1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
/*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
* Copyright 2015 Philip Taylor <philip@zaynar.co.uk>
* Copyright 2018 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <assert.h>
#include <math.h>
#include "igt_halffloat.h"
#include "igt_x86.h"
typedef union { float f; int32_t i; uint32_t u; } fi_type;
/**
* Convert a 4-byte float to a 2-byte half float.
*
* Not all float32 values can be represented exactly as a float16 value. We
* round such intermediate float32 values to the nearest float16. When the
* float32 lies exactly between to float16 values, we round to the one with
* an even mantissa.
*
* This rounding behavior has several benefits:
* - It has no sign bias.
*
* - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's
* GPU ISA.
*
* - By reproducing the behavior of the GPU (at least on Intel hardware),
* compile-time evaluation of constant packHalf2x16 GLSL expressions will
* result in the same value as if the expression were executed on the GPU.
*/
static inline uint16_t _float_to_half(float val)
{
const fi_type fi = {val};
const int flt_m = fi.i & 0x7fffff;
const int flt_e = (fi.i >> 23) & 0xff;
const int flt_s = (fi.i >> 31) & 0x1;
int s, e, m = 0;
uint16_t result;
/* sign bit */
s = flt_s;
/* handle special cases */
if ((flt_e == 0) && (flt_m == 0)) {
/* zero */
/* m = 0; - already set */
e = 0;
} else if ((flt_e == 0) && (flt_m != 0)) {
/* denorm -- denorm float maps to 0 half */
/* m = 0; - already set */
e = 0;
} else if ((flt_e == 0xff) && (flt_m == 0)) {
/* infinity */
/* m = 0; - already set */
e = 31;
} else if ((flt_e == 0xff) && (flt_m != 0)) {
/* NaN */
m = 1;
e = 31;
} else {
/* regular number */
const int new_exp = flt_e - 127;
if (new_exp < -14) {
/* The float32 lies in the range (0.0, min_normal16) and
* is rounded to a nearby float16 value. The result will
* be either zero, subnormal, or normal.
*/
e = 0;
m = lrintf((1 << 24) * fabsf(fi.f));
} else if (new_exp > 15) {
/* map this value to infinity */
/* m = 0; - already set */
e = 31;
} else {
/* The float32 lies in the range
* [min_normal16, max_normal16 + max_step16)
* and is rounded to a nearby float16 value. The result
* will be either normal or infinite.
*/
e = new_exp + 15;
m = lrintf(flt_m / (float)(1 << 13));
}
}
assert(0 <= m && m <= 1024);
if (m == 1024) {
/* The float32 was rounded upwards into the range of the next
* exponent, so bump the exponent. This correctly handles the
* case where f32 should be rounded up to float16 infinity.
*/
++e;
m = 0;
}
result = (s << 15) | (e << 10) | m;
return result;
}
/**
* Convert a 2-byte half float to a 4-byte float.
* Based on code from:
* http://www.opengl.org/discussion_boards/ubb/Forum3/HTML/008786.html
*/
static inline float _half_to_float(uint16_t val)
{
/* XXX could also use a 64K-entry lookup table */
const int m = val & 0x3ff;
const int e = (val >> 10) & 0x1f;
const int s = (val >> 15) & 0x1;
int flt_m, flt_e, flt_s;
fi_type fi;
/* sign bit */
flt_s = s;
/* handle special cases */
if ((e == 0) && (m == 0)) {
/* zero */
flt_m = 0;
flt_e = 0;
} else if ((e == 0) && (m != 0)) {
/* denorm -- denorm half will fit in non-denorm single */
const float half_denorm = 1.0f / 16384.0f; /* 2^-14 */
float mantissa = ((float) (m)) / 1024.0f;
float sign = s ? -1.0f : 1.0f;
return sign * mantissa * half_denorm;
} else if ((e == 31) && (m == 0)) {
/* infinity */
flt_e = 0xff;
flt_m = 0;
} else if ((e == 31) && (m != 0)) {
/* NaN */
flt_e = 0xff;
flt_m = 1;
} else {
/* regular */
flt_e = e + 112;
flt_m = m << 13;
}
fi.i = (flt_s << 31) | (flt_e << 23) | flt_m;
return fi.f;
}
#if defined(__x86_64__) && !defined(__clang__)
#pragma GCC push_options
#pragma GCC target("f16c")
#include <immintrin.h>
static void float_to_half_f16c(const float *f, uint16_t *h, unsigned int num)
{
for (int i = 0; i < num; i++)
h[i] = _cvtss_sh(f[i], 0);
}
static void half_to_float_f16c(const uint16_t *h, float *f, unsigned int num)
{
for (int i = 0; i < num; i++)
f[i] = _cvtsh_ss(h[i]);
}
#pragma GCC pop_options
static void float_to_half(const float *f, uint16_t *h, unsigned int num)
{
for (int i = 0; i < num; i++)
h[i] = _float_to_half(f[i]);
}
static void half_to_float(const uint16_t *h, float *f, unsigned int num)
{
for (int i = 0; i < num; i++)
f[i] = _half_to_float(h[i]);
}
static void (*resolve_float_to_half(void))(const float *f, uint16_t *h, unsigned int num)
{
if (igt_x86_features() & F16C)
return float_to_half_f16c;
return float_to_half;
}
void igt_float_to_half(const float *f, uint16_t *h, unsigned int num)
__attribute__((ifunc("resolve_float_to_half")));
static void (*resolve_half_to_float(void))(const uint16_t *h, float *f, unsigned int num)
{
if (igt_x86_features() & F16C)
return half_to_float_f16c;
return half_to_float;
}
void igt_half_to_float(const uint16_t *h, float *f, unsigned int num)
__attribute__((ifunc("resolve_half_to_float")));
#else
void igt_float_to_half(const float *f, uint16_t *h, unsigned int num)
{
for (int i = 0; i < num; i++)
h[i] = _float_to_half(f[i]);
}
void igt_half_to_float(const uint16_t *h, float *f, unsigned int num)
{
for (int i = 0; i < num; i++)
f[i] = _half_to_float(h[i]);
}
#endif
|