summaryrefslogtreecommitdiff
path: root/arch/ia64/include/asm/sn/shubio.h
diff options
context:
space:
mode:
authorRussell King <rmk@dyn-67.arm.linux.org.uk>2008-08-07 09:55:03 +0100
committerRussell King <rmk+kernel@arm.linux.org.uk>2008-08-07 09:55:03 +0100
commit4fb8af10d0fd09372d52966b76922b9e82bbc950 (patch)
treed240e4d40357583e3f3eb228dccf20122a5b31ed /arch/ia64/include/asm/sn/shubio.h
parentf44f82e8a20b98558486eb14497b2f71c78fa325 (diff)
parent64a99d2a8c3ed5c4e39f3ae1cc682aa8fd3977fc (diff)
Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild-fixes
Diffstat (limited to 'arch/ia64/include/asm/sn/shubio.h')
-rw-r--r--arch/ia64/include/asm/sn/shubio.h3358
1 files changed, 3358 insertions, 0 deletions
diff --git a/arch/ia64/include/asm/sn/shubio.h b/arch/ia64/include/asm/sn/shubio.h
new file mode 100644
index 000000000000..22a6f18a5313
--- /dev/null
+++ b/arch/ia64/include/asm/sn/shubio.h
@@ -0,0 +1,3358 @@
+/*
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
+ */
+
+#ifndef _ASM_IA64_SN_SHUBIO_H
+#define _ASM_IA64_SN_SHUBIO_H
+
+#define HUB_WIDGET_ID_MAX 0xf
+#define IIO_NUM_ITTES 7
+#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
+
+#define IIO_WID 0x00400000 /* Crosstalk Widget Identification */
+ /* This register is also accessible from
+ * Crosstalk at address 0x0. */
+#define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */
+#define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */
+#define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */
+#define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */
+#define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */
+#define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */
+#define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */
+#define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */
+#define IIO_ILLR 0x00400130 /* IO LLP Log Register */
+#define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */
+
+#define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */
+#define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */
+
+#define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */
+#define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */
+
+#define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */
+#define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */
+#define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */
+#define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */
+#define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */
+#define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */
+#define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */
+
+#define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */
+#define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */
+#define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */
+#define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */
+#define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */
+#define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */
+#define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */
+#define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */
+#define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */
+
+#define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */
+#define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */
+#define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */
+#define IIO_IECLR 0x004001F8 /* IO Error Clear Register */
+#define IIO_IBCR 0x00400200 /* IO BTE Control Register */
+
+#define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */
+#define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */
+
+#define IIO_ILCT 0x00400218 /* IO LLP Channel Test */
+
+#define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */
+#define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */
+
+#define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */
+#define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */
+
+#define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */
+#define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */
+#define IIO_IWC 0x00400250 /* IO Wrapper Control Register */
+#define IIO_IWS 0x00400258 /* IO Wrapper Status Register */
+#define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */
+
+#define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */
+
+#define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */
+#define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */
+#define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */
+#define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */
+#define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */
+#define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */
+#define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */
+#define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */
+
+#define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */
+#define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */
+#define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */
+#define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */
+#define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */
+#define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */
+#define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */
+#define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */
+
+#define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */
+#define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */
+#define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */
+#define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */
+#define IIO_ICMR 0x004003A8 /* IO CRB Management Register */
+#define IIO_ICCR 0x004003B0 /* IO CRB Control Register */
+#define IIO_ICTO 0x004003B8 /* IO CRB Timeout */
+#define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */
+
+#define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */
+#define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */
+#define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */
+#define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */
+#define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */
+
+#define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */
+#define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */
+#define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */
+#define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */
+#define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */
+
+#define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */
+#define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */
+#define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */
+#define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */
+#define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */
+
+#define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */
+#define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */
+#define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */
+#define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */
+#define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */
+
+#define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */
+#define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */
+#define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */
+#define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */
+#define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */
+
+#define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */
+#define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */
+#define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */
+#define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */
+#define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */
+
+#define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */
+#define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */
+#define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */
+#define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */
+#define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */
+
+#define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */
+#define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */
+#define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */
+#define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */
+#define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */
+
+#define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */
+#define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */
+#define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */
+#define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */
+#define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */
+
+#define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */
+#define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */
+#define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */
+#define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */
+#define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */
+
+#define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */
+#define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */
+#define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */
+#define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */
+#define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */
+
+#define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */
+#define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */
+#define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */
+#define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */
+#define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */
+
+#define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */
+#define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */
+#define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */
+#define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */
+#define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */
+
+#define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */
+#define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */
+#define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */
+#define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */
+#define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */
+
+#define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */
+#define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */
+#define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */
+#define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */
+#define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */
+
+#define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */
+#define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */
+#define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */
+
+#define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */
+
+#define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */
+#define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */
+#define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */
+#define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */
+#define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */
+#define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */
+#define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */
+#define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */
+#define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */
+#define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */
+#define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */
+#define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */
+
+#define IIO_IPCR 0x00430000 /* IO Performance Control */
+#define IIO_IPPR 0x00430008 /* IO Performance Profiling */
+
+/************************************************************************
+ * *
+ * Description: This register echoes some information from the *
+ * LB_REV_ID register. It is available through Crosstalk as described *
+ * above. The REV_NUM and MFG_NUM fields receive their values from *
+ * the REVISION and MANUFACTURER fields in the LB_REV_ID register. *
+ * The PART_NUM field's value is the Crosstalk device ID number that *
+ * Steve Miller assigned to the SHub chip. *
+ * *
+ ************************************************************************/
+
+typedef union ii_wid_u {
+ u64 ii_wid_regval;
+ struct {
+ u64 w_rsvd_1:1;
+ u64 w_mfg_num:11;
+ u64 w_part_num:16;
+ u64 w_rev_num:4;
+ u64 w_rsvd:32;
+ } ii_wid_fld_s;
+} ii_wid_u_t;
+
+/************************************************************************
+ * *
+ * The fields in this register are set upon detection of an error *
+ * and cleared by various mechanisms, as explained in the *
+ * description. *
+ * *
+ ************************************************************************/
+
+typedef union ii_wstat_u {
+ u64 ii_wstat_regval;
+ struct {
+ u64 w_pending:4;
+ u64 w_xt_crd_to:1;
+ u64 w_xt_tail_to:1;
+ u64 w_rsvd_3:3;
+ u64 w_tx_mx_rty:1;
+ u64 w_rsvd_2:6;
+ u64 w_llp_tx_cnt:8;
+ u64 w_rsvd_1:8;
+ u64 w_crazy:1;
+ u64 w_rsvd:31;
+ } ii_wstat_fld_s;
+} ii_wstat_u_t;
+
+/************************************************************************
+ * *
+ * Description: This is a read-write enabled register. It controls *
+ * various aspects of the Crosstalk flow control. *
+ * *
+ ************************************************************************/
+
+typedef union ii_wcr_u {
+ u64 ii_wcr_regval;
+ struct {
+ u64 w_wid:4;
+ u64 w_tag:1;
+ u64 w_rsvd_1:8;
+ u64 w_dst_crd:3;
+ u64 w_f_bad_pkt:1;
+ u64 w_dir_con:1;
+ u64 w_e_thresh:5;
+ u64 w_rsvd:41;
+ } ii_wcr_fld_s;
+} ii_wcr_u_t;
+
+/************************************************************************
+ * *
+ * Description: This register's value is a bit vector that guards *
+ * access to local registers within the II as well as to external *
+ * Crosstalk widgets. Each bit in the register corresponds to a *
+ * particular region in the system; a region consists of one, two or *
+ * four nodes (depending on the value of the REGION_SIZE field in the *
+ * LB_REV_ID register, which is documented in Section 8.3.1.1). The *
+ * protection provided by this register applies to PIO read *
+ * operations as well as PIO write operations. The II will perform a *
+ * PIO read or write request only if the bit for the requestor's *
+ * region is set; otherwise, the II will not perform the requested *
+ * operation and will return an error response. When a PIO read or *
+ * write request targets an external Crosstalk widget, then not only *
+ * must the bit for the requestor's region be set in the ILAPR, but *
+ * also the target widget's bit in the IOWA register must be set in *
+ * order for the II to perform the requested operation; otherwise, *
+ * the II will return an error response. Hence, the protection *
+ * provided by the IOWA register supplements the protection provided *
+ * by the ILAPR for requests that target external Crosstalk widgets. *
+ * This register itself can be accessed only by the nodes whose *
+ * region ID bits are enabled in this same register. It can also be *
+ * accessed through the IAlias space by the local processors. *
+ * The reset value of this register allows access by all nodes. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ilapr_u {
+ u64 ii_ilapr_regval;
+ struct {
+ u64 i_region:64;
+ } ii_ilapr_fld_s;
+} ii_ilapr_u_t;
+
+/************************************************************************
+ * *
+ * Description: A write to this register of the 64-bit value *
+ * "SGIrules" in ASCII, will cause the bit in the ILAPR register *
+ * corresponding to the region of the requestor to be set (allow *
+ * access). A write of any other value will be ignored. Access *
+ * protection for this register is "SGIrules". *
+ * This register can also be accessed through the IAlias space. *
+ * However, this access will not change the access permissions in the *
+ * ILAPR. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ilapo_u {
+ u64 ii_ilapo_regval;
+ struct {
+ u64 i_io_ovrride:64;
+ } ii_ilapo_fld_s;
+} ii_ilapo_u_t;
+
+/************************************************************************
+ * *
+ * This register qualifies all the PIO and Graphics writes launched *
+ * from the SHUB towards a widget. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iowa_u {
+ u64 ii_iowa_regval;
+ struct {
+ u64 i_w0_oac:1;
+ u64 i_rsvd_1:7;
+ u64 i_wx_oac:8;
+ u64 i_rsvd:48;
+ } ii_iowa_fld_s;
+} ii_iowa_u_t;
+
+/************************************************************************
+ * *
+ * Description: This register qualifies all the requests launched *
+ * from a widget towards the Shub. This register is intended to be *
+ * used by software in case of misbehaving widgets. *
+ * *
+ * *
+ ************************************************************************/
+
+typedef union ii_iiwa_u {
+ u64 ii_iiwa_regval;
+ struct {
+ u64 i_w0_iac:1;
+ u64 i_rsvd_1:7;
+ u64 i_wx_iac:8;
+ u64 i_rsvd:48;
+ } ii_iiwa_fld_s;
+} ii_iiwa_u_t;
+
+/************************************************************************
+ * *
+ * Description: This register qualifies all the operations launched *
+ * from a widget towards the SHub. It allows individual access *
+ * control for up to 8 devices per widget. A device refers to *
+ * individual DMA master hosted by a widget. *
+ * The bits in each field of this register are cleared by the Shub *
+ * upon detection of an error which requires the device to be *
+ * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric *
+ * Crosstalk). Whether or not a device has access rights to this *
+ * Shub is determined by an AND of the device enable bit in the *
+ * appropriate field of this register and the corresponding bit in *
+ * the Wx_IAC field (for the widget which this device belongs to). *
+ * The bits in this field are set by writing a 1 to them. Incoming *
+ * replies from Crosstalk are not subject to this access control *
+ * mechanism. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iidem_u {
+ u64 ii_iidem_regval;
+ struct {
+ u64 i_w8_dxs:8;
+ u64 i_w9_dxs:8;
+ u64 i_wa_dxs:8;
+ u64 i_wb_dxs:8;
+ u64 i_wc_dxs:8;
+ u64 i_wd_dxs:8;
+ u64 i_we_dxs:8;
+ u64 i_wf_dxs:8;
+ } ii_iidem_fld_s;
+} ii_iidem_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the various programmable fields necessary *
+ * for controlling and observing the LLP signals. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ilcsr_u {
+ u64 ii_ilcsr_regval;
+ struct {
+ u64 i_nullto:6;
+ u64 i_rsvd_4:2;
+ u64 i_wrmrst:1;
+ u64 i_rsvd_3:1;
+ u64 i_llp_en:1;
+ u64 i_bm8:1;
+ u64 i_llp_stat:2;
+ u64 i_remote_power:1;
+ u64 i_rsvd_2:1;
+ u64 i_maxrtry:10;
+ u64 i_d_avail_sel:2;
+ u64 i_rsvd_1:4;
+ u64 i_maxbrst:10;
+ u64 i_rsvd:22;
+
+ } ii_ilcsr_fld_s;
+} ii_ilcsr_u_t;
+
+/************************************************************************
+ * *
+ * This is simply a status registers that monitors the LLP error *
+ * rate. *
+ * *
+ ************************************************************************/
+
+typedef union ii_illr_u {
+ u64 ii_illr_regval;
+ struct {
+ u64 i_sn_cnt:16;
+ u64 i_cb_cnt:16;
+ u64 i_rsvd:32;
+ } ii_illr_fld_s;
+} ii_illr_u_t;
+
+/************************************************************************
+ * *
+ * Description: All II-detected non-BTE error interrupts are *
+ * specified via this register. *
+ * NOTE: The PI interrupt register address is hardcoded in the II. If *
+ * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI *
+ * packet) to address offset 0x0180_0090 within the local register *
+ * address space of PI0 on the node specified by the NODE field. If *
+ * PI_ID==1, then the II sends the interrupt request to address *
+ * offset 0x01A0_0090 within the local register address space of PI1 *
+ * on the node specified by the NODE field. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iidsr_u {
+ u64 ii_iidsr_regval;
+ struct {
+ u64 i_level:8;
+ u64 i_pi_id:1;
+ u64 i_node:11;
+ u64 i_rsvd_3:4;
+ u64 i_enable:1;
+ u64 i_rsvd_2:3;
+ u64 i_int_sent:2;
+ u64 i_rsvd_1:2;
+ u64 i_pi0_forward_int:1;
+ u64 i_pi1_forward_int:1;
+ u64 i_rsvd:30;
+ } ii_iidsr_fld_s;
+} ii_iidsr_u_t;
+
+/************************************************************************
+ * *
+ * There are two instances of this register. This register is used *
+ * for matching up the incoming responses from the graphics widget to *
+ * the processor that initiated the graphics operation. The *
+ * write-responses are converted to graphics credits and returned to *
+ * the processor so that the processor interface can manage the flow *
+ * control. *
+ * *
+ ************************************************************************/
+
+typedef union ii_igfx0_u {
+ u64 ii_igfx0_regval;
+ struct {
+ u64 i_w_num:4;
+ u64 i_pi_id:1;
+ u64 i_n_num:12;
+ u64 i_p_num:1;
+ u64 i_rsvd:46;
+ } ii_igfx0_fld_s;
+} ii_igfx0_u_t;
+
+/************************************************************************
+ * *
+ * There are two instances of this register. This register is used *
+ * for matching up the incoming responses from the graphics widget to *
+ * the processor that initiated the graphics operation. The *
+ * write-responses are converted to graphics credits and returned to *
+ * the processor so that the processor interface can manage the flow *
+ * control. *
+ * *
+ ************************************************************************/
+
+typedef union ii_igfx1_u {
+ u64 ii_igfx1_regval;
+ struct {
+ u64 i_w_num:4;
+ u64 i_pi_id:1;
+ u64 i_n_num:12;
+ u64 i_p_num:1;
+ u64 i_rsvd:46;
+ } ii_igfx1_fld_s;
+} ii_igfx1_u_t;
+
+/************************************************************************
+ * *
+ * There are two instances of this registers. These registers are *
+ * used as scratch registers for software use. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iscr0_u {
+ u64 ii_iscr0_regval;
+ struct {
+ u64 i_scratch:64;
+ } ii_iscr0_fld_s;
+} ii_iscr0_u_t;
+
+/************************************************************************
+ * *
+ * There are two instances of this registers. These registers are *
+ * used as scratch registers for software use. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iscr1_u {
+ u64 ii_iscr1_regval;
+ struct {
+ u64 i_scratch:64;
+ } ii_iscr1_fld_s;
+} ii_iscr1_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are seven instances of translation table entry *
+ * registers. Each register maps a Shub Big Window to a 48-bit *
+ * address on Crosstalk. *
+ * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
+ * number) are used to select one of these 7 registers. The Widget *
+ * number field is then derived from the W_NUM field for synthesizing *
+ * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
+ * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
+ * are padded with zeros. Although the maximum Crosstalk space *
+ * addressable by the SHub is thus the lower 16 GBytes per widget *
+ * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
+ * space can be accessed. *
+ * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
+ * Window number) are used to select one of these 7 registers. The *
+ * Widget number field is then derived from the W_NUM field for *
+ * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
+ * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
+ * field is used as Crosstalk[47], and remainder of the Crosstalk *
+ * address bits (Crosstalk[46:34]) are always zero. While the maximum *
+ * Crosstalk space addressable by the Shub is thus the lower *
+ * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
+ * of this space can be accessed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_itte1_u {
+ u64 ii_itte1_regval;
+ struct {
+ u64 i_offset:5;
+ u64 i_rsvd_1:3;
+ u64 i_w_num:4;
+ u64 i_iosp:1;
+ u64 i_rsvd:51;
+ } ii_itte1_fld_s;
+} ii_itte1_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are seven instances of translation table entry *
+ * registers. Each register maps a Shub Big Window to a 48-bit *
+ * address on Crosstalk. *
+ * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
+ * number) are used to select one of these 7 registers. The Widget *
+ * number field is then derived from the W_NUM field for synthesizing *
+ * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
+ * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
+ * are padded with zeros. Although the maximum Crosstalk space *
+ * addressable by the Shub is thus the lower 16 GBytes per widget *
+ * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
+ * space can be accessed. *
+ * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
+ * Window number) are used to select one of these 7 registers. The *
+ * Widget number field is then derived from the W_NUM field for *
+ * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
+ * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
+ * field is used as Crosstalk[47], and remainder of the Crosstalk *
+ * address bits (Crosstalk[46:34]) are always zero. While the maximum *
+ * Crosstalk space addressable by the Shub is thus the lower *
+ * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
+ * of this space can be accessed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_itte2_u {
+ u64 ii_itte2_regval;
+ struct {
+ u64 i_offset:5;
+ u64 i_rsvd_1:3;
+ u64 i_w_num:4;
+ u64 i_iosp:1;
+ u64 i_rsvd:51;
+ } ii_itte2_fld_s;
+} ii_itte2_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are seven instances of translation table entry *
+ * registers. Each register maps a Shub Big Window to a 48-bit *
+ * address on Crosstalk. *
+ * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
+ * number) are used to select one of these 7 registers. The Widget *
+ * number field is then derived from the W_NUM field for synthesizing *
+ * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
+ * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
+ * are padded with zeros. Although the maximum Crosstalk space *
+ * addressable by the Shub is thus the lower 16 GBytes per widget *
+ * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
+ * space can be accessed. *
+ * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
+ * Window number) are used to select one of these 7 registers. The *
+ * Widget number field is then derived from the W_NUM field for *
+ * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
+ * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
+ * field is used as Crosstalk[47], and remainder of the Crosstalk *
+ * address bits (Crosstalk[46:34]) are always zero. While the maximum *
+ * Crosstalk space addressable by the SHub is thus the lower *
+ * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
+ * of this space can be accessed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_itte3_u {
+ u64 ii_itte3_regval;
+ struct {
+ u64 i_offset:5;
+ u64 i_rsvd_1:3;
+ u64 i_w_num:4;
+ u64 i_iosp:1;
+ u64 i_rsvd:51;
+ } ii_itte3_fld_s;
+} ii_itte3_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are seven instances of translation table entry *
+ * registers. Each register maps a SHub Big Window to a 48-bit *
+ * address on Crosstalk. *
+ * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
+ * number) are used to select one of these 7 registers. The Widget *
+ * number field is then derived from the W_NUM field for synthesizing *
+ * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
+ * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
+ * are padded with zeros. Although the maximum Crosstalk space *
+ * addressable by the SHub is thus the lower 16 GBytes per widget *
+ * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
+ * space can be accessed. *
+ * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
+ * Window number) are used to select one of these 7 registers. The *
+ * Widget number field is then derived from the W_NUM field for *
+ * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
+ * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
+ * field is used as Crosstalk[47], and remainder of the Crosstalk *
+ * address bits (Crosstalk[46:34]) are always zero. While the maximum *
+ * Crosstalk space addressable by the SHub is thus the lower *
+ * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
+ * of this space can be accessed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_itte4_u {
+ u64 ii_itte4_regval;
+ struct {
+ u64 i_offset:5;
+ u64 i_rsvd_1:3;
+ u64 i_w_num:4;
+ u64 i_iosp:1;
+ u64 i_rsvd:51;
+ } ii_itte4_fld_s;
+} ii_itte4_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are seven instances of translation table entry *
+ * registers. Each register maps a SHub Big Window to a 48-bit *
+ * address on Crosstalk. *
+ * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
+ * number) are used to select one of these 7 registers. The Widget *
+ * number field is then derived from the W_NUM field for synthesizing *
+ * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
+ * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
+ * are padded with zeros. Although the maximum Crosstalk space *
+ * addressable by the Shub is thus the lower 16 GBytes per widget *
+ * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
+ * space can be accessed. *
+ * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
+ * Window number) are used to select one of these 7 registers. The *
+ * Widget number field is then derived from the W_NUM field for *
+ * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
+ * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
+ * field is used as Crosstalk[47], and remainder of the Crosstalk *
+ * address bits (Crosstalk[46:34]) are always zero. While the maximum *
+ * Crosstalk space addressable by the Shub is thus the lower *
+ * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
+ * of this space can be accessed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_itte5_u {
+ u64 ii_itte5_regval;
+ struct {
+ u64 i_offset:5;
+ u64 i_rsvd_1:3;
+ u64 i_w_num:4;
+ u64 i_iosp:1;
+ u64 i_rsvd:51;
+ } ii_itte5_fld_s;
+} ii_itte5_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are seven instances of translation table entry *
+ * registers. Each register maps a Shub Big Window to a 48-bit *
+ * address on Crosstalk. *
+ * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
+ * number) are used to select one of these 7 registers. The Widget *
+ * number field is then derived from the W_NUM field for synthesizing *
+ * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
+ * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
+ * are padded with zeros. Although the maximum Crosstalk space *
+ * addressable by the Shub is thus the lower 16 GBytes per widget *
+ * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
+ * space can be accessed. *
+ * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
+ * Window number) are used to select one of these 7 registers. The *
+ * Widget number field is then derived from the W_NUM field for *
+ * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
+ * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
+ * field is used as Crosstalk[47], and remainder of the Crosstalk *
+ * address bits (Crosstalk[46:34]) are always zero. While the maximum *
+ * Crosstalk space addressable by the Shub is thus the lower *
+ * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
+ * of this space can be accessed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_itte6_u {
+ u64 ii_itte6_regval;
+ struct {
+ u64 i_offset:5;
+ u64 i_rsvd_1:3;
+ u64 i_w_num:4;
+ u64 i_iosp:1;
+ u64 i_rsvd:51;
+ } ii_itte6_fld_s;
+} ii_itte6_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are seven instances of translation table entry *
+ * registers. Each register maps a Shub Big Window to a 48-bit *
+ * address on Crosstalk. *
+ * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
+ * number) are used to select one of these 7 registers. The Widget *
+ * number field is then derived from the W_NUM field for synthesizing *
+ * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
+ * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
+ * are padded with zeros. Although the maximum Crosstalk space *
+ * addressable by the Shub is thus the lower 16 GBytes per widget *
+ * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
+ * space can be accessed. *
+ * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
+ * Window number) are used to select one of these 7 registers. The *
+ * Widget number field is then derived from the W_NUM field for *
+ * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
+ * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
+ * field is used as Crosstalk[47], and remainder of the Crosstalk *
+ * address bits (Crosstalk[46:34]) are always zero. While the maximum *
+ * Crosstalk space addressable by the SHub is thus the lower *
+ * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
+ * of this space can be accessed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_itte7_u {
+ u64 ii_itte7_regval;
+ struct {
+ u64 i_offset:5;
+ u64 i_rsvd_1:3;
+ u64 i_w_num:4;
+ u64 i_iosp:1;
+ u64 i_rsvd:51;
+ } ii_itte7_fld_s;
+} ii_itte7_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of SHub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * . *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprb0_u {
+ u64 ii_iprb0_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprb0_fld_s;
+} ii_iprb0_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of SHub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * . *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprb8_u {
+ u64 ii_iprb8_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprb8_fld_s;
+} ii_iprb8_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of SHub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * . *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprb9_u {
+ u64 ii_iprb9_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprb9_fld_s;
+} ii_iprb9_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of SHub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprba_u {
+ u64 ii_iprba_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprba_fld_s;
+} ii_iprba_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of SHub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * . *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprbb_u {
+ u64 ii_iprbb_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprbb_fld_s;
+} ii_iprbb_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of SHub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * . *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprbc_u {
+ u64 ii_iprbc_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprbc_fld_s;
+} ii_iprbc_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of SHub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * . *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprbd_u {
+ u64 ii_iprbd_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprbd_fld_s;
+} ii_iprbd_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of SHub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * . *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprbe_u {
+ u64 ii_iprbe_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprbe_fld_s;
+} ii_iprbe_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 9 instances of this register, one per *
+ * actual widget in this implementation of Shub and Crossbow. *
+ * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
+ * refers to Crossbow's internal space. *
+ * This register contains the state elements per widget that are *
+ * necessary to manage the PIO flow control on Crosstalk and on the *
+ * Router Network. See the PIO Flow Control chapter for a complete *
+ * description of this register *
+ * The SPUR_WR bit requires some explanation. When this register is *
+ * written, the new value of the C field is captured in an internal *
+ * register so the hardware can remember what the programmer wrote *
+ * into the credit counter. The SPUR_WR bit sets whenever the C field *
+ * increments above this stored value, which indicates that there *
+ * have been more responses received than requests sent. The SPUR_WR *
+ * bit cannot be cleared until a value is written to the IPRBx *
+ * register; the write will correct the C field and capture its new *
+ * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
+ * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
+ * . *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprbf_u {
+ u64 ii_iprbf_regval;
+ struct {
+ u64 i_c:8;
+ u64 i_na:14;
+ u64 i_rsvd_2:2;
+ u64 i_nb:14;
+ u64 i_rsvd_1:2;
+ u64 i_m:2;
+ u64 i_f:1;
+ u64 i_of_cnt:5;
+ u64 i_error:1;
+ u64 i_rd_to:1;
+ u64 i_spur_wr:1;
+ u64 i_spur_rd:1;
+ u64 i_rsvd:11;
+ u64 i_mult_err:1;
+ } ii_iprbe_fld_s;
+} ii_iprbf_u_t;
+
+/************************************************************************
+ * *
+ * This register specifies the timeout value to use for monitoring *
+ * Crosstalk credits which are used outbound to Crosstalk. An *
+ * internal counter called the Crosstalk Credit Timeout Counter *
+ * increments every 128 II clocks. The counter starts counting *
+ * anytime the credit count drops below a threshold, and resets to *
+ * zero (stops counting) anytime the credit count is at or above the *
+ * threshold. The threshold is 1 credit in direct connect mode and 2 *
+ * in Crossbow connect mode. When the internal Crosstalk Credit *
+ * Timeout Counter reaches the value programmed in this register, a *
+ * Crosstalk Credit Timeout has occurred. The internal counter is not *
+ * readable from software, and stops counting at its maximum value, *
+ * so it cannot cause more than one interrupt. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ixcc_u {
+ u64 ii_ixcc_regval;
+ struct {
+ u64 i_time_out:26;
+ u64 i_rsvd:38;
+ } ii_ixcc_fld_s;
+} ii_ixcc_u_t;
+
+/************************************************************************
+ * *
+ * Description: This register qualifies all the PIO and DMA *
+ * operations launched from widget 0 towards the SHub. In *
+ * addition, it also qualifies accesses by the BTE streams. *
+ * The bits in each field of this register are cleared by the SHub *
+ * upon detection of an error which requires widget 0 or the BTE *
+ * streams to be terminated. Whether or not widget x has access *
+ * rights to this SHub is determined by an AND of the device *
+ * enable bit in the appropriate field of this register and bit 0 in *
+ * the Wx_IAC field. The bits in this field are set by writing a 1 to *
+ * them. Incoming replies from Crosstalk are not subject to this *
+ * access control mechanism. *
+ * *
+ ************************************************************************/
+
+typedef union ii_imem_u {
+ u64 ii_imem_regval;
+ struct {
+ u64 i_w0_esd:1;
+ u64 i_rsvd_3:3;
+ u64 i_b0_esd:1;
+ u64 i_rsvd_2:3;
+ u64 i_b1_esd:1;
+ u64 i_rsvd_1:3;
+ u64 i_clr_precise:1;
+ u64 i_rsvd:51;
+ } ii_imem_fld_s;
+} ii_imem_u_t;
+
+/************************************************************************
+ * *
+ * Description: This register specifies the timeout value to use for *
+ * monitoring Crosstalk tail flits coming into the Shub in the *
+ * TAIL_TO field. An internal counter associated with this register *
+ * is incremented every 128 II internal clocks (7 bits). The counter *
+ * starts counting anytime a header micropacket is received and stops *
+ * counting (and resets to zero) any time a micropacket with a Tail *
+ * bit is received. Once the counter reaches the threshold value *
+ * programmed in this register, it generates an interrupt to the *
+ * processor that is programmed into the IIDSR. The counter saturates *
+ * (does not roll over) at its maximum value, so it cannot cause *
+ * another interrupt until after it is cleared. *
+ * The register also contains the Read Response Timeout values. The *
+ * Prescalar is 23 bits, and counts II clocks. An internal counter *
+ * increments on every II clock and when it reaches the value in the *
+ * Prescalar field, all IPRTE registers with their valid bits set *
+ * have their Read Response timers bumped. Whenever any of them match *
+ * the value in the RRSP_TO field, a Read Response Timeout has *
+ * occurred, and error handling occurs as described in the Error *
+ * Handling section of this document. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ixtt_u {
+ u64 ii_ixtt_regval;
+ struct {
+ u64 i_tail_to:26;
+ u64 i_rsvd_1:6;
+ u64 i_rrsp_ps:23;
+ u64 i_rrsp_to:5;
+ u64 i_rsvd:4;
+ } ii_ixtt_fld_s;
+} ii_ixtt_u_t;
+
+/************************************************************************
+ * *
+ * Writing a 1 to the fields of this register clears the appropriate *
+ * error bits in other areas of SHub. Note that when the *
+ * E_PRB_x bits are used to clear error bits in PRB registers, *
+ * SPUR_RD and SPUR_WR may persist, because they require additional *
+ * action to clear them. See the IPRBx and IXSS Register *
+ * specifications. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ieclr_u {
+ u64 ii_ieclr_regval;
+ struct {
+ u64 i_e_prb_0:1;
+ u64 i_rsvd:7;
+ u64 i_e_prb_8:1;
+ u64 i_e_prb_9:1;
+ u64 i_e_prb_a:1;
+ u64 i_e_prb_b:1;
+ u64 i_e_prb_c:1;
+ u64 i_e_prb_d:1;
+ u64 i_e_prb_e:1;
+ u64 i_e_prb_f:1;
+ u64 i_e_crazy:1;
+ u64 i_e_bte_0:1;
+ u64 i_e_bte_1:1;
+ u64 i_reserved_1:10;
+ u64 i_spur_rd_hdr:1;
+ u64 i_cam_intr_to:1;
+ u64 i_cam_overflow:1;
+ u64 i_cam_read_miss:1;
+ u64 i_ioq_rep_underflow:1;
+ u64 i_ioq_req_underflow:1;
+ u64 i_ioq_rep_overflow:1;
+ u64 i_ioq_req_overflow:1;
+ u64 i_iiq_rep_overflow:1;
+ u64 i_iiq_req_overflow:1;
+ u64 i_ii_xn_rep_cred_overflow:1;
+ u64 i_ii_xn_req_cred_overflow:1;
+ u64 i_ii_xn_invalid_cmd:1;
+ u64 i_xn_ii_invalid_cmd:1;
+ u64 i_reserved_2:21;
+ } ii_ieclr_fld_s;
+} ii_ieclr_u_t;
+
+/************************************************************************
+ * *
+ * This register controls both BTEs. SOFT_RESET is intended for *
+ * recovery after an error. COUNT controls the total number of CRBs *
+ * that both BTEs (combined) can use, which affects total BTE *
+ * bandwidth. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibcr_u {
+ u64 ii_ibcr_regval;
+ struct {
+ u64 i_count:4;
+ u64 i_rsvd_1:4;
+ u64 i_soft_reset:1;
+ u64 i_rsvd:55;
+ } ii_ibcr_fld_s;
+} ii_ibcr_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the header of a spurious read response *
+ * received from Crosstalk. A spurious read response is defined as a *
+ * read response received by II from a widget for which (1) the SIDN *
+ * has a value between 1 and 7, inclusive (II never sends requests to *
+ * these widgets (2) there is no valid IPRTE register which *
+ * corresponds to the TNUM, or (3) the widget indicated in SIDN is *
+ * not the same as the widget recorded in the IPRTE register *
+ * referenced by the TNUM. If this condition is true, and if the *
+ * IXSS[VALID] bit is clear, then the header of the spurious read *
+ * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The *
+ * errant header is thereby captured, and no further spurious read *
+ * respones are captured until IXSS[VALID] is cleared by setting the *
+ * appropriate bit in IECLR.Everytime a spurious read response is *
+ * detected, the SPUR_RD bit of the PRB corresponding to the incoming *
+ * message's SIDN field is set. This always happens, regarless of *
+ * whether a header is captured. The programmer should check *
+ * IXSM[SIDN] to determine which widget sent the spurious response, *
+ * because there may be more than one SPUR_RD bit set in the PRB *
+ * registers. The widget indicated by IXSM[SIDN] was the first *
+ * spurious read response to be received since the last time *
+ * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB *
+ * will be set. Any SPUR_RD bits in any other PRB registers indicate *
+ * spurious messages from other widets which were detected after the *
+ * header was captured.. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ixsm_u {
+ u64 ii_ixsm_regval;
+ struct {
+ u64 i_byte_en:32;
+ u64 i_reserved:1;
+ u64 i_tag:3;
+ u64 i_alt_pactyp:4;
+ u64 i_bo:1;
+ u64 i_error:1;
+ u64 i_vbpm:1;
+ u64 i_gbr:1;
+ u64 i_ds:2;
+ u64 i_ct:1;
+ u64 i_tnum:5;
+ u64 i_pactyp:4;
+ u64 i_sidn:4;
+ u64 i_didn:4;
+ } ii_ixsm_fld_s;
+} ii_ixsm_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the sideband bits of a spurious read *
+ * response received from Crosstalk. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ixss_u {
+ u64 ii_ixss_regval;
+ struct {
+ u64 i_sideband:8;
+ u64 i_rsvd:55;
+ u64 i_valid:1;
+ } ii_ixss_fld_s;
+} ii_ixss_u_t;
+
+/************************************************************************
+ * *
+ * This register enables software to access the II LLP's test port. *
+ * Refer to the LLP 2.5 documentation for an explanation of the test *
+ * port. Software can write to this register to program the values *
+ * for the control fields (TestErrCapture, TestClear, TestFlit, *
+ * TestMask and TestSeed). Similarly, software can read from this *
+ * register to obtain the values of the test port's status outputs *
+ * (TestCBerr, TestValid and TestData). *
+ * *
+ ************************************************************************/
+
+typedef union ii_ilct_u {
+ u64 ii_ilct_regval;
+ struct {
+ u64 i_test_seed:20;
+ u64 i_test_mask:8;
+ u64 i_test_data:20;
+ u64 i_test_valid:1;
+ u64 i_test_cberr:1;
+ u64 i_test_flit:3;
+ u64 i_test_clear:1;
+ u64 i_test_err_capture:1;
+ u64 i_rsvd:9;
+ } ii_ilct_fld_s;
+} ii_ilct_u_t;
+
+/************************************************************************
+ * *
+ * If the II detects an illegal incoming Duplonet packet (request or *
+ * reply) when VALID==0 in the IIEPH1 register, then it saves the *
+ * contents of the packet's header flit in the IIEPH1 and IIEPH2 *
+ * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, *
+ * and assigns a value to the ERR_TYPE field which indicates the *
+ * specific nature of the error. The II recognizes four different *
+ * types of errors: short request packets (ERR_TYPE==2), short reply *
+ * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long *
+ * reply packets (ERR_TYPE==5). The encodings for these types of *
+ * errors were chosen to be consistent with the same types of errors *
+ * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in *
+ * the LB unit). If the II detects an illegal incoming Duplonet *
+ * packet when VALID==1 in the IIEPH1 register, then it merely sets *
+ * the OVERRUN bit to indicate that a subsequent error has happened, *
+ * and does nothing further. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iieph1_u {
+ u64 ii_iieph1_regval;
+ struct {
+ u64 i_command:7;
+ u64 i_rsvd_5:1;
+ u64 i_suppl:14;
+ u64 i_rsvd_4:1;
+ u64 i_source:14;
+ u64 i_rsvd_3:1;
+ u64 i_err_type:4;
+ u64 i_rsvd_2:4;
+ u64 i_overrun:1;
+ u64 i_rsvd_1:3;
+ u64 i_valid:1;
+ u64 i_rsvd:13;
+ } ii_iieph1_fld_s;
+} ii_iieph1_u_t;
+
+/************************************************************************
+ * *
+ * This register holds the Address field from the header flit of an *
+ * incoming erroneous Duplonet packet, along with the tail bit which *
+ * accompanied this header flit. This register is essentially an *
+ * extension of IIEPH1. Two registers were necessary because the 64 *
+ * bits available in only a single register were insufficient to *
+ * capture the entire header flit of an erroneous packet. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iieph2_u {
+ u64 ii_iieph2_regval;
+ struct {
+ u64 i_rsvd_0:3;
+ u64 i_address:47;
+ u64 i_rsvd_1:10;
+ u64 i_tail:1;
+ u64 i_rsvd:3;
+ } ii_iieph2_fld_s;
+} ii_iieph2_u_t;
+
+/******************************/
+
+/************************************************************************
+ * *
+ * This register's value is a bit vector that guards access from SXBs *
+ * to local registers within the II as well as to external Crosstalk *
+ * widgets *
+ * *
+ ************************************************************************/
+
+typedef union ii_islapr_u {
+ u64 ii_islapr_regval;
+ struct {
+ u64 i_region:64;
+ } ii_islapr_fld_s;
+} ii_islapr_u_t;
+
+/************************************************************************
+ * *
+ * A write to this register of the 56-bit value "Pup+Bun" will cause *
+ * the bit in the ISLAPR register corresponding to the region of the *
+ * requestor to be set (access allowed). (
+ * *
+ ************************************************************************/
+
+typedef union ii_islapo_u {
+ u64 ii_islapo_regval;
+ struct {
+ u64 i_io_sbx_ovrride:56;
+ u64 i_rsvd:8;
+ } ii_islapo_fld_s;
+} ii_islapo_u_t;
+
+/************************************************************************
+ * *
+ * Determines how long the wrapper will wait aftr an interrupt is *
+ * initially issued from the II before it times out the outstanding *
+ * interrupt and drops it from the interrupt queue. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iwi_u {
+ u64 ii_iwi_regval;
+ struct {
+ u64 i_prescale:24;
+ u64 i_rsvd:8;
+ u64 i_timeout:8;
+ u64 i_rsvd1:8;
+ u64 i_intrpt_retry_period:8;
+ u64 i_rsvd2:8;
+ } ii_iwi_fld_s;
+} ii_iwi_u_t;
+
+/************************************************************************
+ * *
+ * Log errors which have occurred in the II wrapper. The errors are *
+ * cleared by writing to the IECLR register. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iwel_u {
+ u64 ii_iwel_regval;
+ struct {
+ u64 i_intr_timed_out:1;
+ u64 i_rsvd:7;
+ u64 i_cam_overflow:1;
+ u64 i_cam_read_miss:1;
+ u64 i_rsvd1:2;
+ u64 i_ioq_rep_underflow:1;
+ u64 i_ioq_req_underflow:1;
+ u64 i_ioq_rep_overflow:1;
+ u64 i_ioq_req_overflow:1;
+ u64 i_iiq_rep_overflow:1;
+ u64 i_iiq_req_overflow:1;
+ u64 i_rsvd2:6;
+ u64 i_ii_xn_rep_cred_over_under:1;
+ u64 i_ii_xn_req_cred_over_under:1;
+ u64 i_rsvd3:6;
+ u64 i_ii_xn_invalid_cmd:1;
+ u64 i_xn_ii_invalid_cmd:1;
+ u64 i_rsvd4:30;
+ } ii_iwel_fld_s;
+} ii_iwel_u_t;
+
+/************************************************************************
+ * *
+ * Controls the II wrapper. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iwc_u {
+ u64 ii_iwc_regval;
+ struct {
+ u64 i_dma_byte_swap:1;
+ u64 i_rsvd:3;
+ u64 i_cam_read_lines_reset:1;
+ u64 i_rsvd1:3;
+ u64 i_ii_xn_cred_over_under_log:1;
+ u64 i_rsvd2:19;
+ u64 i_xn_rep_iq_depth:5;
+ u64 i_rsvd3:3;
+ u64 i_xn_req_iq_depth:5;
+ u64 i_rsvd4:3;
+ u64 i_iiq_depth:6;
+ u64 i_rsvd5:12;
+ u64 i_force_rep_cred:1;
+ u64 i_force_req_cred:1;
+ } ii_iwc_fld_s;
+} ii_iwc_u_t;
+
+/************************************************************************
+ * *
+ * Status in the II wrapper. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iws_u {
+ u64 ii_iws_regval;
+ struct {
+ u64 i_xn_rep_iq_credits:5;
+ u64 i_rsvd:3;
+ u64 i_xn_req_iq_credits:5;
+ u64 i_rsvd1:51;
+ } ii_iws_fld_s;
+} ii_iws_u_t;
+
+/************************************************************************
+ * *
+ * Masks errors in the IWEL register. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iweim_u {
+ u64 ii_iweim_regval;
+ struct {
+ u64 i_intr_timed_out:1;
+ u64 i_rsvd:7;
+ u64 i_cam_overflow:1;
+ u64 i_cam_read_miss:1;
+ u64 i_rsvd1:2;
+ u64 i_ioq_rep_underflow:1;
+ u64 i_ioq_req_underflow:1;
+ u64 i_ioq_rep_overflow:1;
+ u64 i_ioq_req_overflow:1;
+ u64 i_iiq_rep_overflow:1;
+ u64 i_iiq_req_overflow:1;
+ u64 i_rsvd2:6;
+ u64 i_ii_xn_rep_cred_overflow:1;
+ u64 i_ii_xn_req_cred_overflow:1;
+ u64 i_rsvd3:6;
+ u64 i_ii_xn_invalid_cmd:1;
+ u64 i_xn_ii_invalid_cmd:1;
+ u64 i_rsvd4:30;
+ } ii_iweim_fld_s;
+} ii_iweim_u_t;
+
+/************************************************************************
+ * *
+ * A write to this register causes a particular field in the *
+ * corresponding widget's PRB entry to be adjusted up or down by 1. *
+ * This counter should be used when recovering from error and reset *
+ * conditions. Note that software would be capable of causing *
+ * inadvertent overflow or underflow of these counters. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ipca_u {
+ u64 ii_ipca_regval;
+ struct {
+ u64 i_wid:4;
+ u64 i_adjust:1;
+ u64 i_rsvd_1:3;
+ u64 i_field:2;
+ u64 i_rsvd:54;
+ } ii_ipca_fld_s;
+} ii_ipca_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte0a_u {
+ u64 ii_iprte0a_regval;
+ struct {
+ u64 i_rsvd_1:54;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } ii_iprte0a_fld_s;
+} ii_iprte0a_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte1a_u {
+ u64 ii_iprte1a_regval;
+ struct {
+ u64 i_rsvd_1:54;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } ii_iprte1a_fld_s;
+} ii_iprte1a_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte2a_u {
+ u64 ii_iprte2a_regval;
+ struct {
+ u64 i_rsvd_1:54;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } ii_iprte2a_fld_s;
+} ii_iprte2a_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte3a_u {
+ u64 ii_iprte3a_regval;
+ struct {
+ u64 i_rsvd_1:54;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } ii_iprte3a_fld_s;
+} ii_iprte3a_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte4a_u {
+ u64 ii_iprte4a_regval;
+ struct {
+ u64 i_rsvd_1:54;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } ii_iprte4a_fld_s;
+} ii_iprte4a_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte5a_u {
+ u64 ii_iprte5a_regval;
+ struct {
+ u64 i_rsvd_1:54;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } ii_iprte5a_fld_s;
+} ii_iprte5a_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte6a_u {
+ u64 ii_iprte6a_regval;
+ struct {
+ u64 i_rsvd_1:54;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } ii_iprte6a_fld_s;
+} ii_iprte6a_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte7a_u {
+ u64 ii_iprte7a_regval;
+ struct {
+ u64 i_rsvd_1:54;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } ii_iprtea7_fld_s;
+} ii_iprte7a_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte0b_u {
+ u64 ii_iprte0b_regval;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_address:47;
+ u64 i_init:3;
+ u64 i_source:11;
+ } ii_iprte0b_fld_s;
+} ii_iprte0b_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte1b_u {
+ u64 ii_iprte1b_regval;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_address:47;
+ u64 i_init:3;
+ u64 i_source:11;
+ } ii_iprte1b_fld_s;
+} ii_iprte1b_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte2b_u {
+ u64 ii_iprte2b_regval;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_address:47;
+ u64 i_init:3;
+ u64 i_source:11;
+ } ii_iprte2b_fld_s;
+} ii_iprte2b_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte3b_u {
+ u64 ii_iprte3b_regval;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_address:47;
+ u64 i_init:3;
+ u64 i_source:11;
+ } ii_iprte3b_fld_s;
+} ii_iprte3b_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte4b_u {
+ u64 ii_iprte4b_regval;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_address:47;
+ u64 i_init:3;
+ u64 i_source:11;
+ } ii_iprte4b_fld_s;
+} ii_iprte4b_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte5b_u {
+ u64 ii_iprte5b_regval;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_address:47;
+ u64 i_init:3;
+ u64 i_source:11;
+ } ii_iprte5b_fld_s;
+} ii_iprte5b_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte6b_u {
+ u64 ii_iprte6b_regval;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_address:47;
+ u64 i_init:3;
+ u64 i_source:11;
+
+ } ii_iprte6b_fld_s;
+} ii_iprte6b_u_t;
+
+/************************************************************************
+ * *
+ * There are 8 instances of this register. This register contains *
+ * the information that the II has to remember once it has launched a *
+ * PIO Read operation. The contents are used to form the correct *
+ * Router Network packet and direct the Crosstalk reply to the *
+ * appropriate processor. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iprte7b_u {
+ u64 ii_iprte7b_regval;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_address:47;
+ u64 i_init:3;
+ u64 i_source:11;
+ } ii_iprte7b_fld_s;
+} ii_iprte7b_u_t;
+
+/************************************************************************
+ * *
+ * Description: SHub II contains a feature which did not exist in *
+ * the Hub which automatically cleans up after a Read Response *
+ * timeout, including deallocation of the IPRTE and recovery of IBuf *
+ * space. The inclusion of this register in SHub is for backward *
+ * compatibility *
+ * A write to this register causes an entry from the table of *
+ * outstanding PIO Read Requests to be freed and returned to the *
+ * stack of free entries. This register is used in handling the *
+ * timeout errors that result in a PIO Reply never returning from *
+ * Crosstalk. *
+ * Note that this register does not affect the contents of the IPRTE *
+ * registers. The Valid bits in those registers have to be *
+ * specifically turned off by software. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ipdr_u {
+ u64 ii_ipdr_regval;
+ struct {
+ u64 i_te:3;
+ u64 i_rsvd_1:1;
+ u64 i_pnd:1;
+ u64 i_init_rpcnt:1;
+ u64 i_rsvd:58;
+ } ii_ipdr_fld_s;
+} ii_ipdr_u_t;
+
+/************************************************************************
+ * *
+ * A write to this register causes a CRB entry to be returned to the *
+ * queue of free CRBs. The entry should have previously been cleared *
+ * (mark bit) via backdoor access to the pertinent CRB entry. This *
+ * register is used in the last step of handling the errors that are *
+ * captured and marked in CRB entries. Briefly: 1) first error for *
+ * DMA write from a particular device, and first error for a *
+ * particular BTE stream, lead to a marked CRB entry, and processor *
+ * interrupt, 2) software reads the error information captured in the *
+ * CRB entry, and presumably takes some corrective action, 3) *
+ * software clears the mark bit, and finally 4) software writes to *
+ * the ICDR register to return the CRB entry to the list of free CRB *
+ * entries. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icdr_u {
+ u64 ii_icdr_regval;
+ struct {
+ u64 i_crb_num:4;
+ u64 i_pnd:1;
+ u64 i_rsvd:59;
+ } ii_icdr_fld_s;
+} ii_icdr_u_t;
+
+/************************************************************************
+ * *
+ * This register provides debug access to two FIFOs inside of II. *
+ * Both IOQ_MAX* fields of this register contain the instantaneous *
+ * depth (in units of the number of available entries) of the *
+ * associated IOQ FIFO. A read of this register will return the *
+ * number of free entries on each FIFO at the time of the read. So *
+ * when a FIFO is idle, the associated field contains the maximum *
+ * depth of the FIFO. This register is writable for debug reasons *
+ * and is intended to be written with the maximum desired FIFO depth *
+ * while the FIFO is idle. Software must assure that II is idle when *
+ * this register is written. If there are any active entries in any *
+ * of these FIFOs when this register is written, the results are *
+ * undefined. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ifdr_u {
+ u64 ii_ifdr_regval;
+ struct {
+ u64 i_ioq_max_rq:7;
+ u64 i_set_ioq_rq:1;
+ u64 i_ioq_max_rp:7;
+ u64 i_set_ioq_rp:1;
+ u64 i_rsvd:48;
+ } ii_ifdr_fld_s;
+} ii_ifdr_u_t;
+
+/************************************************************************
+ * *
+ * This register allows the II to become sluggish in removing *
+ * messages from its inbound queue (IIQ). This will cause messages to *
+ * back up in either virtual channel. Disabling the "molasses" mode *
+ * subsequently allows the II to be tested under stress. In the *
+ * sluggish ("Molasses") mode, the localized effects of congestion *
+ * can be observed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iiap_u {
+ u64 ii_iiap_regval;
+ struct {
+ u64 i_rq_mls:6;
+ u64 i_rsvd_1:2;
+ u64 i_rp_mls:6;
+ u64 i_rsvd:50;
+ } ii_iiap_fld_s;
+} ii_iiap_u_t;
+
+/************************************************************************
+ * *
+ * This register allows several parameters of CRB operation to be *
+ * set. Note that writing to this register can have catastrophic side *
+ * effects, if the CRB is not quiescent, i.e. if the CRB is *
+ * processing protocol messages when the write occurs. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icmr_u {
+ u64 ii_icmr_regval;
+ struct {
+ u64 i_sp_msg:1;
+ u64 i_rd_hdr:1;
+ u64 i_rsvd_4:2;
+ u64 i_c_cnt:4;
+ u64 i_rsvd_3:4;
+ u64 i_clr_rqpd:1;
+ u64 i_clr_rppd:1;
+ u64 i_rsvd_2:2;
+ u64 i_fc_cnt:4;
+ u64 i_crb_vld:15;
+ u64 i_crb_mark:15;
+ u64 i_rsvd_1:2;
+ u64 i_precise:1;
+ u64 i_rsvd:11;
+ } ii_icmr_fld_s;
+} ii_icmr_u_t;
+
+/************************************************************************
+ * *
+ * This register allows control of the table portion of the CRB *
+ * logic via software. Control operations from this register have *
+ * priority over all incoming Crosstalk or BTE requests. *
+ * *
+ ************************************************************************/
+
+typedef union ii_iccr_u {
+ u64 ii_iccr_regval;
+ struct {
+ u64 i_crb_num:4;
+ u64 i_rsvd_1:4;
+ u64 i_cmd:8;
+ u64 i_pending:1;
+ u64 i_rsvd:47;
+ } ii_iccr_fld_s;
+} ii_iccr_u_t;
+
+/************************************************************************
+ * *
+ * This register allows the maximum timeout value to be programmed. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icto_u {
+ u64 ii_icto_regval;
+ struct {
+ u64 i_timeout:8;
+ u64 i_rsvd:56;
+ } ii_icto_fld_s;
+} ii_icto_u_t;
+
+/************************************************************************
+ * *
+ * This register allows the timeout prescalar to be programmed. An *
+ * internal counter is associated with this register. When the *
+ * internal counter reaches the value of the PRESCALE field, the *
+ * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] *
+ * field). The internal counter resets to zero, and then continues *
+ * counting. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ictp_u {
+ u64 ii_ictp_regval;
+ struct {
+ u64 i_prescale:24;
+ u64 i_rsvd:40;
+ } ii_ictp_fld_s;
+} ii_ictp_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
+ * used for Crosstalk operations (both cacheline and partial *
+ * operations) or BTE/IO. Because the CRB entries are very wide, five *
+ * registers (_A to _E) are required to read and write each entry. *
+ * The CRB Entry registers can be conceptualized as rows and columns *
+ * (illustrated in the table above). Each row contains the 4 *
+ * registers required for a single CRB Entry. The first doubleword *
+ * (column) for each entry is labeled A, and the second doubleword *
+ * (higher address) is labeled B, the third doubleword is labeled C, *
+ * the fourth doubleword is labeled D and the fifth doubleword is *
+ * labeled E. All CRB entries have their addresses on a quarter *
+ * cacheline aligned boundary. *
+ * Upon reset, only the following fields are initialized: valid *
+ * (VLD), priority count, timeout, timeout valid, and context valid. *
+ * All other bits should be cleared by software before use (after *
+ * recovering any potential error state from before the reset). *
+ * The following four tables summarize the format for the four *
+ * registers that are used for each ICRB# Entry. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icrb0_a_u {
+ u64 ii_icrb0_a_regval;
+ struct {
+ u64 ia_iow:1;
+ u64 ia_vld:1;
+ u64 ia_addr:47;
+ u64 ia_tnum:5;
+ u64 ia_sidn:4;
+ u64 ia_rsvd:6;
+ } ii_icrb0_a_fld_s;
+} ii_icrb0_a_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
+ * used for Crosstalk operations (both cacheline and partial *
+ * operations) or BTE/IO. Because the CRB entries are very wide, five *
+ * registers (_A to _E) are required to read and write each entry. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icrb0_b_u {
+ u64 ii_icrb0_b_regval;
+ struct {
+ u64 ib_xt_err:1;
+ u64 ib_mark:1;
+ u64 ib_ln_uce:1;
+ u64 ib_errcode:3;
+ u64 ib_error:1;
+ u64 ib_stall__bte_1:1;
+ u64 ib_stall__bte_0:1;
+ u64 ib_stall__intr:1;
+ u64 ib_stall_ib:1;
+ u64 ib_intvn:1;
+ u64 ib_wb:1;
+ u64 ib_hold:1;
+ u64 ib_ack:1;
+ u64 ib_resp:1;
+ u64 ib_ack_cnt:11;
+ u64 ib_rsvd:7;
+ u64 ib_exc:5;
+ u64 ib_init:3;
+ u64 ib_imsg:8;
+ u64 ib_imsgtype:2;
+ u64 ib_use_old:1;
+ u64 ib_rsvd_1:11;
+ } ii_icrb0_b_fld_s;
+} ii_icrb0_b_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
+ * used for Crosstalk operations (both cacheline and partial *
+ * operations) or BTE/IO. Because the CRB entries are very wide, five *
+ * registers (_A to _E) are required to read and write each entry. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icrb0_c_u {
+ u64 ii_icrb0_c_regval;
+ struct {
+ u64 ic_source:15;
+ u64 ic_size:2;
+ u64 ic_ct:1;
+ u64 ic_bte_num:1;
+ u64 ic_gbr:1;
+ u64 ic_resprqd:1;
+ u64 ic_bo:1;
+ u64 ic_suppl:15;
+ u64 ic_rsvd:27;
+ } ii_icrb0_c_fld_s;
+} ii_icrb0_c_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
+ * used for Crosstalk operations (both cacheline and partial *
+ * operations) or BTE/IO. Because the CRB entries are very wide, five *
+ * registers (_A to _E) are required to read and write each entry. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icrb0_d_u {
+ u64 ii_icrb0_d_regval;
+ struct {
+ u64 id_pa_be:43;
+ u64 id_bte_op:1;
+ u64 id_pr_psc:4;
+ u64 id_pr_cnt:4;
+ u64 id_sleep:1;
+ u64 id_rsvd:11;
+ } ii_icrb0_d_fld_s;
+} ii_icrb0_d_u_t;
+
+/************************************************************************
+ * *
+ * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
+ * used for Crosstalk operations (both cacheline and partial *
+ * operations) or BTE/IO. Because the CRB entries are very wide, five *
+ * registers (_A to _E) are required to read and write each entry. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icrb0_e_u {
+ u64 ii_icrb0_e_regval;
+ struct {
+ u64 ie_timeout:8;
+ u64 ie_context:15;
+ u64 ie_rsvd:1;
+ u64 ie_tvld:1;
+ u64 ie_cvld:1;
+ u64 ie_rsvd_0:38;
+ } ii_icrb0_e_fld_s;
+} ii_icrb0_e_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the lower 64 bits of the header of the *
+ * spurious message captured by II. Valid when the SP_MSG bit in ICMR *
+ * register is set. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icsml_u {
+ u64 ii_icsml_regval;
+ struct {
+ u64 i_tt_addr:47;
+ u64 i_newsuppl_ex:14;
+ u64 i_reserved:2;
+ u64 i_overflow:1;
+ } ii_icsml_fld_s;
+} ii_icsml_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the middle 64 bits of the header of the *
+ * spurious message captured by II. Valid when the SP_MSG bit in ICMR *
+ * register is set. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icsmm_u {
+ u64 ii_icsmm_regval;
+ struct {
+ u64 i_tt_ack_cnt:11;
+ u64 i_reserved:53;
+ } ii_icsmm_fld_s;
+} ii_icsmm_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the microscopic state, all the inputs to *
+ * the protocol table, captured with the spurious message. Valid when *
+ * the SP_MSG bit in the ICMR register is set. *
+ * *
+ ************************************************************************/
+
+typedef union ii_icsmh_u {
+ u64 ii_icsmh_regval;
+ struct {
+ u64 i_tt_vld:1;
+ u64 i_xerr:1;
+ u64 i_ft_cwact_o:1;
+ u64 i_ft_wact_o:1;
+ u64 i_ft_active_o:1;
+ u64 i_sync:1;
+ u64 i_mnusg:1;
+ u64 i_mnusz:1;
+ u64 i_plusz:1;
+ u64 i_plusg:1;
+ u64 i_tt_exc:5;
+ u64 i_tt_wb:1;
+ u64 i_tt_hold:1;
+ u64 i_tt_ack:1;
+ u64 i_tt_resp:1;
+ u64 i_tt_intvn:1;
+ u64 i_g_stall_bte1:1;
+ u64 i_g_stall_bte0:1;
+ u64 i_g_stall_il:1;
+ u64 i_g_stall_ib:1;
+ u64 i_tt_imsg:8;
+ u64 i_tt_imsgtype:2;
+ u64 i_tt_use_old:1;
+ u64 i_tt_respreqd:1;
+ u64 i_tt_bte_num:1;
+ u64 i_cbn:1;
+ u64 i_match:1;
+ u64 i_rpcnt_lt_34:1;
+ u64 i_rpcnt_ge_34:1;
+ u64 i_rpcnt_lt_18:1;
+ u64 i_rpcnt_ge_18:1;
+ u64 i_rpcnt_lt_2:1;
+ u64 i_rpcnt_ge_2:1;
+ u64 i_rqcnt_lt_18:1;
+ u64 i_rqcnt_ge_18:1;
+ u64 i_rqcnt_lt_2:1;
+ u64 i_rqcnt_ge_2:1;
+ u64 i_tt_device:7;
+ u64 i_tt_init:3;
+ u64 i_reserved:5;
+ } ii_icsmh_fld_s;
+} ii_icsmh_u_t;
+
+/************************************************************************
+ * *
+ * The Shub DEBUG unit provides a 3-bit selection signal to the *
+ * II core and a 3-bit selection signal to the fsbclk domain in the II *
+ * wrapper. *
+ * *
+ ************************************************************************/
+
+typedef union ii_idbss_u {
+ u64 ii_idbss_regval;
+ struct {
+ u64 i_iioclk_core_submenu:3;
+ u64 i_rsvd:5;
+ u64 i_fsbclk_wrapper_submenu:3;
+ u64 i_rsvd_1:5;
+ u64 i_iioclk_menu:5;
+ u64 i_rsvd_2:43;
+ } ii_idbss_fld_s;
+} ii_idbss_u_t;
+
+/************************************************************************
+ * *
+ * Description: This register is used to set up the length for a *
+ * transfer and then to monitor the progress of that transfer. This *
+ * register needs to be initialized before a transfer is started. A *
+ * legitimate write to this register will set the Busy bit, clear the *
+ * Error bit, and initialize the length to the value desired. *
+ * While the transfer is in progress, hardware will decrement the *
+ * length field with each successful block that is copied. Once the *
+ * transfer completes, hardware will clear the Busy bit. The length *
+ * field will also contain the number of cache lines left to be *
+ * transferred. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibls0_u {
+ u64 ii_ibls0_regval;
+ struct {
+ u64 i_length:16;
+ u64 i_error:1;
+ u64 i_rsvd_1:3;
+ u64 i_busy:1;
+ u64 i_rsvd:43;
+ } ii_ibls0_fld_s;
+} ii_ibls0_u_t;
+
+/************************************************************************
+ * *
+ * This register should be loaded before a transfer is started. The *
+ * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
+ * address as described in Section 1.3, Figure2 and Figure3. Since *
+ * the bottom 7 bits of the address are always taken to be zero, BTE *
+ * transfers are always cacheline-aligned. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibsa0_u {
+ u64 ii_ibsa0_regval;
+ struct {
+ u64 i_rsvd_1:7;
+ u64 i_addr:42;
+ u64 i_rsvd:15;
+ } ii_ibsa0_fld_s;
+} ii_ibsa0_u_t;
+
+/************************************************************************
+ * *
+ * This register should be loaded before a transfer is started. The *
+ * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
+ * address as described in Section 1.3, Figure2 and Figure3. Since *
+ * the bottom 7 bits of the address are always taken to be zero, BTE *
+ * transfers are always cacheline-aligned. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibda0_u {
+ u64 ii_ibda0_regval;
+ struct {
+ u64 i_rsvd_1:7;
+ u64 i_addr:42;
+ u64 i_rsvd:15;
+ } ii_ibda0_fld_s;
+} ii_ibda0_u_t;
+
+/************************************************************************
+ * *
+ * Writing to this register sets up the attributes of the transfer *
+ * and initiates the transfer operation. Reading this register has *
+ * the side effect of terminating any transfer in progress. Note: *
+ * stopping a transfer midstream could have an adverse impact on the *
+ * other BTE. If a BTE stream has to be stopped (due to error *
+ * handling for example), both BTE streams should be stopped and *
+ * their transfers discarded. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibct0_u {
+ u64 ii_ibct0_regval;
+ struct {
+ u64 i_zerofill:1;
+ u64 i_rsvd_2:3;
+ u64 i_notify:1;
+ u64 i_rsvd_1:3;
+ u64 i_poison:1;
+ u64 i_rsvd:55;
+ } ii_ibct0_fld_s;
+} ii_ibct0_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the address to which the WINV is sent. *
+ * This address has to be cache line aligned. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibna0_u {
+ u64 ii_ibna0_regval;
+ struct {
+ u64 i_rsvd_1:7;
+ u64 i_addr:42;
+ u64 i_rsvd:15;
+ } ii_ibna0_fld_s;
+} ii_ibna0_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the programmable level as well as the node *
+ * ID and PI unit of the processor to which the interrupt will be *
+ * sent. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibia0_u {
+ u64 ii_ibia0_regval;
+ struct {
+ u64 i_rsvd_2:1;
+ u64 i_node_id:11;
+ u64 i_rsvd_1:4;
+ u64 i_level:7;
+ u64 i_rsvd:41;
+ } ii_ibia0_fld_s;
+} ii_ibia0_u_t;
+
+/************************************************************************
+ * *
+ * Description: This register is used to set up the length for a *
+ * transfer and then to monitor the progress of that transfer. This *
+ * register needs to be initialized before a transfer is started. A *
+ * legitimate write to this register will set the Busy bit, clear the *
+ * Error bit, and initialize the length to the value desired. *
+ * While the transfer is in progress, hardware will decrement the *
+ * length field with each successful block that is copied. Once the *
+ * transfer completes, hardware will clear the Busy bit. The length *
+ * field will also contain the number of cache lines left to be *
+ * transferred. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibls1_u {
+ u64 ii_ibls1_regval;
+ struct {
+ u64 i_length:16;
+ u64 i_error:1;
+ u64 i_rsvd_1:3;
+ u64 i_busy:1;
+ u64 i_rsvd:43;
+ } ii_ibls1_fld_s;
+} ii_ibls1_u_t;
+
+/************************************************************************
+ * *
+ * This register should be loaded before a transfer is started. The *
+ * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
+ * address as described in Section 1.3, Figure2 and Figure3. Since *
+ * the bottom 7 bits of the address are always taken to be zero, BTE *
+ * transfers are always cacheline-aligned. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibsa1_u {
+ u64 ii_ibsa1_regval;
+ struct {
+ u64 i_rsvd_1:7;
+ u64 i_addr:33;
+ u64 i_rsvd:24;
+ } ii_ibsa1_fld_s;
+} ii_ibsa1_u_t;
+
+/************************************************************************
+ * *
+ * This register should be loaded before a transfer is started. The *
+ * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
+ * address as described in Section 1.3, Figure2 and Figure3. Since *
+ * the bottom 7 bits of the address are always taken to be zero, BTE *
+ * transfers are always cacheline-aligned. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibda1_u {
+ u64 ii_ibda1_regval;
+ struct {
+ u64 i_rsvd_1:7;
+ u64 i_addr:33;
+ u64 i_rsvd:24;
+ } ii_ibda1_fld_s;
+} ii_ibda1_u_t;
+
+/************************************************************************
+ * *
+ * Writing to this register sets up the attributes of the transfer *
+ * and initiates the transfer operation. Reading this register has *
+ * the side effect of terminating any transfer in progress. Note: *
+ * stopping a transfer midstream could have an adverse impact on the *
+ * other BTE. If a BTE stream has to be stopped (due to error *
+ * handling for example), both BTE streams should be stopped and *
+ * their transfers discarded. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibct1_u {
+ u64 ii_ibct1_regval;
+ struct {
+ u64 i_zerofill:1;
+ u64 i_rsvd_2:3;
+ u64 i_notify:1;
+ u64 i_rsvd_1:3;
+ u64 i_poison:1;
+ u64 i_rsvd:55;
+ } ii_ibct1_fld_s;
+} ii_ibct1_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the address to which the WINV is sent. *
+ * This address has to be cache line aligned. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibna1_u {
+ u64 ii_ibna1_regval;
+ struct {
+ u64 i_rsvd_1:7;
+ u64 i_addr:33;
+ u64 i_rsvd:24;
+ } ii_ibna1_fld_s;
+} ii_ibna1_u_t;
+
+/************************************************************************
+ * *
+ * This register contains the programmable level as well as the node *
+ * ID and PI unit of the processor to which the interrupt will be *
+ * sent. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ibia1_u {
+ u64 ii_ibia1_regval;
+ struct {
+ u64 i_pi_id:1;
+ u64 i_node_id:8;
+ u64 i_rsvd_1:7;
+ u64 i_level:7;
+ u64 i_rsvd:41;
+ } ii_ibia1_fld_s;
+} ii_ibia1_u_t;
+
+/************************************************************************
+ * *
+ * This register defines the resources that feed information into *
+ * the two performance counters located in the IO Performance *
+ * Profiling Register. There are 17 different quantities that can be *
+ * measured. Given these 17 different options, the two performance *
+ * counters have 15 of them in common; menu selections 0 through 0xE *
+ * are identical for each performance counter. As for the other two *
+ * options, one is available from one performance counter and the *
+ * other is available from the other performance counter. Hence, the *
+ * II supports all 17*16=272 possible combinations of quantities to *
+ * measure. *
+ * *
+ ************************************************************************/
+
+typedef union ii_ipcr_u {
+ u64 ii_ipcr_regval;
+ struct {
+ u64 i_ippr0_c:4;
+ u64 i_ippr1_c:4;
+ u64 i_icct:8;
+ u64 i_rsvd:48;
+ } ii_ipcr_fld_s;
+} ii_ipcr_u_t;
+
+/************************************************************************
+ * *
+ * *
+ * *
+ ************************************************************************/
+
+typedef union ii_ippr_u {
+ u64 ii_ippr_regval;
+ struct {
+ u64 i_ippr0:32;
+ u64 i_ippr1:32;
+ } ii_ippr_fld_s;
+} ii_ippr_u_t;
+
+/************************************************************************
+ * *
+ * The following defines which were not formed into structures are *
+ * probably indentical to another register, and the name of the *
+ * register is provided against each of these registers. This *
+ * information needs to be checked carefully *
+ * *
+ * IIO_ICRB1_A IIO_ICRB0_A *
+ * IIO_ICRB1_B IIO_ICRB0_B *
+ * IIO_ICRB1_C IIO_ICRB0_C *
+ * IIO_ICRB1_D IIO_ICRB0_D *
+ * IIO_ICRB1_E IIO_ICRB0_E *
+ * IIO_ICRB2_A IIO_ICRB0_A *
+ * IIO_ICRB2_B IIO_ICRB0_B *
+ * IIO_ICRB2_C IIO_ICRB0_C *
+ * IIO_ICRB2_D IIO_ICRB0_D *
+ * IIO_ICRB2_E IIO_ICRB0_E *
+ * IIO_ICRB3_A IIO_ICRB0_A *
+ * IIO_ICRB3_B IIO_ICRB0_B *
+ * IIO_ICRB3_C IIO_ICRB0_C *
+ * IIO_ICRB3_D IIO_ICRB0_D *
+ * IIO_ICRB3_E IIO_ICRB0_E *
+ * IIO_ICRB4_A IIO_ICRB0_A *
+ * IIO_ICRB4_B IIO_ICRB0_B *
+ * IIO_ICRB4_C IIO_ICRB0_C *
+ * IIO_ICRB4_D IIO_ICRB0_D *
+ * IIO_ICRB4_E IIO_ICRB0_E *
+ * IIO_ICRB5_A IIO_ICRB0_A *
+ * IIO_ICRB5_B IIO_ICRB0_B *
+ * IIO_ICRB5_C IIO_ICRB0_C *
+ * IIO_ICRB5_D IIO_ICRB0_D *
+ * IIO_ICRB5_E IIO_ICRB0_E *
+ * IIO_ICRB6_A IIO_ICRB0_A *
+ * IIO_ICRB6_B IIO_ICRB0_B *
+ * IIO_ICRB6_C IIO_ICRB0_C *
+ * IIO_ICRB6_D IIO_ICRB0_D *
+ * IIO_ICRB6_E IIO_ICRB0_E *
+ * IIO_ICRB7_A IIO_ICRB0_A *
+ * IIO_ICRB7_B IIO_ICRB0_B *
+ * IIO_ICRB7_C IIO_ICRB0_C *
+ * IIO_ICRB7_D IIO_ICRB0_D *
+ * IIO_ICRB7_E IIO_ICRB0_E *
+ * IIO_ICRB8_A IIO_ICRB0_A *
+ * IIO_ICRB8_B IIO_ICRB0_B *
+ * IIO_ICRB8_C IIO_ICRB0_C *
+ * IIO_ICRB8_D IIO_ICRB0_D *
+ * IIO_ICRB8_E IIO_ICRB0_E *
+ * IIO_ICRB9_A IIO_ICRB0_A *
+ * IIO_ICRB9_B IIO_ICRB0_B *
+ * IIO_ICRB9_C IIO_ICRB0_C *
+ * IIO_ICRB9_D IIO_ICRB0_D *
+ * IIO_ICRB9_E IIO_ICRB0_E *
+ * IIO_ICRBA_A IIO_ICRB0_A *
+ * IIO_ICRBA_B IIO_ICRB0_B *
+ * IIO_ICRBA_C IIO_ICRB0_C *
+ * IIO_ICRBA_D IIO_ICRB0_D *
+ * IIO_ICRBA_E IIO_ICRB0_E *
+ * IIO_ICRBB_A IIO_ICRB0_A *
+ * IIO_ICRBB_B IIO_ICRB0_B *
+ * IIO_ICRBB_C IIO_ICRB0_C *
+ * IIO_ICRBB_D IIO_ICRB0_D *
+ * IIO_ICRBB_E IIO_ICRB0_E *
+ * IIO_ICRBC_A IIO_ICRB0_A *
+ * IIO_ICRBC_B IIO_ICRB0_B *
+ * IIO_ICRBC_C IIO_ICRB0_C *
+ * IIO_ICRBC_D IIO_ICRB0_D *
+ * IIO_ICRBC_E IIO_ICRB0_E *
+ * IIO_ICRBD_A IIO_ICRB0_A *
+ * IIO_ICRBD_B IIO_ICRB0_B *
+ * IIO_ICRBD_C IIO_ICRB0_C *
+ * IIO_ICRBD_D IIO_ICRB0_D *
+ * IIO_ICRBD_E IIO_ICRB0_E *
+ * IIO_ICRBE_A IIO_ICRB0_A *
+ * IIO_ICRBE_B IIO_ICRB0_B *
+ * IIO_ICRBE_C IIO_ICRB0_C *
+ * IIO_ICRBE_D IIO_ICRB0_D *
+ * IIO_ICRBE_E IIO_ICRB0_E *
+ * *
+ ************************************************************************/
+
+/*
+ * Slightly friendlier names for some common registers.
+ */
+#define IIO_WIDGET IIO_WID /* Widget identification */
+#define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */
+#define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */
+#define IIO_PROTECT IIO_ILAPR /* IO interface protection */
+#define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */
+#define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */
+#define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */
+#define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */
+#define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */
+#define IIO_LLP_LOG IIO_ILLR /* LLP log */
+#define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout */
+#define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */
+#define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */
+#define IIO_IGFX_0 IIO_IGFX0
+#define IIO_IGFX_1 IIO_IGFX1
+#define IIO_IBCT_0 IIO_IBCT0
+#define IIO_IBCT_1 IIO_IBCT1
+#define IIO_IBLS_0 IIO_IBLS0
+#define IIO_IBLS_1 IIO_IBLS1
+#define IIO_IBSA_0 IIO_IBSA0
+#define IIO_IBSA_1 IIO_IBSA1
+#define IIO_IBDA_0 IIO_IBDA0
+#define IIO_IBDA_1 IIO_IBDA1
+#define IIO_IBNA_0 IIO_IBNA0
+#define IIO_IBNA_1 IIO_IBNA1
+#define IIO_IBIA_0 IIO_IBIA0
+#define IIO_IBIA_1 IIO_IBIA1
+#define IIO_IOPRB_0 IIO_IPRB0
+
+#define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x)))
+#define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x)))
+#define IIO_NUM_PRTES 8 /* Total number of PRB table entries */
+#define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
+#define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
+
+#define IIO_NUM_IPRBS 9
+
+#define IIO_LLP_CSR_IS_UP 0x00002000
+#define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000
+#define IIO_LLP_CSR_LLP_STAT_SHFT 12
+
+#define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */
+#define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */
+
+/* key to IIO_PROTECT_OVRRD */
+#define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */
+
+/* BTE register names */
+#define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */
+#define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */
+#define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */
+#define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */
+#define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */
+#define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */
+#define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */
+#define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
+
+/* BTE register offsets from base */
+#define BTEOFF_STAT 0
+#define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
+#define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
+#define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
+#define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
+#define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
+
+/* names used in shub diags */
+#define IIO_BASE_BTE0 IIO_IBLS_0
+#define IIO_BASE_BTE1 IIO_IBLS_1
+
+/*
+ * Macro which takes the widget number, and returns the
+ * IO PRB address of that widget.
+ * value _x is expected to be a widget number in the range
+ * 0, 8 - 0xF
+ */
+#define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
+ (_x) : \
+ (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
+
+/* GFX Flow Control Node/Widget Register */
+#define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */
+#define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1)
+#define IIO_IGFX_W_NUM_SHIFT 0
+#define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */
+#define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1)
+#define IIO_IGFX_PI_NUM_SHIFT 4
+#define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */
+#define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1)
+#define IIO_IGFX_N_NUM_SHIFT 5
+#define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */
+#define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1)
+#define IIO_IGFX_P_NUM_SHIFT 16
+#define IIO_IGFX_INIT(widget, pi, node, cpu) (\
+ (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \
+ (((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \
+ (((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \
+ (((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
+
+/* Scratch registers (all bits available) */
+#define IIO_SCRATCH_REG0 IIO_ISCR0
+#define IIO_SCRATCH_REG1 IIO_ISCR1
+#define IIO_SCRATCH_MASK 0xffffffffffffffffUL
+
+#define IIO_SCRATCH_BIT0_0 0x0000000000000001UL
+#define IIO_SCRATCH_BIT0_1 0x0000000000000002UL
+#define IIO_SCRATCH_BIT0_2 0x0000000000000004UL
+#define IIO_SCRATCH_BIT0_3 0x0000000000000008UL
+#define IIO_SCRATCH_BIT0_4 0x0000000000000010UL
+#define IIO_SCRATCH_BIT0_5 0x0000000000000020UL
+#define IIO_SCRATCH_BIT0_6 0x0000000000000040UL
+#define IIO_SCRATCH_BIT0_7 0x0000000000000080UL
+#define IIO_SCRATCH_BIT0_8 0x0000000000000100UL
+#define IIO_SCRATCH_BIT0_9 0x0000000000000200UL
+#define IIO_SCRATCH_BIT0_A 0x0000000000000400UL
+
+#define IIO_SCRATCH_BIT1_0 0x0000000000000001UL
+#define IIO_SCRATCH_BIT1_1 0x0000000000000002UL
+/* IO Translation Table Entries */
+#define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */
+ /* Hw manuals number them 1..7! */
+/*
+ * IIO_IMEM Register fields.
+ */
+#define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */
+#define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */
+#define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */
+
+/*
+ * As a permanent workaround for a bug in the PI side of the shub, we've
+ * redefined big window 7 as small window 0.
+ XXX does this still apply for SN1??
+ */
+#define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
+
+/*
+ * Use the top big window as a surrogate for the first small window
+ */
+#define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW
+
+#define ILCSR_WARM_RESET 0x100
+
+/*
+ * CRB manipulation macros
+ * The CRB macros are slightly complicated, since there are up to
+ * four registers associated with each CRB entry.
+ */
+#define IIO_NUM_CRBS 15 /* Number of CRBs */
+#define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */
+#define IIO_ICRB_OFFSET 8
+#define IIO_ICRB_0 IIO_ICRB0_A
+#define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */
+/* XXX - This is now tuneable:
+ #define IIO_FIRST_PC_ENTRY 12
+ */
+
+#define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
+#define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
+#define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
+#define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
+#define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
+
+#define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7)
+
+/*
+ * values for "ecode" field
+ */
+#define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */
+#define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */
+#define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access
+ * e.g. WINV to a Read only line. */
+#define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */
+#define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */
+#define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */
+#define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */
+#define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */
+
+/*
+ * Values for field imsgtype
+ */
+#define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */
+#define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */
+#define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */
+#define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */
+
+/*
+ * values for field initiator.
+ */
+#define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */
+#define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */
+#define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */
+#define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */
+#define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */
+
+/*
+ * Number of credits Hub widget has while sending req/response to
+ * xbow.
+ * Value of 3 is required by Xbow 1.1
+ * We may be able to increase this to 4 with Xbow 1.2.
+ */
+#define HUBII_XBOW_CREDIT 3
+#define HUBII_XBOW_REV2_CREDIT 4
+
+/*
+ * Number of credits that xtalk devices should use when communicating
+ * with a SHub (depth of SHub's queue).
+ */
+#define HUB_CREDIT 4
+
+/*
+ * Some IIO_PRB fields
+ */
+#define IIO_PRB_MULTI_ERR (1LL << 63)
+#define IIO_PRB_SPUR_RD (1LL << 51)
+#define IIO_PRB_SPUR_WR (1LL << 50)
+#define IIO_PRB_RD_TO (1LL << 49)
+#define IIO_PRB_ERROR (1LL << 48)
+
+/*************************************************************************
+
+ Some of the IIO field masks and shifts are defined here.
+ This is in order to maintain compatibility in SN0 and SN1 code
+
+**************************************************************************/
+
+/*
+ * ICMR register fields
+ * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
+ * present in SHub)
+ */
+
+#define IIO_ICMR_CRB_VLD_SHFT 20
+#define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
+
+#define IIO_ICMR_FC_CNT_SHFT 16
+#define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT)
+
+#define IIO_ICMR_C_CNT_SHFT 4
+#define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT)
+
+#define IIO_ICMR_PRECISE (1UL << 52)
+#define IIO_ICMR_CLR_RPPD (1UL << 13)
+#define IIO_ICMR_CLR_RQPD (1UL << 12)
+
+/*
+ * IIO PIO Deallocation register field masks : (IIO_IPDR)
+ XXX present but not needed in bedrock? See the manual.
+ */
+#define IIO_IPDR_PND (1 << 4)
+
+/*
+ * IIO CRB deallocation register field masks: (IIO_ICDR)
+ */
+#define IIO_ICDR_PND (1 << 4)
+
+/*
+ * IO BTE Length/Status (IIO_IBLS) register bit field definitions
+ */
+#define IBLS_BUSY (0x1UL << 20)
+#define IBLS_ERROR_SHFT 16
+#define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT)
+#define IBLS_LENGTH_MASK 0xffff
+
+/*
+ * IO BTE Control/Terminate register (IBCT) register bit field definitions
+ */
+#define IBCT_POISON (0x1UL << 8)
+#define IBCT_NOTIFY (0x1UL << 4)
+#define IBCT_ZFIL_MODE (0x1UL << 0)
+
+/*
+ * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
+ */
+#define IIEPH1_VALID (1UL << 44)
+#define IIEPH1_OVERRUN (1UL << 40)
+#define IIEPH1_ERR_TYPE_SHFT 32
+#define IIEPH1_ERR_TYPE_MASK 0xf
+#define IIEPH1_SOURCE_SHFT 20
+#define IIEPH1_SOURCE_MASK 11
+#define IIEPH1_SUPPL_SHFT 8
+#define IIEPH1_SUPPL_MASK 11
+#define IIEPH1_CMD_SHFT 0
+#define IIEPH1_CMD_MASK 7
+
+#define IIEPH2_TAIL (1UL << 40)
+#define IIEPH2_ADDRESS_SHFT 0
+#define IIEPH2_ADDRESS_MASK 38
+
+#define IIEPH1_ERR_SHORT_REQ 2
+#define IIEPH1_ERR_SHORT_REPLY 3
+#define IIEPH1_ERR_LONG_REQ 4
+#define IIEPH1_ERR_LONG_REPLY 5
+
+/*
+ * IO Error Clear register bit field definitions
+ */
+#define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */
+#define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */
+#define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */
+#define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */
+#define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */
+#define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */
+#define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */
+#define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */
+#define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */
+#define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */
+#define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */
+#define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */
+#define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */
+#define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */
+#define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */
+
+/*
+ * IIO CRB control register Fields: IIO_ICCR
+ */
+#define IIO_ICCR_PENDING 0x10000
+#define IIO_ICCR_CMD_MASK 0xFF
+#define IIO_ICCR_CMD_SHFT 7
+#define IIO_ICCR_CMD_NOP 0x0 /* No Op */
+#define IIO_ICCR_CMD_WAKE 0x100 /* Reactivate CRB entry and process */
+#define IIO_ICCR_CMD_TIMEOUT 0x200 /* Make CRB timeout & mark invalid */
+#define IIO_ICCR_CMD_EJECT 0x400 /* Contents of entry written to memory
+ * via a WB
+ */
+#define IIO_ICCR_CMD_FLUSH 0x800
+
+/*
+ *
+ * CRB Register description.
+ *
+ * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
+ * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
+ * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
+ * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
+ * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
+ *
+ * Many of the fields in CRB are status bits used by hardware
+ * for implementation of the protocol. It's very dangerous to
+ * mess around with the CRB registers.
+ *
+ * It's OK to read the CRB registers and try to make sense out of the
+ * fields in CRB.
+ *
+ * Updating CRB requires all activities in Hub IIO to be quiesced.
+ * otherwise, a write to CRB could corrupt other CRB entries.
+ * CRBs are here only as a back door peek to shub IIO's status.
+ * Quiescing implies no dmas no PIOs
+ * either directly from the cpu or from sn0net.
+ * this is not something that can be done easily. So, AVOID updating
+ * CRBs.
+ */
+
+/*
+ * Easy access macros for CRBs, all 5 registers (A-E)
+ */
+typedef ii_icrb0_a_u_t icrba_t;
+#define a_sidn ii_icrb0_a_fld_s.ia_sidn
+#define a_tnum ii_icrb0_a_fld_s.ia_tnum
+#define a_addr ii_icrb0_a_fld_s.ia_addr
+#define a_valid ii_icrb0_a_fld_s.ia_vld
+#define a_iow ii_icrb0_a_fld_s.ia_iow
+#define a_regvalue ii_icrb0_a_regval
+
+typedef ii_icrb0_b_u_t icrbb_t;
+#define b_use_old ii_icrb0_b_fld_s.ib_use_old
+#define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype
+#define b_imsg ii_icrb0_b_fld_s.ib_imsg
+#define b_initiator ii_icrb0_b_fld_s.ib_init
+#define b_exc ii_icrb0_b_fld_s.ib_exc
+#define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt
+#define b_resp ii_icrb0_b_fld_s.ib_resp
+#define b_ack ii_icrb0_b_fld_s.ib_ack
+#define b_hold ii_icrb0_b_fld_s.ib_hold
+#define b_wb ii_icrb0_b_fld_s.ib_wb
+#define b_intvn ii_icrb0_b_fld_s.ib_intvn
+#define b_stall_ib ii_icrb0_b_fld_s.ib_stall_ib
+#define b_stall_int ii_icrb0_b_fld_s.ib_stall__intr
+#define b_stall_bte_0 ii_icrb0_b_fld_s.ib_stall__bte_0
+#define b_stall_bte_1 ii_icrb0_b_fld_s.ib_stall__bte_1
+#define b_error ii_icrb0_b_fld_s.ib_error
+#define b_ecode ii_icrb0_b_fld_s.ib_errcode
+#define b_lnetuce ii_icrb0_b_fld_s.ib_ln_uce
+#define b_mark ii_icrb0_b_fld_s.ib_mark
+#define b_xerr ii_icrb0_b_fld_s.ib_xt_err
+#define b_regvalue ii_icrb0_b_regval
+
+typedef ii_icrb0_c_u_t icrbc_t;
+#define c_suppl ii_icrb0_c_fld_s.ic_suppl
+#define c_barrop ii_icrb0_c_fld_s.ic_bo
+#define c_doresp ii_icrb0_c_fld_s.ic_resprqd
+#define c_gbr ii_icrb0_c_fld_s.ic_gbr
+#define c_btenum ii_icrb0_c_fld_s.ic_bte_num
+#define c_cohtrans ii_icrb0_c_fld_s.ic_ct
+#define c_xtsize ii_icrb0_c_fld_s.ic_size
+#define c_source ii_icrb0_c_fld_s.ic_source
+#define c_regvalue ii_icrb0_c_regval
+
+typedef ii_icrb0_d_u_t icrbd_t;
+#define d_sleep ii_icrb0_d_fld_s.id_sleep
+#define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt
+#define d_pripsc ii_icrb0_d_fld_s.id_pr_psc
+#define d_bteop ii_icrb0_d_fld_s.id_bte_op
+#define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
+#define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
+#define d_regvalue ii_icrb0_d_regval
+
+typedef ii_icrb0_e_u_t icrbe_t;
+#define icrbe_ctxtvld ii_icrb0_e_fld_s.ie_cvld
+#define icrbe_toutvld ii_icrb0_e_fld_s.ie_tvld
+#define icrbe_context ii_icrb0_e_fld_s.ie_context
+#define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout
+#define e_regvalue ii_icrb0_e_regval
+
+/* Number of widgets supported by shub */
+#define HUB_NUM_WIDGET 9
+#define HUB_WIDGET_ID_MIN 0x8
+#define HUB_WIDGET_ID_MAX 0xf
+
+#define HUB_WIDGET_PART_NUM 0xc120
+#define MAX_HUBS_PER_XBOW 2
+
+/* A few more #defines for backwards compatibility */
+#define iprb_t ii_iprb0_u_t
+#define iprb_regval ii_iprb0_regval
+#define iprb_mult_err ii_iprb0_fld_s.i_mult_err
+#define iprb_spur_rd ii_iprb0_fld_s.i_spur_rd
+#define iprb_spur_wr ii_iprb0_fld_s.i_spur_wr
+#define iprb_rd_to ii_iprb0_fld_s.i_rd_to
+#define iprb_ovflow ii_iprb0_fld_s.i_of_cnt
+#define iprb_error ii_iprb0_fld_s.i_error
+#define iprb_ff ii_iprb0_fld_s.i_f
+#define iprb_mode ii_iprb0_fld_s.i_m
+#define iprb_bnakctr ii_iprb0_fld_s.i_nb
+#define iprb_anakctr ii_iprb0_fld_s.i_na
+#define iprb_xtalkctr ii_iprb0_fld_s.i_c
+
+#define LNK_STAT_WORKING 0x2 /* LLP is working */
+
+#define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */
+#define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */
+#define IIO_WSTAT_TXRETRY_MASK 0x7F /* should be 0xFF?? */
+#define IIO_WSTAT_TXRETRY_SHFT 16
+#define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
+ IIO_WSTAT_TXRETRY_MASK)
+
+/* Number of II perf. counters we can multiplex at once */
+
+#define IO_PERF_SETS 32
+
+/* Bit for the widget in inbound access register */
+#define IIO_IIWA_WIDGET(_w) ((u64)(1ULL << _w))
+/* Bit for the widget in outbound access register */
+#define IIO_IOWA_WIDGET(_w) ((u64)(1ULL << _w))
+
+/* NOTE: The following define assumes that we are going to get
+ * widget numbers from 8 thru F and the device numbers within
+ * widget from 0 thru 7.
+ */
+#define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((u64)(1ULL << (8 * ((w) - 8) + (d))))
+
+/* IO Interrupt Destination Register */
+#define IIO_IIDSR_SENT_SHIFT 28
+#define IIO_IIDSR_SENT_MASK 0x30000000
+#define IIO_IIDSR_ENB_SHIFT 24
+#define IIO_IIDSR_ENB_MASK 0x01000000
+#define IIO_IIDSR_NODE_SHIFT 9
+#define IIO_IIDSR_NODE_MASK 0x000ff700
+#define IIO_IIDSR_PI_ID_SHIFT 8
+#define IIO_IIDSR_PI_ID_MASK 0x00000100
+#define IIO_IIDSR_LVL_SHIFT 0
+#define IIO_IIDSR_LVL_MASK 0x000000ff
+
+/* Xtalk timeout threshhold register (IIO_IXTT) */
+#define IXTT_RRSP_TO_SHFT 55 /* read response timeout */
+#define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT)
+#define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */
+#define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
+#define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */
+#define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
+
+/*
+ * The IO LLP control status register and widget control register
+ */
+
+typedef union hubii_wcr_u {
+ u64 wcr_reg_value;
+ struct {
+ u64 wcr_widget_id:4, /* LLP crossbar credit */
+ wcr_tag_mode:1, /* Tag mode */
+ wcr_rsvd1:8, /* Reserved */
+ wcr_xbar_crd:3, /* LLP crossbar credit */
+ wcr_f_bad_pkt:1, /* Force bad llp pkt enable */
+ wcr_dir_con:1, /* widget direct connect */
+ wcr_e_thresh:5, /* elasticity threshold */
+ wcr_rsvd:41; /* unused */
+ } wcr_fields_s;
+} hubii_wcr_t;
+
+#define iwcr_dir_con wcr_fields_s.wcr_dir_con
+
+/* The structures below are defined to extract and modify the ii
+performance registers */
+
+/* io_perf_sel allows the caller to specify what tests will be
+ performed */
+
+typedef union io_perf_sel {
+ u64 perf_sel_reg;
+ struct {
+ u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
+ } perf_sel_bits;
+} io_perf_sel_t;
+
+/* io_perf_cnt is to extract the count from the shub registers. Due to
+ hardware problems there is only one counter, not two. */
+
+typedef union io_perf_cnt {
+ u64 perf_cnt;
+ struct {
+ u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
+ } perf_cnt_bits;
+
+} io_perf_cnt_t;
+
+typedef union iprte_a {
+ u64 entry;
+ struct {
+ u64 i_rsvd_1:3;
+ u64 i_addr:38;
+ u64 i_init:3;
+ u64 i_source:8;
+ u64 i_rsvd:2;
+ u64 i_widget:4;
+ u64 i_to_cnt:5;
+ u64 i_vld:1;
+ } iprte_fields;
+} iprte_a_t;
+
+#endif /* _ASM_IA64_SN_SHUBIO_H */