/* * Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Chris Wilson * */ #include "igt.h" #include "igt_device.h" #include "igt_rand.h" #include "igt_sysfs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm.h" #define LOCAL_I915_EXEC_NO_RELOC (1<<11) #define LOCAL_I915_EXEC_HANDLE_LUT (1<<12) #define LOCAL_I915_EXEC_BSD_SHIFT (13) #define LOCAL_I915_EXEC_BSD_MASK (3 << LOCAL_I915_EXEC_BSD_SHIFT) #define ENGINE_FLAGS (I915_EXEC_RING_MASK | LOCAL_I915_EXEC_BSD_MASK) #define MAX_PRIO LOCAL_I915_CONTEXT_MAX_USER_PRIORITY #define MIN_PRIO LOCAL_I915_CONTEXT_MIN_USER_PRIORITY #define FORKED 1 #define CHAINED 2 #define CONTEXT 4 static double elapsed(const struct timespec *start, const struct timespec *end) { return ((end->tv_sec - start->tv_sec) + (end->tv_nsec - start->tv_nsec)*1e-9); } static double nop_on_ring(int fd, uint32_t handle, unsigned ring_id, int timeout, unsigned long *out) { struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 obj; struct timespec start, now; unsigned long count; memset(&obj, 0, sizeof(obj)); obj.handle = handle; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj); execbuf.buffer_count = 1; execbuf.flags = ring_id; execbuf.flags |= LOCAL_I915_EXEC_HANDLE_LUT; execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC; if (__gem_execbuf(fd, &execbuf)) { execbuf.flags = ring_id; gem_execbuf(fd, &execbuf); } intel_detect_and_clear_missed_interrupts(fd); count = 0; clock_gettime(CLOCK_MONOTONIC, &start); do { for (int loop = 0; loop < 1024; loop++) gem_execbuf(fd, &execbuf); count += 1024; clock_gettime(CLOCK_MONOTONIC, &now); } while (elapsed(&start, &now) < timeout); igt_assert_eq(intel_detect_and_clear_missed_interrupts(fd), 0); *out = count; return elapsed(&start, &now); } static void poll_ring(int fd, unsigned engine, const char *name, int timeout) { const int gen = intel_gen(intel_get_drm_devid(fd)); const uint32_t MI_ARB_CHK = 0x5 << 23; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 obj; struct drm_i915_gem_relocation_entry reloc[4], *r; uint32_t *bbe[2], *state, *batch; struct timespec tv = {}; unsigned long cycles; unsigned flags; uint64_t elapsed; flags = I915_EXEC_NO_RELOC; if (gen == 4 || gen == 5) flags |= I915_EXEC_SECURE; gem_require_ring(fd, engine); igt_require(gem_can_store_dword(fd, engine)); memset(&obj, 0, sizeof(obj)); obj.handle = gem_create(fd, 4096); obj.relocs_ptr = to_user_pointer(reloc); obj.relocation_count = ARRAY_SIZE(reloc); r = memset(reloc, 0, sizeof(reloc)); batch = gem_mmap__wc(fd, obj.handle, 0, 4096, PROT_WRITE); for (unsigned int start_offset = 0; start_offset <= 128; start_offset += 128) { uint32_t *b = batch + start_offset / sizeof(*batch); r->target_handle = obj.handle; r->offset = (b - batch + 1) * sizeof(uint32_t); r->delta = 4092; r->read_domains = I915_GEM_DOMAIN_RENDER; *b = MI_STORE_DWORD_IMM | (gen < 6 ? 1 << 22 : 0); if (gen >= 8) { *++b = r->delta; *++b = 0; } else if (gen >= 4) { r->offset += sizeof(uint32_t); *++b = 0; *++b = r->delta; } else { *b -= 1; *++b = r->delta; } *++b = start_offset != 0; r++; b = batch + (start_offset + 64) / sizeof(*batch); bbe[start_offset != 0] = b; *b++ = MI_ARB_CHK; r->target_handle = obj.handle; r->offset = (b - batch + 1) * sizeof(uint32_t); r->read_domains = I915_GEM_DOMAIN_COMMAND; r->delta = start_offset + 64; if (gen >= 8) { *b++ = MI_BATCH_BUFFER_START | 1 << 8 | 1; *b++ = r->delta; *b++ = 0; } else if (gen >= 6) { *b++ = MI_BATCH_BUFFER_START | 1 << 8; *b++ = r->delta; } else { *b++ = MI_BATCH_BUFFER_START | 2 << 6; if (gen < 4) r->delta |= 1; *b++ = r->delta; } r++; } igt_assert(r == reloc + ARRAY_SIZE(reloc)); state = batch + 1023; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj); execbuf.buffer_count = 1; execbuf.flags = engine | flags; cycles = 0; do { unsigned int idx = ++cycles & 1; *bbe[idx] = MI_ARB_CHK; execbuf.batch_start_offset = (bbe[idx] - batch) * sizeof(*batch) - 64; gem_execbuf(fd, &execbuf); *bbe[!idx] = MI_BATCH_BUFFER_END; __sync_synchronize(); while (READ_ONCE(*state) != idx) ; } while ((elapsed = igt_nsec_elapsed(&tv)) >> 30 < timeout); *bbe[cycles & 1] = MI_BATCH_BUFFER_END; gem_sync(fd, obj.handle); igt_info("%s completed %ld cycles: %.3f us\n", name, cycles, elapsed*1e-3/cycles); munmap(batch, 4096); gem_close(fd, obj.handle); } static void poll_sequential(int fd, const char *name, int timeout) { const int gen = intel_gen(intel_get_drm_devid(fd)); const uint32_t MI_ARB_CHK = 0x5 << 23; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 obj[2]; struct drm_i915_gem_relocation_entry reloc[4], *r; uint32_t *bbe[2], *state, *batch; unsigned engines[16], nengine, engine, flags; struct timespec tv = {}; unsigned long cycles; uint64_t elapsed; bool cached; flags = I915_EXEC_NO_RELOC; if (gen == 4 || gen == 5) flags |= I915_EXEC_SECURE; nengine = 0; for_each_physical_engine(fd, engine) { if (!gem_can_store_dword(fd, engine)) continue; engines[nengine++] = engine; } igt_require(nengine); memset(obj, 0, sizeof(obj)); obj[0].handle = gem_create(fd, 4096); obj[0].flags = EXEC_OBJECT_WRITE; cached = __gem_set_caching(fd, obj[0].handle, 1) == 0; obj[1].handle = gem_create(fd, 4096); obj[1].relocs_ptr = to_user_pointer(reloc); obj[1].relocation_count = ARRAY_SIZE(reloc); r = memset(reloc, 0, sizeof(reloc)); batch = gem_mmap__wc(fd, obj[1].handle, 0, 4096, PROT_WRITE); for (unsigned int start_offset = 0; start_offset <= 128; start_offset += 128) { uint32_t *b = batch + start_offset / sizeof(*batch); r->target_handle = obj[0].handle; r->offset = (b - batch + 1) * sizeof(uint32_t); r->delta = 0; r->read_domains = I915_GEM_DOMAIN_RENDER; r->write_domain = I915_GEM_DOMAIN_RENDER; *b = MI_STORE_DWORD_IMM | (gen < 6 ? 1 << 22 : 0); if (gen >= 8) { *++b = r->delta; *++b = 0; } else if (gen >= 4) { r->offset += sizeof(uint32_t); *++b = 0; *++b = r->delta; } else { *b -= 1; *++b = r->delta; } *++b = start_offset != 0; r++; b = batch + (start_offset + 64) / sizeof(*batch); bbe[start_offset != 0] = b; *b++ = MI_ARB_CHK; r->target_handle = obj[1].handle; r->offset = (b - batch + 1) * sizeof(uint32_t); r->read_domains = I915_GEM_DOMAIN_COMMAND; r->delta = start_offset + 64; if (gen >= 8) { *b++ = MI_BATCH_BUFFER_START | 1 << 8 | 1; *b++ = r->delta; *b++ = 0; } else if (gen >= 6) { *b++ = MI_BATCH_BUFFER_START | 1 << 8; *b++ = r->delta; } else { *b++ = MI_BATCH_BUFFER_START | 2 << 6; if (gen < 4) r->delta |= 1; *b++ = r->delta; } r++; } igt_assert(r == reloc + ARRAY_SIZE(reloc)); if (cached) state = gem_mmap__cpu(fd, obj[0].handle, 0, 4096, PROT_READ); else state = gem_mmap__wc(fd, obj[0].handle, 0, 4096, PROT_READ); memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(obj); execbuf.buffer_count = ARRAY_SIZE(obj); cycles = 0; do { unsigned int idx = ++cycles & 1; *bbe[idx] = MI_ARB_CHK; execbuf.batch_start_offset = (bbe[idx] - batch) * sizeof(*batch) - 64; execbuf.flags = engines[cycles % nengine] | flags; gem_execbuf(fd, &execbuf); *bbe[!idx] = MI_BATCH_BUFFER_END; __sync_synchronize(); while (READ_ONCE(*state) != idx) ; } while ((elapsed = igt_nsec_elapsed(&tv)) >> 30 < timeout); *bbe[cycles & 1] = MI_BATCH_BUFFER_END; gem_sync(fd, obj[1].handle); igt_info("%s completed %ld cycles: %.3f us\n", name, cycles, elapsed*1e-3/cycles); munmap(state, 4096); munmap(batch, 4096); gem_close(fd, obj[1].handle); gem_close(fd, obj[0].handle); } static void single(int fd, uint32_t handle, unsigned ring_id, const char *ring_name) { double time; unsigned long count; gem_require_ring(fd, ring_id); time = nop_on_ring(fd, handle, ring_id, 20, &count); igt_info("%s: %'lu cycles: %.3fus\n", ring_name, count, time*1e6 / count); } static double stable_nop_on_ring(int fd, uint32_t handle, unsigned int engine, int timeout, int reps) { igt_stats_t s; double n; igt_assert(reps >= 5); igt_stats_init_with_size(&s, reps); s.is_float = true; while (reps--) { unsigned long count; double time; time = nop_on_ring(fd, handle, engine, timeout, &count); igt_stats_push_float(&s, time / count); } n = igt_stats_get_median(&s); igt_stats_fini(&s); return n; } #define assert_within_epsilon(x, ref, tolerance) \ igt_assert_f((x) <= (1.0 + tolerance) * ref && \ (x) >= (1.0 - tolerance) * ref, \ "'%s' != '%s' (%f not within %f%% tolerance of %f)\n",\ #x, #ref, x, tolerance * 100.0, ref) static void headless(int fd, uint32_t handle) { unsigned int nr_connected = 0; drmModeConnector *connector; drmModeRes *res; double n_display, n_headless; res = drmModeGetResources(fd); igt_require(res); /* require at least one connected connector for the test */ for (int i = 0; i < res->count_connectors; i++) { connector = drmModeGetConnectorCurrent(fd, res->connectors[i]); if (connector->connection == DRM_MODE_CONNECTED) nr_connected++; drmModeFreeConnector(connector); } igt_require(nr_connected > 0); /* set graphics mode to prevent blanking */ kmstest_set_vt_graphics_mode(); /* benchmark nops */ n_display = stable_nop_on_ring(fd, handle, I915_EXEC_DEFAULT, 1, 5); igt_info("With one display connected: %.2fus\n", n_display * 1e6); /* force all connectors off */ kmstest_unset_all_crtcs(fd, res); /* benchmark nops again */ n_headless = stable_nop_on_ring(fd, handle, I915_EXEC_DEFAULT, 1, 5); igt_info("Without a display connected (headless): %.2fus\n", n_headless * 1e6); /* check that the two execution speeds are roughly the same */ assert_within_epsilon(n_headless, n_display, 0.1f); } static void parallel(int fd, uint32_t handle, int timeout) { struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 obj; unsigned engines[16]; const char *names[16]; unsigned nengine; unsigned engine; unsigned long count; double time, sum; sum = 0; nengine = 0; for_each_physical_engine(fd, engine) { engines[nengine] = engine; names[nengine] = e__->name; nengine++; time = nop_on_ring(fd, handle, engine, 1, &count) / count; sum += time; igt_debug("%s: %.3fus\n", e__->name, 1e6*time); } igt_require(nengine); igt_info("average (individually): %.3fus\n", sum/nengine*1e6); memset(&obj, 0, sizeof(obj)); obj.handle = handle; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj); execbuf.buffer_count = 1; execbuf.flags |= LOCAL_I915_EXEC_HANDLE_LUT; execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC; if (__gem_execbuf(fd, &execbuf)) { execbuf.flags = 0; gem_execbuf(fd, &execbuf); } intel_detect_and_clear_missed_interrupts(fd); igt_fork(child, nengine) { struct timespec start, now; execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= engines[child]; count = 0; clock_gettime(CLOCK_MONOTONIC, &start); do { for (int loop = 0; loop < 1024; loop++) gem_execbuf(fd, &execbuf); count += 1024; clock_gettime(CLOCK_MONOTONIC, &now); } while (elapsed(&start, &now) < timeout); time = elapsed(&start, &now) / count; igt_info("%s: %ld cycles, %.3fus\n", names[child], count, 1e6*time); } igt_waitchildren(); igt_assert_eq(intel_detect_and_clear_missed_interrupts(fd), 0); } static void series(int fd, uint32_t handle, int timeout) { struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 obj; struct timespec start, now, sync; unsigned engines[16]; unsigned nengine; unsigned engine; unsigned long count; double time, max = 0, min = HUGE_VAL, sum = 0; const char *name; nengine = 0; for_each_physical_engine(fd, engine) { time = nop_on_ring(fd, handle, engine, 1, &count) / count; if (time > max) { name = e__->name; max = time; } if (time < min) min = time; sum += time; engines[nengine++] = engine; } igt_require(nengine); igt_info("Maximum execution latency on %s, %.3fus, min %.3fus, total %.3fus per cycle, average %.3fus\n", name, max*1e6, min*1e6, sum*1e6, sum/nengine*1e6); memset(&obj, 0, sizeof(obj)); obj.handle = handle; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj); execbuf.buffer_count = 1; execbuf.flags |= LOCAL_I915_EXEC_HANDLE_LUT; execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC; if (__gem_execbuf(fd, &execbuf)) { execbuf.flags = 0; gem_execbuf(fd, &execbuf); } intel_detect_and_clear_missed_interrupts(fd); count = 0; clock_gettime(CLOCK_MONOTONIC, &start); do { for (int loop = 0; loop < 1024; loop++) { for (int n = 0; n < nengine; n++) { execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= engines[n]; gem_execbuf(fd, &execbuf); } } count += nengine * 1024; clock_gettime(CLOCK_MONOTONIC, &now); } while (elapsed(&start, &now) < timeout); /* Hang detection ~120s */ gem_sync(fd, handle); clock_gettime(CLOCK_MONOTONIC, &sync); igt_debug("sync time: %.3fus\n", elapsed(&now, &sync)*1e6); igt_assert_eq(intel_detect_and_clear_missed_interrupts(fd), 0); time = elapsed(&start, &now) / count; igt_info("All (%d engines): %'lu cycles, average %.3fus per cycle [expected %.3fus]\n", nengine, count, 1e6*time, 1e6*((max-min)/nengine+min)); /* The rate limiting step should be how fast the slowest engine can * execute its queue of requests, as when we wait upon a full ring all * dispatch is frozen. So in general we cannot go faster than the * slowest engine (but as all engines are in lockstep, they should all * be executing in parallel and so the average should be max/nengines), * but we should equally not go any slower. * * However, that depends upon being able to submit fast enough, and * that in turns depends upon debugging turned off and no bottlenecks * within the driver. We cannot assert that we hit ideal conditions * across all engines, so we only look for an outrageous error * condition. */ igt_assert_f(time < 2*sum, "Average time (%.3fus) exceeds expectation for parallel execution (min %.3fus, max %.3fus; limit set at %.3fus)\n", 1e6*time, 1e6*min, 1e6*max, 1e6*sum*2); } static void xchg(void *array, unsigned i, unsigned j) { unsigned *u = array; unsigned tmp = u[i]; u[i] = u[j]; u[j] = tmp; } static void sequential(int fd, uint32_t handle, unsigned flags, int timeout) { const int ncpus = flags & FORKED ? sysconf(_SC_NPROCESSORS_ONLN) : 1; struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 obj[2]; unsigned engines[16]; unsigned nengine; double *results; double time, sum; unsigned n; gem_require_contexts(fd); results = mmap(NULL, 4096, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); igt_assert(results != MAP_FAILED); nengine = 0; sum = 0; for_each_physical_engine(fd, n) { unsigned long count; time = nop_on_ring(fd, handle, n, 1, &count) / count; sum += time; igt_debug("%s: %.3fus\n", e__->name, 1e6*time); engines[nengine++] = n; } igt_require(nengine); igt_info("Total (individual) execution latency %.3fus per cycle\n", 1e6*sum); memset(obj, 0, sizeof(obj)); obj[0].handle = gem_create(fd, 4096); obj[0].flags = EXEC_OBJECT_WRITE; obj[1].handle = handle; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(obj); execbuf.buffer_count = 2; execbuf.flags |= LOCAL_I915_EXEC_HANDLE_LUT; execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC; igt_require(__gem_execbuf(fd, &execbuf) == 0); if (flags & CONTEXT) { uint32_t id; igt_require(__gem_context_create(fd, &id) == 0); execbuf.rsvd1 = id; } for (n = 0; n < nengine; n++) { execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= engines[n]; igt_require(__gem_execbuf(fd, &execbuf) == 0); } intel_detect_and_clear_missed_interrupts(fd); igt_fork(child, ncpus) { struct timespec start, now; unsigned long count; obj[0].handle = gem_create(fd, 4096); gem_execbuf(fd, &execbuf); if (flags & CONTEXT) execbuf.rsvd1 = gem_context_create(fd); hars_petruska_f54_1_random_perturb(child); count = 0; clock_gettime(CLOCK_MONOTONIC, &start); do { igt_permute_array(engines, nengine, xchg); if (flags & CHAINED) { for (n = 0; n < nengine; n++) { execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= engines[n]; for (int loop = 0; loop < 1024; loop++) gem_execbuf(fd, &execbuf); } } else { for (int loop = 0; loop < 1024; loop++) { for (n = 0; n < nengine; n++) { execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= engines[n]; gem_execbuf(fd, &execbuf); } } } count += 1024; clock_gettime(CLOCK_MONOTONIC, &now); } while (elapsed(&start, &now) < timeout); /* Hang detection ~120s */ gem_sync(fd, obj[0].handle); clock_gettime(CLOCK_MONOTONIC, &now); results[child] = elapsed(&start, &now) / count; if (flags & CONTEXT) gem_context_destroy(fd, execbuf.rsvd1); gem_close(fd, obj[0].handle); } igt_waitchildren(); igt_assert_eq(intel_detect_and_clear_missed_interrupts(fd), 0); results[ncpus] = 0; for (n = 0; n < ncpus; n++) results[ncpus] += results[n]; results[ncpus] /= ncpus; igt_info("Sequential (%d engines, %d processes): average %.3fus per cycle [expected %.3fus]\n", nengine, ncpus, 1e6*results[ncpus], 1e6*sum*ncpus); if (flags & CONTEXT) gem_context_destroy(fd, execbuf.rsvd1); gem_close(fd, obj[0].handle); munmap(results, 4096); } #define LOCAL_EXEC_FENCE_OUT (1 << 17) static bool fence_enable_signaling(int fence) { return poll(&(struct pollfd){fence, POLLIN}, 1, 0) == 0; } static bool fence_wait(int fence) { return poll(&(struct pollfd){fence, POLLIN}, 1, -1) == 1; } static void fence_signal(int fd, uint32_t handle, unsigned ring_id, const char *ring_name, int timeout) { #define NFENCES 512 struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 obj; struct timespec start, now; unsigned engines[16]; unsigned nengine; int *fences, n; unsigned long count, signal; igt_require(gem_has_exec_fence(fd)); nengine = 0; if (ring_id == ALL_ENGINES) { for_each_physical_engine(fd, n) engines[nengine++] = n; } else { gem_require_ring(fd, ring_id); engines[nengine++] = ring_id; } igt_require(nengine); fences = malloc(sizeof(*fences) * NFENCES); igt_assert(fences); memset(fences, -1, sizeof(*fences) * NFENCES); memset(&obj, 0, sizeof(obj)); obj.handle = handle; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj); execbuf.buffer_count = 1; execbuf.flags = LOCAL_EXEC_FENCE_OUT; n = 0; count = 0; signal = 0; intel_detect_and_clear_missed_interrupts(fd); clock_gettime(CLOCK_MONOTONIC, &start); do { for (int loop = 0; loop < 1024; loop++) { for (int e = 0; e < nengine; e++) { if (fences[n] != -1) { igt_assert(fence_wait(fences[n])); close(fences[n]); } execbuf.flags &= ~ENGINE_FLAGS; execbuf.flags |= engines[e]; gem_execbuf_wr(fd, &execbuf); /* Enable signaling by doing a poll() */ fences[n] = execbuf.rsvd2 >> 32; signal += fence_enable_signaling(fences[n]); n = (n + 1) % NFENCES; } } count += 1024 * nengine; clock_gettime(CLOCK_MONOTONIC, &now); } while (elapsed(&start, &now) < timeout); igt_assert_eq(intel_detect_and_clear_missed_interrupts(fd), 0); for (n = 0; n < NFENCES; n++) if (fences[n] != -1) close(fences[n]); free(fences); igt_info("Signal %s: %'lu cycles (%'lu signals): %.3fus\n", ring_name, count, signal, elapsed(&start, &now) * 1e6 / count); } static void preempt(int fd, uint32_t handle, unsigned ring_id, const char *ring_name) { struct drm_i915_gem_execbuffer2 execbuf; struct drm_i915_gem_exec_object2 obj; struct timespec start, now; unsigned long count; uint32_t ctx[2]; gem_require_ring(fd, ring_id); ctx[0] = gem_context_create(fd); gem_context_set_priority(fd, ctx[0], MIN_PRIO); ctx[1] = gem_context_create(fd); gem_context_set_priority(fd, ctx[1], MAX_PRIO); memset(&obj, 0, sizeof(obj)); obj.handle = handle; memset(&execbuf, 0, sizeof(execbuf)); execbuf.buffers_ptr = to_user_pointer(&obj); execbuf.buffer_count = 1; execbuf.flags = ring_id; execbuf.flags |= LOCAL_I915_EXEC_HANDLE_LUT; execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC; if (__gem_execbuf(fd, &execbuf)) { execbuf.flags = ring_id; gem_execbuf(fd, &execbuf); } execbuf.rsvd1 = ctx[1]; intel_detect_and_clear_missed_interrupts(fd); count = 0; clock_gettime(CLOCK_MONOTONIC, &start); do { igt_spin_t *spin = __igt_spin_new(fd, .ctx = ctx[0], .engine = ring_id); for (int loop = 0; loop < 1024; loop++) gem_execbuf(fd, &execbuf); igt_spin_free(fd, spin); count += 1024; clock_gettime(CLOCK_MONOTONIC, &now); } while (elapsed(&start, &now) < 20); igt_assert_eq(intel_detect_and_clear_missed_interrupts(fd), 0); gem_context_destroy(fd, ctx[1]); gem_context_destroy(fd, ctx[0]); igt_info("%s: %'lu cycles: %.3fus\n", ring_name, count, elapsed(&start, &now)*1e6 / count); } igt_main { const struct intel_execution_engine *e; uint32_t handle = 0; int device = -1; igt_fixture { const uint32_t bbe = MI_BATCH_BUFFER_END; device = drm_open_driver(DRIVER_INTEL); igt_require_gem(device); gem_submission_print_method(device); gem_scheduler_print_capability(device); handle = gem_create(device, 4096); gem_write(device, handle, 0, &bbe, sizeof(bbe)); igt_fork_hang_detector(device); } igt_subtest("basic-series") series(device, handle, 5); igt_subtest("basic-parallel") parallel(device, handle, 5); igt_subtest("basic-sequential") sequential(device, handle, 0, 5); for (e = intel_execution_engines; e->name; e++) { igt_subtest_f("%s", e->name) single(device, handle, e->exec_id | e->flags, e->name); igt_subtest_f("signal-%s", e->name) fence_signal(device, handle, e->exec_id | e->flags, e->name, 5); } igt_subtest("signal-all") fence_signal(device, handle, ALL_ENGINES, "all", 150); igt_subtest("series") series(device, handle, 150); igt_subtest("parallel") parallel(device, handle, 150); igt_subtest("sequential") sequential(device, handle, 0, 150); igt_subtest("forked-sequential") sequential(device, handle, FORKED, 150); igt_subtest("chained-sequential") sequential(device, handle, FORKED | CHAINED, 150); igt_subtest("context-sequential") sequential(device, handle, FORKED | CONTEXT, 150); igt_subtest_group { igt_fixture { gem_require_contexts(device); igt_require(gem_scheduler_has_ctx_priority(device)); igt_require(gem_scheduler_has_preemption(device)); } for (e = intel_execution_engines; e->name; e++) { igt_subtest_f("preempt-%s", e->name) preempt(device, handle, e->exec_id | e->flags, e->name); } } igt_subtest_group { igt_fixture { igt_device_set_master(device); } for (e = intel_execution_engines; e->name; e++) { /* Requires master for STORE_DWORD on gen4/5 */ igt_subtest_f("poll-%s", e->name) poll_ring(device, e->exec_id | e->flags, e->name, 20); } igt_subtest("poll-sequential") poll_sequential(device, "Sequential", 20); igt_subtest("headless") { /* Requires master for changing display modes */ headless(device, handle); } } igt_fixture { igt_stop_hang_detector(); gem_close(device, handle); close(device); } }