summaryrefslogtreecommitdiff
path: root/lib/igt_stats.c
blob: e0859a03182270f4176ab4d9f02264b63cc210d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include <math.h>
#include <stdlib.h>
#include <string.h>

#include "igt_core.h"
#include "igt_stats.h"

#define U64_MAX         ((uint64_t)~0ULL)

#define sorted_value(stats, i) (stats->is_float ? stats->sorted_f[i] : stats->sorted_u64[i])
#define unsorted_value(stats, i) (stats->is_float ? stats->values_f[i] : stats->values_u64[i])

/**
 * SECTION:igt_stats
 * @short_description: Tools for statistical analysis
 * @title: Stats
 * @include: igt.h
 *
 * Various tools to make sense of data.
 *
 * #igt_stats_t is a container of data samples. igt_stats_push() is used to add
 * new samples and various results (mean, variance, standard deviation, ...)
 * can then be retrieved.
 *
 * |[
 *	igt_stats_t stats;
 *
 *	igt_stats_init(&stats, 8);
 *
 *	igt_stats_push(&stats, 2);
 *	igt_stats_push(&stats, 4);
 *	igt_stats_push(&stats, 4);
 *	igt_stats_push(&stats, 4);
 *	igt_stats_push(&stats, 5);
 *	igt_stats_push(&stats, 5);
 *	igt_stats_push(&stats, 7);
 *	igt_stats_push(&stats, 9);
 *
 *	printf("Mean: %lf\n", igt_stats_get_mean(&stats));
 *
 *	igt_stats_fini(&stats);
 * ]|
 */

static unsigned int get_new_capacity(int need)
{
	unsigned int new_capacity;

	/* taken from Python's list */
	new_capacity = (need >> 6) + (need < 9 ? 3 : 6);
	new_capacity += need;

	return new_capacity;
}

static void igt_stats_ensure_capacity(igt_stats_t *stats,
				      unsigned int n_additional_values)
{
	unsigned int new_n_values = stats->n_values + n_additional_values;
	unsigned int new_capacity;

	if (new_n_values <= stats->capacity)
		return;

	new_capacity = get_new_capacity(new_n_values);
	stats->values_u64 = realloc(stats->values_u64,
				    sizeof(*stats->values_u64) * new_capacity);
	igt_assert(stats->values_u64);

	stats->capacity = new_capacity;

	free(stats->sorted_u64);
	stats->sorted_u64 = NULL;
}

/**
 * igt_stats_init:
 * @stats: An #igt_stats_t instance
 *
 * Initializes an #igt_stats_t instance. igt_stats_fini() must be called once
 * finished with @stats.
 */
void igt_stats_init(igt_stats_t *stats)
{
	memset(stats, 0, sizeof(*stats));

	igt_stats_ensure_capacity(stats, 128);

	stats->min = U64_MAX;
	stats->max = 0;
}

/**
 * igt_stats_init_with_size:
 * @stats: An #igt_stats_t instance
 * @capacity: Number of data samples @stats can contain
 *
 * Like igt_stats_init() but with a size to avoid reallocating the underlying
 * array(s) when pushing new values. Useful if we have a good idea of the
 * number of data points we want @stats to hold.
 *
 * igt_stats_fini() must be called once finished with @stats.
 */
void igt_stats_init_with_size(igt_stats_t *stats, unsigned int capacity)
{
	memset(stats, 0, sizeof(*stats));

	igt_stats_ensure_capacity(stats, capacity);

	stats->min = U64_MAX;
	stats->max = 0;
	stats->range[0] = HUGE_VAL;
	stats->range[1] = -HUGE_VAL;
}

/**
 * igt_stats_fini:
 * @stats: An #igt_stats_t instance
 *
 * Frees resources allocated in igt_stats_init().
 */
void igt_stats_fini(igt_stats_t *stats)
{
	free(stats->values_u64);
	free(stats->sorted_u64);
}


/**
 * igt_stats_is_population:
 * @stats: An #igt_stats_t instance
 *
 * Returns: #true if @stats represents a population, #false if only a sample.
 *
 * See igt_stats_set_population() for more details.
 */
bool igt_stats_is_population(igt_stats_t *stats)
{
	return stats->is_population;
}

/**
 * igt_stats_set_population:
 * @stats: An #igt_stats_t instance
 * @full_population: Whether we're dealing with sample data or a full
 *		     population
 *
 * In statistics, we usually deal with a subset of the full data (which may be
 * a continuous or infinite set). Data analysis is then done on a sample of
 * this population.
 *
 * This has some importance as only having a sample of the data leads to
 * [biased estimators](https://en.wikipedia.org/wiki/Bias_of_an_estimator). We
 * currently used the information given by this method to apply
 * [Bessel's correction](https://en.wikipedia.org/wiki/Bessel%27s_correction)
 * to the variance.
 *
 * Note that even if we manage to have an unbiased variance by multiplying
 * a sample variance by the Bessel's correction, n/(n - 1), the standard
 * deviation derived from the unbiased variance isn't itself unbiased.
 * Statisticians talk about a "corrected" standard deviation.
 *
 * When giving #true to this function, the data set in @stats is considered a
 * full population. It's considered a sample of a bigger population otherwise.
 *
 * When newly created, @stats defaults to holding sample data.
 */
void igt_stats_set_population(igt_stats_t *stats, bool full_population)
{
	if (full_population == stats->is_population)
		return;

	stats->is_population = full_population;
	stats->mean_variance_valid = false;
}

/**
 * igt_stats_push:
 * @stats: An #igt_stats_t instance
 * @value: An integer value
 *
 * Adds a new value to the @stats dataset.
 */
void igt_stats_push(igt_stats_t *stats, uint64_t value)
{
	if (stats->is_float) {
		igt_stats_push_float(stats, value);
		return;
	}

	igt_stats_ensure_capacity(stats, 1);

	stats->values_u64[stats->n_values++] = value;

	stats->mean_variance_valid = false;
	stats->sorted_array_valid = false;

	if (value < stats->min)
		stats->min = value;
	if (value > stats->max)
		stats->max = value;
}

/**
 * igt_stats_push:
 * @stats: An #igt_stats_t instance
 * @value: An floating point
 *
 * Adds a new value to the @stats dataset and converts the igt_stats from
 * an integer collection to a floating point one.
 */
void igt_stats_push_float(igt_stats_t *stats, double value)
{
	igt_stats_ensure_capacity(stats, 1);

	if (!stats->is_float) {
		int n;

		for (n = 0; n < stats->n_values; n++)
			stats->values_f[n] = stats->values_u64[n];

		stats->is_float = true;
	}

	stats->values_f[stats->n_values++] = value;

	stats->mean_variance_valid = false;
	stats->sorted_array_valid = false;

	if (value < stats->range[0])
		stats->range[0] = value;
	if (value > stats->range[1])
		stats->range[1] = value;
}

/**
 * igt_stats_push_array:
 * @stats: An #igt_stats_t instance
 * @values: (array length=n_values): A pointer to an array of data points
 * @n_values: The number of data points to add
 *
 * Adds an array of values to the @stats dataset.
 */
void igt_stats_push_array(igt_stats_t *stats,
			  const uint64_t *values, unsigned int n_values)
{
	unsigned int i;

	igt_stats_ensure_capacity(stats, n_values);

	for (i = 0; i < n_values; i++)
		igt_stats_push(stats, values[i]);
}

/**
 * igt_stats_get_min:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the minimal value in @stats
 */
uint64_t igt_stats_get_min(igt_stats_t *stats)
{
	igt_assert(!stats->is_float);
	return stats->min;
}

/**
 * igt_stats_get_max:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the maximum value in @stats
 */
uint64_t igt_stats_get_max(igt_stats_t *stats)
{
	igt_assert(!stats->is_float);
	return stats->max;
}

/**
 * igt_stats_get_range:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the range of the values in @stats. The range is the difference
 * between the highest and the lowest value.
 *
 * The range can be a deceiving characterization of the values, because there
 * can be extreme minimal and maximum values that are just anomalies. Prefer
 * the interquatile range (see igt_stats_get_iqr()) or an histogram.
 */
uint64_t igt_stats_get_range(igt_stats_t *stats)
{
	return igt_stats_get_max(stats) - igt_stats_get_min(stats);
}

static int cmp_u64(const void *pa, const void *pb)
{
	const uint64_t *a = pa, *b = pb;

	if (*a < *b)
		return -1;
	if (*a > *b)
		return 1;
	return 0;
}

static int cmp_f(const void *pa, const void *pb)
{
	const double *a = pa, *b = pb;

	if (*a < *b)
		return -1;
	if (*a > *b)
		return 1;
	return 0;
}

static void igt_stats_ensure_sorted_values(igt_stats_t *stats)
{
	if (stats->sorted_array_valid)
		return;

	if (!stats->sorted_u64) {
		/*
		 * igt_stats_ensure_capacity() will free ->sorted when the
		 * capacity increases, which also correspond to an invalidation
		 * of the sorted array. We'll then reallocate it here on
		 * demand.
		 */
		stats->sorted_u64 = calloc(stats->capacity,
					   sizeof(*stats->values_u64));
		igt_assert(stats->sorted_u64);
	}

	memcpy(stats->sorted_u64, stats->values_u64,
	       sizeof(*stats->values_u64) * stats->n_values);

	qsort(stats->sorted_u64, stats->n_values, sizeof(*stats->values_u64),
	      stats->is_float ? cmp_f : cmp_u64);

	stats->sorted_array_valid = true;
}

/*
 * We use Tukey's hinge for our quartiles determination.
 * ends (end, lower_end) are exclusive.
 */
static double
igt_stats_get_median_internal(igt_stats_t *stats,
			      unsigned int start, unsigned int end,
			      unsigned int *lower_end /* out */,
			      unsigned int *upper_start /* out */)
{
	unsigned int mid, n_values = end - start;
	double median;

	igt_stats_ensure_sorted_values(stats);

	/* odd number of data points */
	if (n_values % 2 == 1) {
		/* median is the value in the middle (actual datum) */
		mid = start + n_values / 2;
		median = sorted_value(stats, mid);

		/* the two halves contain the median value */
		if (lower_end)
			*lower_end = mid + 1;
		if (upper_start)
			*upper_start = mid;

	/* even number of data points */
	} else {
		/*
		 * The middle is in between two indexes, 'mid' points at the
		 * lower one. The median is then the average between those two
		 * values.
		 */
		mid = start + n_values / 2 - 1;
		median = (sorted_value(stats, mid) + sorted_value(stats, mid+1))/2.;

		if (lower_end)
			*lower_end = mid + 1;
		if (upper_start)
			*upper_start = mid + 1;
	}

	return median;
}

/**
 * igt_stats_get_quartiles:
 * @stats: An #igt_stats_t instance
 * @q1: (out): lower or 25th quartile
 * @q2: (out): median or 50th quartile
 * @q3: (out): upper or 75th quartile
 *
 * Retrieves the [quartiles](https://en.wikipedia.org/wiki/Quartile) of the
 * @stats dataset.
 */
void igt_stats_get_quartiles(igt_stats_t *stats,
			     double *q1, double *q2, double *q3)
{
	unsigned int lower_end, upper_start;
	double ret;

	if (stats->n_values < 3) {
		if (q1)
			*q1 = 0.;
		if (q2)
			*q2 = 0.;
		if (q3)
			*q3 = 0.;
		return;
	}

	ret = igt_stats_get_median_internal(stats, 0, stats->n_values,
					    &lower_end, &upper_start);
	if (q2)
		*q2 = ret;

	ret = igt_stats_get_median_internal(stats, 0, lower_end, NULL, NULL);
	if (q1)
		*q1 = ret;

	ret = igt_stats_get_median_internal(stats, upper_start, stats->n_values,
					    NULL, NULL);
	if (q3)
		*q3 = ret;
}

/**
 * igt_stats_get_iqr:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the
 * [interquartile range](https://en.wikipedia.org/wiki/Interquartile_range)
 * (IQR) of the @stats dataset.
 */
double igt_stats_get_iqr(igt_stats_t *stats)
{
	double q1, q3;

	igt_stats_get_quartiles(stats, &q1, NULL, &q3);
	return (q3 - q1);
}

/**
 * igt_stats_get_median:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the median of the @stats dataset.
 */
double igt_stats_get_median(igt_stats_t *stats)
{
	return igt_stats_get_median_internal(stats, 0, stats->n_values,
					     NULL, NULL);
}

/*
 * Algorithm popularised by Knuth in:
 *
 * The Art of Computer Programming, volume 2: Seminumerical Algorithms,
 * 3rd edn., p. 232. Boston: Addison-Wesley
 *
 * Source: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
 */
static void igt_stats_knuth_mean_variance(igt_stats_t *stats)
{
	double mean = 0., m2 = 0.;
	unsigned int i;

	if (stats->mean_variance_valid)
		return;

	for (i = 0; i < stats->n_values; i++) {
		double delta = unsorted_value(stats, i) - mean;

		mean += delta / (i + 1);
		m2 += delta * (unsorted_value(stats, i) - mean);
	}

	stats->mean = mean;
	if (stats->n_values > 1 && !stats->is_population)
		stats->variance = m2 / (stats->n_values - 1);
	else
		stats->variance = m2 / stats->n_values;
	stats->mean_variance_valid = true;
}

/**
 * igt_stats_get_mean:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the mean of the @stats dataset.
 */
double igt_stats_get_mean(igt_stats_t *stats)
{
	igt_stats_knuth_mean_variance(stats);

	return stats->mean;
}

/**
 * igt_stats_get_variance:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the variance of the @stats dataset.
 */
double igt_stats_get_variance(igt_stats_t *stats)
{
	igt_stats_knuth_mean_variance(stats);

	return stats->variance;
}

/**
 * igt_stats_get_std_deviation:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the standard deviation of the @stats dataset.
 */
double igt_stats_get_std_deviation(igt_stats_t *stats)
{
	igt_stats_knuth_mean_variance(stats);

	return sqrt(stats->variance);
}

/**
 * igt_stats_get_std_error:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the standard error of the mean from the @stats dataset.
 */
double igt_stats_get_std_error(igt_stats_t *stats)
{
	return igt_stats_get_std_deviation(stats) / sqrt(stats->n_values);
}

/**
 * igt_stats_get_iqm:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the
 * [interquartile mean](https://en.wikipedia.org/wiki/Interquartile_mean) (IQM)
 * of the @stats dataset.
 *
 * The interquartile mean is a "statistical measure of central tendency".
 * It is a truncated mean that discards the lowest and highest 25% of values,
 * and calculates the mean value of the remaining central values.
 *
 * It's useful to hide outliers in measurements (due to cold cache etc).
 */
double igt_stats_get_iqm(igt_stats_t *stats)
{
	unsigned int q1, q3, i;
	double mean;

	igt_stats_ensure_sorted_values(stats);

	q1 = (stats->n_values + 3) / 4;
	q3 = 3 * stats->n_values / 4;

	mean = 0;
	for (i = 0; i <= q3 - q1; i++)
		mean += (sorted_value(stats, q1 + i) - mean) / (i + 1);

	if (stats->n_values % 4) {
		double rem = .5 * (stats->n_values % 4) / 4;

		q1 = (stats->n_values) / 4;
		q3 = (3 * stats->n_values + 3) / 4;

		mean += rem * (sorted_value(stats, q1) - mean) / i++;
		mean += rem * (sorted_value(stats, q3) - mean) / i++;
	}

	return mean;
}

/**
 * igt_stats_get_trimean:
 * @stats: An #igt_stats_t instance
 *
 * Retrieves the [trimean](https://en.wikipedia.org/wiki/Trimean) of the @stats
 * dataset.
 *
 * The trimean is a the most efficient 3-point L-estimator, even more
 * robust than the median at estimating the average of a sample population.
 */
double igt_stats_get_trimean(igt_stats_t *stats)
{
	double q1, q2, q3;
	igt_stats_get_quartiles(stats, &q1, &q2, &q3);
	return (q1 + 2*q2 + q3) / 4;
}

/**
 * igt_mean_init:
 * @m: tracking structure
 *
 * Initializes or resets @m.
 */
void igt_mean_init(struct igt_mean *m)
{
	memset(m, 0, sizeof(*m));
	m->max = -HUGE_VAL;
	m->min = HUGE_VAL;
}

/**
 * igt_mean_add:
 * @m: tracking structure
 * @v: value
 *
 * Adds a new value @v to @m.
 */
void igt_mean_add(struct igt_mean *m, double v)
{
	double delta = v - m->mean;
	m->mean += delta / ++m->count;
	m->sq += delta * (v - m->mean);
	if (v < m->min)
		m->min = v;
	if (v > m->max)
		m->max = v;
}

/**
 * igt_mean_get:
 * @m: tracking structure
 *
 * Computes the current mean of the samples tracked in @m.
 */
double igt_mean_get(struct igt_mean *m)
{
	return m->mean;
}

/**
 * igt_mean_get_variance:
 * @m: tracking structure
 *
 * Computes the current variance of the samples tracked in @m.
 */
double igt_mean_get_variance(struct igt_mean *m)
{
	return m->sq / m->count;
}