cpu(fd, regs, 0, regs_size, PROT_READ); gem_set_domain(fd, regs, I915_GEM_DOMAIN_CPU, 0); for (const struct named_register *r = nonpriv_registers; r->name; r++) { if (!(r->engine_mask & engine_bit)) continue; if (!(r->gen_mask & gen_bit)) continue; if (r->count <= 1) { igt_debug("0x%04x (%s): 0x%08x\n", r->offset, r->name, out[r->offset/4]); } else { for (unsigned x = 0; x < r->count; x++) igt_debug("0x%04x (%s[%d]): 0x%08x\n", r->offset+4*x, r->name, x, out[r->offset/4 + x]); } } munmap(out, regs_size); } static void compare_regs(int fd, uint32_t A, uint32_t B, const char *who) { unsigned int num_errors; unsigned int regs_size; uint32_t *a, *b; char buf[80]; regs_size = NUM_REGS * sizeof(uint32_t); regs_size = PAGE_ALIGN(regs_size); a = gem_mmap__cpu(fd, A, 0, regs_size, PROT_READ); gem_set_domain(fd, A, I915_GEM_DOMAIN_CPU, 0); b = gem_mmap__cpu(fd, B, 0, regs_size, PROT_READ); gem_set_domain(fd, B, I915_GEM_DOMAIN_CPU, 0); num_errors = 0; for (unsigned int n = 0; n < NUM_REGS; n++) { const struct named_register *r; uint32_t offset = n * sizeof(uint32_t); uint32_t mask; if (a[n] == b[n]) continue; if (ignore_register(offset)) continue; mask = ~0u; r = lookup_register(offset); if (r && r->masked) mask >>= 16; if (r && r->ignore_bits) mask &= ~r->ignore_bits; if ((a[n] & mask) == (b[n] & mask)) continue; igt_warn("Register 0x%04x (%s): A=%08x B=%08x\n", offset, register_name(offset, buf, sizeof(buf)), a[n] & mask, b[n] & mask); num_errors++; } munmap(b, regs_size); munmap(a, regs_size); igt_assert_f(num_errors == 0, "%d registers mistached between %s.\n", num_errors, who); } static void nonpriv(int fd, const struct intel_execution_engine2 *e, unsigned int flags) { static const uint32_t values[] = { 0x0, 0xffffffff, 0xcccccccc, 0x33333333, 0x55555555, 0xaaaaaaaa, 0xf0f00f0f, 0xa0a00303, 0x0505c0c0, 0xdeadbeef }; unsigned int engine = gem_class_instance_to_eb_flags(fd, e->class, e->instance); unsigned int num_values = ARRAY_SIZE(values); /* Sigh -- hsw: we need cmdparser access to our own registers! */ igt_skip_on(intel_gen(intel_get_drm_devid(fd)) < 8); gem_quiescent_gpu(fd); for (int v = 0; v < num_values; v++) { igt_spin_t *spin = NULL; uint32_t ctx, regs[2], tmpl; ctx = gem_context_create(fd); tmpl = read_regs(fd, ctx, e, flags); regs[0] = read_regs(fd, ctx, e, flags); tmpl_regs(fd, ctx, e, tmpl, values[v]); spin = igt_spin_new(fd, .ctx = ctx, .engine = engine); igt_debug("%s[%d]: Setting all registers to 0x%08x\n", __func__, v, values[v]); write_regs(fd, ctx, e, flags, values[v]); regs[1] = read_regs(fd, ctx, e, flags); /* * Restore the original register values before the HW idles. * Or else it may never restart! */ restore_regs(fd, ctx, e, flags, regs[0]); igt_spin_free(fd, spin); compare_regs(fd, tmpl, regs[1], "nonpriv read/writes"); for (int n = 0; n < ARRAY_SIZE(regs); n++) gem_close(fd, regs[n]); gem_context_destroy(fd, ctx); gem_close(fd, tmpl); } } static void isolation(int fd, const struct intel_execution_engine2 *e, unsigned int flags) { static const uint32_t values[] = { 0x0, 0xffffffff, 0xcccccccc, 0x33333333, 0x55555555, 0xaaaaaaaa, 0xdeadbeef }; unsigned int engine = gem_class_instance_to_eb_flags(fd, e->class, e->instance); unsigned int num_values = flags & (DIRTY1 | DIRTY2) ? ARRAY_SIZE(values) : 1; gem_quiescent_gpu(fd); for (int v = 0; v < num_values; v++) { igt_spin_t *spin = NULL; uint32_t ctx[2], regs[2], tmp; ctx[0] = gem_context_create(fd); regs[0] = read_regs(fd, ctx[0], e, flags); spin = igt_spin_new(fd, .ctx = ctx[0], .engine = engine); if (flags & DIRTY1) { igt_debug("%s[%d]: Setting all registers of ctx 0 to 0x%08x\n", __func__, v, values[v]); write_regs(fd, ctx[0], e, flags, values[v]); } /* * We create and execute a new context, whilst the HW is * occupied with the previous context (we should switch from * the old to the new proto-context without idling, which could * then load the powercontext). If all goes well, we only see * the default values from this context, but if goes badly we * see the corruption from the previous context instead! */ ctx[1] = gem_context_create(fd); regs[1] = read_regs(fd, ctx[1], e, flags); if (flags & DIRTY2) { igt_debug("%s[%d]: Setting all registers of ctx 1 to 0x%08x\n", __func__, v, ~values[v]); write_regs(fd, ctx[1], e, flags, ~values[v]); } /* * Restore the original register values before the HW idles. * Or else it may never restart! */ tmp = read_regs(fd, ctx[0], e, flags); restore_regs(fd, ctx[0], e, flags, regs[0]); igt_spin_free(fd, spin); if (!(flags & DIRTY1)) compare_regs(fd, regs[0], tmp, "two reads of the same ctx"); compare_regs(fd, regs[0], regs[1], "two virgin contexts"); for (int n = 0; n < ARRAY_SIZE(ctx); n++) { gem_close(fd, regs[n]); gem_context_destroy(fd, ctx[n]); } gem_close(fd, tmp); } } #define NOSLEEP (0 << 8) #define S3_DEVICES (1 << 8) #define S3 (2 << 8) #define S4_DEVICES (3 << 8) #define S4 (4 << 8) #define SLEEP_MASK (0xf << 8) static void inject_reset_context(int fd, unsigned int engine) { struct igt_spin_factory opts = { .ctx = gem_context_create(fd), .engine = engine, .flags = IGT_SPIN_FAST, }; igt_spin_t *spin; /* * Force a context switch before triggering the reset, or else * we risk corrupting the target context and we can't blame the * HW for screwing up if the context was already broken. */ if (gem_can_store_dword(fd, engine)) opts.flags |= IGT_SPIN_POLL_RUN; spin = __igt_spin_factory(fd, &opts); if (igt_spin_has_poll(spin)) igt_spin_busywait_until_started(spin); else usleep(1000); /* better than nothing */ igt_force_gpu_reset(fd); igt_spin_free(fd, spin); gem_context_destroy(fd, opts.ctx); } static void preservation(int fd, const struct intel_execution_engine2 *e, unsigned int flags) { static const uint32_t values[] = { 0x0, 0xffffffff, 0xcccccccc, 0x33333333, 0x55555555, 0xaaaaaaaa, 0xdeadbeef }; const unsigned int num_values = ARRAY_SIZE(values); unsigned int engine = gem_class_instance_to_eb_flags(fd, e->class, e->instance); uint32_t ctx[num_values +1 ]; uint32_t regs[num_values + 1][2]; igt_spin_t *spin; gem_quiescent_gpu(fd); ctx[num_values] = gem_context_create(fd); spin = igt_spin_new(fd, .ctx = ctx[num_values], .engine = engine); regs[num_values][0] = read_regs(fd, ctx[num_values], e, flags); for (int v = 0; v < num_values; v++) { ctx[v] = gem_context_create(fd); write_regs(fd, ctx[v], e, flags, values[v]); regs[v][0] = read_regs(fd, ctx[v], e, flags); } gem_close(fd, read_regs(fd, ctx[num_values], e, flags)); igt_spin_free(fd, spin); if (flags & RESET) inject_reset_context(fd, engine); switch (flags & SLEEP_MASK) { case NOSLEEP: break; case S3_DEVICES: igt_system_suspend_autoresume(SUSPEND_STATE_MEM, SUSPEND_TEST_DEVICES); break; case S3: igt_system_suspend_autoresume(SUSPEND_STATE_MEM, SUSPEND_TEST_NONE); break; case S4_DEVICES: igt_system_suspend_autoresume(SUSPEND_STATE_DISK, SUSPEND_TEST_DEVICES); break; case S4: igt_system_suspend_autoresume(SUSPEND_STATE_DISK, SUSPEND_TEST_NONE); break; } spin = igt_spin_new(fd, .ctx = ctx[num_values], .engine = engine); for (int v = 0; v < num_values; v++) regs[v][1] = read_regs(fd, ctx[v], e, flags); regs[num_values][1] = read_regs(fd, ctx[num_values], e, flags); igt_spin_free(fd, spin); for (int v = 0; v < num_values; v++) { char buf[80]; snprintf(buf, sizeof(buf), "dirty %x context\n", values[v]); compare_regs(fd, regs[v][0], regs[v][1], buf); gem_close(fd, regs[v][0]); gem_close(fd, regs[v][1]); gem_context_destroy(fd, ctx[v]); } compare_regs(fd, regs[num_values][0], regs[num_values][1], "clean"); gem_context_destroy(fd, ctx[num_values]); } static unsigned int __has_context_isolation(int fd) { struct drm_i915_getparam gp; int value = 0; memset(&gp, 0, sizeof(gp)); gp.param = 50; /* I915_PARAM_HAS_CONTEXT_ISOLATION */ gp.value = &value; igt_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); errno = 0; return value; } igt_main { unsigned int has_context_isolation = 0; int fd = -1; igt_fixture { int gen; fd = drm_open_driver(DRIVER_INTEL); igt_require_gem(fd); igt_require(gem_has_contexts(fd)); has_context_isolation = __has_context_isolation(fd); igt_require(has_context_isolation); gen = intel_gen(intel_get_drm_devid(fd)); igt_warn_on_f(gen > LAST_KNOWN_GEN, "GEN not recognized! Test needs to be updated to run."); igt_skip_on(gen > LAST_KNOWN_GEN); } for (const struct intel_execution_engine2 *e = intel_execution_engines2; e->name; e++) { igt_subtest_group { igt_fixture { igt_require(has_context_isolation & (1 << e->class)); gem_require_engine(fd, e->class, e->instance); igt_fork_hang_detector(fd); } igt_subtest_f("%s-nonpriv", e->name) nonpriv(fd, e, 0); igt_subtest_f("%s-clean", e->name) isolation(fd, e, 0); igt_subtest_f("%s-dirty-create", e->name) isolation(fd, e, DIRTY1); igt_subtest_f("%s-dirty-switch", e->name) isolation(fd, e, DIRTY2); igt_subtest_f("%s-none", e->name) preservation(fd, e, 0); igt_subtest_f("%s-S3", e->name) preservation(fd, e, S3); igt_subtest_f("%s-S4", e->name) preservation(fd, e, S4); igt_fixture { igt_stop_hang_detector(); } igt_subtest_f("%s-reset", e->name) { igt_hang_t hang = igt_allow_hang(fd, 0, 0); preservation(fd, e, RESET); igt_disallow_hang(fd, hang); } } } }