/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "igt.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm.h" #include "igt_sysfs.h" #include "igt_vgem.h" #include "igt_dummyload.h" #include "igt_stats.h" #include "i915/gem_ring.h" #define LOCAL_I915_EXEC_NO_RELOC (1<<11) #define LOCAL_I915_EXEC_HANDLE_LUT (1<<12) #define LOCAL_I915_EXEC_BSD_SHIFT (13) #define LOCAL_I915_EXEC_BSD_MASK (3 << LOCAL_I915_EXEC_BSD_SHIFT) #define ENGINE_FLAGS (I915_EXEC_RING_MASK | LOCAL_I915_EXEC_BSD_MASK) #define LIVE 0x1 #define CORK 0x2 #define PREEMPT 0x4 static unsigned int ring_size; static double rcs_clock; static struct intel_mmio_data mmio_data; static void poll_ring(int fd, unsigned ring, const char *name) { const struct igt_spin_factory opts = { .engine = ring, .flags = IGT_SPIN_POLL_RUN | IGT_SPIN_FAST, }; struct timespec tv = {}; unsigned long cycles; igt_spin_t *spin[2]; uint64_t elapsed; gem_require_ring(fd, ring); igt_require(gem_can_store_dword(fd, ring)); spin[0] = __igt_spin_factory(fd, &opts); igt_assert(igt_spin_has_poll(spin[0])); spin[1] = __igt_spin_factory(fd, &opts); igt_assert(igt_spin_has_poll(spin[1])); igt_spin_end(spin[0]); igt_spin_busywait_until_started(spin[1]); igt_assert(!gem_bo_busy(fd, spin[0]->handle)); cycles = 0; while ((elapsed = igt_nsec_elapsed(&tv)) < 2ull << 30) { const unsigned int idx = cycles++ & 1; igt_spin_reset(spin[idx]); gem_execbuf(fd, &spin[idx]->execbuf); igt_spin_end(spin[!idx]); igt_spin_busywait_until_started(spin[idx]); } igt_info("%s completed %ld cycles: %.3f us\n", name, cycles, elapsed*1e-3/cycles); igt_spin_free(fd, spin[1]); igt_spin_free(fd, spin[0]); } #define RCS_TIMESTAMP (0x2000 + 0x358) static void latency_on_ring(int fd, unsigned ring, const char *name, unsigned flags) { const int gen = intel_gen(intel_get_drm_devid(fd)); const int has_64bit_reloc = gen >= 8; struct drm_i915_gem_exec_object2 obj[3]; struct drm_i915_gem_relocation_entry reloc; struct drm_i915_gem_execbuffer2 execbuf; igt_spin_t *spin = NULL; IGT_CORK_HANDLE(c); volatile uint32_t *reg; unsigned repeats = ring_size; uint32_t start, end, *map, *results; uint64_t offset; double gpu_latency; int i, j; reg = (volatile uint32_t *)((volatile char *)igt_global_mmio + RCS_TIMESTAMP); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj[1]); execbuf.buffer_count = 2; execbuf.flags = ring; execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC | LOCAL_I915_EXEC_HANDLE_LUT; memset(obj, 0, sizeof(obj)); obj[1].handle = gem_create(fd, 4096); obj[1].flags = EXEC_OBJECT_WRITE; results = gem_mmap__wc(fd, obj[1].handle, 0, 4096, PROT_READ); obj[2].handle = gem_create(fd, 64*1024); map = gem_mmap__wc(fd, obj[2].handle, 0, 64*1024, PROT_WRITE); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); map[0] = MI_BATCH_BUFFER_END; gem_execbuf(fd, &execbuf); memset(&reloc,0, sizeof(reloc)); obj[2].relocation_count = 1; obj[2].relocs_ptr = to_user_pointer(&reloc); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); reloc.target_handle = flags & CORK ? 1 : 0; reloc.read_domains = I915_GEM_DOMAIN_INSTRUCTION; reloc.write_domain = I915_GEM_DOMAIN_INSTRUCTION; reloc.presumed_offset = obj[1].offset; for (j = 0; j < repeats; j++) { execbuf.batch_start_offset = 64 * j; reloc.offset = execbuf.batch_start_offset + sizeof(uint32_t); reloc.delta = sizeof(uint32_t) * j; offset = reloc.presumed_offset; offset += reloc.delta; i = 16 * j; /* MI_STORE_REG_MEM */ map[i++] = 0x24 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = RCS_TIMESTAMP; /* ring local! */ map[i++] = offset; if (has_64bit_reloc) map[i++] = offset >> 32; map[i++] = MI_BATCH_BUFFER_END; } if (flags & CORK) { obj[0].handle = igt_cork_plug(&c, fd); execbuf.buffers_ptr = to_user_pointer(&obj[0]); execbuf.buffer_count = 3; } if (flags & LIVE) spin = igt_spin_new(fd, .engine = ring); start = *reg; for (j = 0; j < repeats; j++) { uint64_t presumed_offset = reloc.presumed_offset; execbuf.batch_start_offset = 64 * j; reloc.offset = execbuf.batch_start_offset + sizeof(uint32_t); reloc.delta = sizeof(uint32_t) * j; gem_execbuf(fd, &execbuf); igt_assert(reloc.presumed_offset == presumed_offset); } end = *reg; igt_assert(reloc.presumed_offset == obj[1].offset); igt_spin_free(fd, spin); if (flags & CORK) igt_cork_unplug(&c); gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_GTT, 0); gpu_latency = (results[repeats-1] - results[0]) / (double)(repeats-1); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); execbuf.batch_start_offset = 0; for (j = 0; j < repeats - 1; j++) { offset = obj[2].offset; offset += 64 * (j + 1); i = 16 * j + (has_64bit_reloc ? 4 : 3); map[i] = MI_BATCH_BUFFER_START; if (gen >= 8) { map[i] |= 1 << 8 | 1; map[i + 1] = offset; map[i + 2] = offset >> 32; } else if (gen >= 6) { map[i] |= 1 << 8; map[i + 1] = offset; } else { map[i] |= 2 << 6; map[i + 1] = offset; if (gen < 4) map[i] |= 1; } } offset = obj[2].offset; gem_execbuf(fd, &execbuf); igt_assert(offset == obj[2].offset); gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_GTT, 0); igt_info("%s: dispatch latency: %.1fns, execution latency: %.1fns (target %.1fns)\n", name, (end - start) / (double)repeats * rcs_clock, gpu_latency * rcs_clock, (results[repeats - 1] - results[0]) / (double)(repeats - 1) * rcs_clock); munmap(map, 64*1024); munmap(results, 4096); if (flags & CORK) gem_close(fd, obj[0].handle); gem_close(fd, obj[1].handle); gem_close(fd, obj[2].handle); } static void latency_from_ring(int fd, unsigned ring, const char *name, unsigned flags) { const int gen = intel_gen(intel_get_drm_devid(fd)); const int has_64bit_reloc = gen >= 8; struct drm_i915_gem_exec_object2 obj[3]; struct drm_i915_gem_relocation_entry reloc; struct drm_i915_gem_execbuffer2 execbuf; const unsigned int repeats = ring_size / 2; uint32_t *map, *results; uint32_t ctx[2] = {}; int i, j; if (flags & PREEMPT) { ctx[0] = gem_context_create(fd); gem_context_set_priority(fd, ctx[0], -1023); ctx[1] = gem_context_create(fd); gem_context_set_priority(fd, ctx[1], 1023); } memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj[1]); execbuf.buffer_count = 2; execbuf.flags = ring; execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC | LOCAL_I915_EXEC_HANDLE_LUT; execbuf.rsvd1 = ctx[1]; memset(obj, 0, sizeof(obj)); obj[1].handle = gem_create(fd, 4096); obj[1].flags = EXEC_OBJECT_WRITE; results = gem_mmap__wc(fd, obj[1].handle, 0, 4096, PROT_READ); obj[2].handle = gem_create(fd, 64*1024); map = gem_mmap__wc(fd, obj[2].handle, 0, 64*1024, PROT_WRITE); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); map[0] = MI_BATCH_BUFFER_END; gem_execbuf(fd, &execbuf); memset(&reloc,0, sizeof(reloc)); obj[2].relocation_count = 1; obj[2].relocs_ptr = to_user_pointer(&reloc); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); reloc.read_domains = I915_GEM_DOMAIN_INSTRUCTION; reloc.write_domain = I915_GEM_DOMAIN_INSTRUCTION; reloc.presumed_offset = obj[1].offset; reloc.target_handle = flags & CORK ? 1 : 0; for_each_physical_engine(e, fd) { igt_spin_t *spin = NULL; IGT_CORK_HANDLE(c); gem_set_domain(fd, obj[2].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); if (flags & PREEMPT) spin = __igt_spin_new(fd, .ctx = ctx[0], .engine = ring); if (flags & CORK) { obj[0].handle = igt_cork_plug(&c, fd); execbuf.buffers_ptr = to_user_pointer(&obj[0]); execbuf.buffer_count = 3; } for (j = 0; j < repeats; j++) { uint64_t offset; execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= ring; execbuf.batch_start_offset = 64 * j; reloc.offset = execbuf.batch_start_offset + sizeof(uint32_t); reloc.delta = sizeof(uint32_t) * j; reloc.presumed_offset = obj[1].offset; offset = reloc.presumed_offset; offset += reloc.delta; i = 16 * j; /* MI_STORE_REG_MEM */ map[i++] = 0x24 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = RCS_TIMESTAMP; /* ring local! */ map[i++] = offset; if (has_64bit_reloc) map[i++] = offset >> 32; map[i++] = MI_BATCH_BUFFER_END; gem_execbuf(fd, &execbuf); execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= eb_ring(e); execbuf.batch_start_offset = 64 * (j + repeats); reloc.offset = execbuf.batch_start_offset + sizeof(uint32_t); reloc.delta = sizeof(uint32_t) * (j + repeats); reloc.presumed_offset = obj[1].offset; offset = reloc.presumed_offset; offset += reloc.delta; i = 16 * (j + repeats); /* MI_STORE_REG_MEM */ map[i++] = 0x24 << 23 | 1; if (has_64bit_reloc) map[i-1]++; map[i++] = RCS_TIMESTAMP; /* ring local! */ map[i++] = offset; if (has_64bit_reloc) map[i++] = offset >> 32; map[i++] = MI_BATCH_BUFFER_END; gem_execbuf(fd, &execbuf); } if (flags & CORK) igt_cork_unplug(&c); gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT); igt_spin_free(fd, spin); igt_info("%s-%s delay: %.2fns\n", name, e->name, (results[2*repeats-1] - results[0]) / (double)repeats * rcs_clock); } munmap(map, 64*1024); munmap(results, 4096); if (flags & CORK) gem_close(fd, obj[0].handle); gem_close(fd, obj[1].handle); gem_close(fd, obj[2].handle); if (flags & PREEMPT) { gem_context_destroy(fd, ctx[1]); gem_context_destroy(fd, ctx[0]); } } static void __submit_spin(int fd, igt_spin_t *spin, unsigned int flags) { struct drm_i915_gem_execbuffer2 eb = spin->execbuf; eb.flags &= ~(0x3f | I915_EXEC_BSD_MASK); eb.flags |= flags | I915_EXEC_NO_RELOC; gem_execbuf(fd, &eb); } struct rt_pkt { struct igt_mean mean; double min, max; }; static bool __spin_wait(int fd, igt_spin_t *spin) { while (!igt_spin_has_started(spin)) { if (!gem_bo_busy(fd, spin->handle)) return false; } return true; } /* * Test whether RT thread which hogs the CPU a lot can submit work with * reasonable latency. */ static void rthog_latency_on_ring(int fd, unsigned int engine, const char *name, unsigned int flags) #define RTIDLE 0x1 { const char *passname[] = { "warmup", "normal", "rt[0]", "rt[1]", "rt[2]", "rt[3]", "rt[4]", "rt[5]", "rt[6]", }; #define NPASS ARRAY_SIZE(passname) #define MMAP_SZ (64 << 10) const struct igt_spin_factory opts = { .engine = engine, .flags = IGT_SPIN_POLL_RUN | IGT_SPIN_FAST, }; struct rt_pkt *results; unsigned int engines[16]; const char *names[16]; unsigned int nengine; int ret; igt_assert(ARRAY_SIZE(engines) * NPASS * sizeof(*results) <= MMAP_SZ); results = mmap(NULL, MMAP_SZ, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); igt_assert(results != MAP_FAILED); nengine = 0; if (engine == ALL_ENGINES) { for_each_physical_engine(e, fd) { if (!gem_can_store_dword(fd, eb_ring(e))) continue; engines[nengine] = eb_ring(e); names[nengine] = e->name; nengine++; } igt_require(nengine > 1); } else { igt_require(gem_can_store_dword(fd, engine)); engines[nengine] = engine; names[nengine] = name; nengine++; } gem_quiescent_gpu(fd); igt_fork(child, nengine) { unsigned int pass = 0; /* Three phases: warmup, normal, rt. */ engine = engines[child]; do { struct igt_mean mean; double min = HUGE_VAL; double max = -HUGE_VAL; igt_spin_t *spin; igt_mean_init(&mean); if (pass == 2) { struct sched_param rt = { .sched_priority = 99 }; ret = sched_setscheduler(0, SCHED_FIFO | SCHED_RESET_ON_FORK, &rt); if (ret) { igt_warn("Failed to set scheduling policy!\n"); break; } } usleep(250); spin = __igt_spin_factory(fd, &opts); if (!spin) { igt_warn("Failed to create spinner! (%s)\n", passname[pass]); break; } igt_spin_busywait_until_started(spin); igt_until_timeout(pass > 0 ? 5 : 2) { struct timespec ts = { }; double t; igt_spin_end(spin); gem_sync(fd, spin->handle); if (flags & RTIDLE) igt_drop_caches_set(fd, DROP_IDLE); /* * If we are oversubscribed (more RT hogs than * cpus) give the others a change to run; * otherwise, they will interrupt us in the * middle of the measurement. */ if (nengine > 1) usleep(10*nengine); igt_spin_reset(spin); igt_nsec_elapsed(&ts); __submit_spin(fd, spin, engine); if (!__spin_wait(fd, spin)) { igt_warn("Wait timeout! (%s)\n", passname[pass]); break; } t = igt_nsec_elapsed(&ts) * 1e-9; if (t > max) max = t; if (t < min) min = t; igt_mean_add(&mean, t); } igt_spin_free(fd, spin); igt_info("%8s %10s: mean=%.2fus stddev=%.3fus [%.2fus, %.2fus] (n=%lu)\n", names[child], passname[pass], igt_mean_get(&mean) * 1e6, sqrt(igt_mean_get_variance(&mean)) * 1e6, min * 1e6, max * 1e6, mean.count); results[NPASS * child + pass].mean = mean; results[NPASS * child + pass].min = min; results[NPASS * child + pass].max = max; } while (++pass < NPASS); } igt_waitchildren(); for (unsigned int child = 0; child < nengine; child++) { struct rt_pkt normal = results[NPASS * child + 1]; igt_stats_t stats; double variance; igt_stats_init_with_size(&stats, NPASS); variance = 0; for (unsigned int pass = 2; pass < NPASS; pass++) { struct rt_pkt *rt = &results[NPASS * child + pass]; igt_assert(rt->max); igt_stats_push_float(&stats, igt_mean_get(&rt->mean)); variance += igt_mean_get_variance(&rt->mean); } variance /= NPASS - 2; igt_info("%8s: normal latency=%.2f±%.3fus, rt latency=%.2f±%.3fus\n", names[child], igt_mean_get(&normal.mean) * 1e6, sqrt(igt_mean_get_variance(&normal.mean)) * 1e6, igt_stats_get_median(&stats) * 1e6, sqrt(variance) * 1e6); igt_assert(igt_stats_get_median(&stats) < igt_mean_get(&normal.mean) * 2); /* The system is noisy; be conservative when declaring fail. */ igt_assert(variance < igt_mean_get_variance(&normal.mean) * 10); } munmap(results, MMAP_SZ); } static double clockrate(int i915, int reg) { volatile uint32_t *mmio; uint32_t r_start, r_end; struct timespec tv; uint64_t t_start, t_end; uint64_t elapsed; int cs_timestamp_freq; drm_i915_getparam_t gp = { .value = &cs_timestamp_freq, .param = I915_PARAM_CS_TIMESTAMP_FREQUENCY, }; if (igt_ioctl(i915, DRM_IOCTL_I915_GETPARAM, &gp) == 0) return cs_timestamp_freq; mmio = (volatile uint32_t *)((volatile char *)igt_global_mmio + reg); t_start = igt_nsec_elapsed(&tv); r_start = *mmio; elapsed = igt_nsec_elapsed(&tv) - t_start; usleep(1000); t_end = igt_nsec_elapsed(&tv); r_end = *mmio; elapsed += igt_nsec_elapsed(&tv) - t_end; elapsed = (t_end - t_start) + elapsed / 2; return (r_end - r_start) * 1e9 / elapsed; } igt_main { const struct intel_execution_engine *e; int device = -1; igt_fixture { device = drm_open_driver(DRIVER_INTEL); igt_require_gem(device); gem_require_mmap_wc(device); gem_submission_print_method(device); ring_size = gem_measure_ring_inflight(device, ALL_ENGINES, 0); igt_info("Ring size: %d batches\n", ring_size); igt_require(ring_size > 8); ring_size -= 8; /* leave some spare */ if (ring_size > 1024) ring_size = 1024; intel_register_access_init(&mmio_data, intel_get_pci_device(), false, device); rcs_clock = clockrate(device, RCS_TIMESTAMP); igt_info("RCS timestamp clock: %.0fKHz, %.1fns\n", rcs_clock / 1e3, 1e9 / rcs_clock); rcs_clock = 1e9 / rcs_clock; } igt_subtest("all-rtidle-submit") rthog_latency_on_ring(device, ALL_ENGINES, "all", RTIDLE); igt_subtest("all-rthog-submit") rthog_latency_on_ring(device, ALL_ENGINES, "all", 0); igt_subtest_group { igt_fixture igt_require(intel_gen(intel_get_drm_devid(device)) >= 7); for (e = intel_execution_engines; e->name; e++) { if (e->exec_id == 0) continue; igt_subtest_group { igt_fixture { igt_require(gem_ring_has_physical_engine(device, eb_ring(e))); } igt_subtest_f("%s-dispatch", e->name) latency_on_ring(device, eb_ring(e), e->name, 0); igt_subtest_f("%s-live-dispatch", e->name) latency_on_ring(device, eb_ring(e), e->name, LIVE); igt_subtest_f("%s-poll", e->name) poll_ring(device, eb_ring(e), e->name); igt_subtest_f("%s-rtidle-submit", e->name) rthog_latency_on_ring(device, e->exec_id | e->flags, e->name, RTIDLE); igt_subtest_f("%s-rthog-submit", e->name) rthog_latency_on_ring(device, e->exec_id | e->flags, e->name, 0); igt_subtest_f("%s-live-dispatch-queued", e->name) latency_on_ring(device, eb_ring(e), e->name, LIVE | CORK); igt_subtest_f("%s-dispatch-queued", e->name) latency_on_ring(device, eb_ring(e), e->name, CORK); igt_subtest_f("%s-synchronisation", e->name) latency_from_ring(device, eb_ring(e), e->name, 0); igt_subtest_f("%s-synchronisation-queued", e->name) latency_from_ring(device, eb_ring(e), e->name, CORK); igt_subtest_group { igt_fixture { gem_require_contexts(device); igt_require(gem_scheduler_has_preemption(device)); } igt_subtest_f("%s-preemption", e->name) latency_from_ring(device, eb_ring(e), e->name, PREEMPT); } } } } igt_fixture { close(device); } }