summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand/raw')
-rw-r--r--drivers/mtd/nand/raw/Kconfig45
-rw-r--r--drivers/mtd/nand/raw/Makefile4
-rw-r--r--drivers/mtd/nand/raw/arasan-nand-controller.c1
-rw-r--r--drivers/mtd/nand/raw/au1550nd.c1
-rw-r--r--drivers/mtd/nand/raw/brcmnand/brcmnand.c6
-rw-r--r--drivers/mtd/nand/raw/cafe_nand.c2
-rw-r--r--drivers/mtd/nand/raw/cs553x_nand.c3
-rw-r--r--drivers/mtd/nand/raw/davinci_nand.c38
-rw-r--r--drivers/mtd/nand/raw/diskonchip.c4
-rw-r--r--drivers/mtd/nand/raw/fsl_elbc_nand.c1
-rw-r--r--drivers/mtd/nand/raw/fsl_ifc_nand.c1
-rw-r--r--drivers/mtd/nand/raw/fsl_upm.c1
-rw-r--r--drivers/mtd/nand/raw/fsmc_nand.c5
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/Makefile3
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c76
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h1
-rw-r--r--drivers/mtd/nand/raw/ingenic/ingenic_ecc.c2
-rw-r--r--drivers/mtd/nand/raw/intel-nand-controller.c721
-rw-r--r--drivers/mtd/nand/raw/lpc32xx_mlc.c1
-rw-r--r--drivers/mtd/nand/raw/lpc32xx_slc.c3
-rw-r--r--drivers/mtd/nand/raw/marvell_nand.c6
-rw-r--r--drivers/mtd/nand/raw/meson_nand.c7
-rw-r--r--drivers/mtd/nand/raw/mxc_nand.c94
-rw-r--r--drivers/mtd/nand/raw/mxic_nand.c2
-rw-r--r--drivers/mtd/nand/raw/nand_base.c204
-rw-r--r--drivers/mtd/nand/raw/nand_bbt.c2
-rw-r--r--drivers/mtd/nand/raw/nand_bch.c219
-rw-r--r--drivers/mtd/nand/raw/nand_ecc.c484
-rw-r--r--drivers/mtd/nand/raw/nand_legacy.c9
-rw-r--r--drivers/mtd/nand/raw/nandsim.c3
-rw-r--r--drivers/mtd/nand/raw/ndfc.c3
-rw-r--r--drivers/mtd/nand/raw/omap2.c49
-rw-r--r--drivers/mtd/nand/raw/omap_elm.c7
-rw-r--r--drivers/mtd/nand/raw/pasemi_nand.c1
-rw-r--r--drivers/mtd/nand/raw/qcom_nandc.c74
-rw-r--r--drivers/mtd/nand/raw/rockchip-nand-controller.c1495
-rw-r--r--drivers/mtd/nand/raw/s3c2410.c5
-rw-r--r--drivers/mtd/nand/raw/sharpsl.c3
-rw-r--r--drivers/mtd/nand/raw/sunxi_nand.c149
-rw-r--r--drivers/mtd/nand/raw/tmio_nand.c7
-rw-r--r--drivers/mtd/nand/raw/txx9ndfmc.c5
41 files changed, 2665 insertions, 1082 deletions
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 6c46f25b57e2..442a039b92f3 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -1,20 +1,8 @@
# SPDX-License-Identifier: GPL-2.0-only
-config MTD_NAND_ECC_SW_HAMMING
- tristate
-
-config MTD_NAND_ECC_SW_HAMMING_SMC
- bool "NAND ECC Smart Media byte order"
- depends on MTD_NAND_ECC_SW_HAMMING
- default n
- help
- Software ECC according to the Smart Media Specification.
- The original Linux implementation had byte 0 and 1 swapped.
-
menuconfig MTD_RAW_NAND
tristate "Raw/Parallel NAND Device Support"
select MTD_NAND_CORE
select MTD_NAND_ECC
- select MTD_NAND_ECC_SW_HAMMING
help
This enables support for accessing all type of raw/parallel
NAND flash devices. For further information see
@@ -22,16 +10,6 @@ menuconfig MTD_RAW_NAND
if MTD_RAW_NAND
-config MTD_NAND_ECC_SW_BCH
- bool "Support software BCH ECC"
- select BCH
- default n
- help
- This enables support for software BCH error correction. Binary BCH
- codes are more powerful and cpu intensive than traditional Hamming
- ECC codes. They are used with NAND devices requiring more than 1 bit
- of error correction.
-
comment "Raw/parallel NAND flash controllers"
config MTD_NAND_DENALI
@@ -93,6 +71,7 @@ config MTD_NAND_AU1550
config MTD_NAND_NDFC
tristate "IBM/MCC 4xx NAND controller"
depends on 4xx
+ select MTD_NAND_ECC_SW_HAMMING
select MTD_NAND_ECC_SW_HAMMING_SMC
help
NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs
@@ -313,7 +292,7 @@ config MTD_NAND_VF610_NFC
config MTD_NAND_MXC
tristate "Freescale MXC NAND controller"
depends on ARCH_MXC || COMPILE_TEST
- depends on HAS_IOMEM
+ depends on HAS_IOMEM && OF
help
This enables the driver for the NAND flash controller on the
MXC processors.
@@ -462,6 +441,26 @@ config MTD_NAND_ARASAN
Enables the driver for the Arasan NAND flash controller on
Zynq Ultrascale+ MPSoC.
+config MTD_NAND_INTEL_LGM
+ tristate "Support for NAND controller on Intel LGM SoC"
+ depends on OF || COMPILE_TEST
+ depends on HAS_IOMEM
+ help
+ Enables support for NAND Flash chips on Intel's LGM SoC.
+ NAND flash controller interfaced through the External Bus Unit.
+
+config MTD_NAND_ROCKCHIP
+ tristate "Rockchip NAND controller"
+ depends on ARCH_ROCKCHIP && HAS_IOMEM
+ help
+ Enables support for NAND controller on Rockchip SoCs.
+ There are four different versions of NAND FLASH Controllers,
+ including:
+ NFC v600: RK2928, RK3066, RK3188
+ NFC v622: RK3036, RK3128
+ NFC v800: RK3308, RV1108
+ NFC v900: PX30, RK3326
+
comment "Misc"
config MTD_SM_COMMON
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 2930f5b9015d..32475a28d8f8 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -1,8 +1,6 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_MTD_RAW_NAND) += nand.o
-obj-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += nand_ecc.o
-nand-$(CONFIG_MTD_NAND_ECC_SW_BCH) += nand_bch.o
obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o
obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o
@@ -58,6 +56,8 @@ obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
obj-$(CONFIG_MTD_NAND_ARASAN) += arasan-nand-controller.o
+obj-$(CONFIG_MTD_NAND_INTEL_LGM) += intel-nand-controller.o
+obj-$(CONFIG_MTD_NAND_ROCKCHIP) += rockchip-nand-controller.o
nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/arasan-nand-controller.c b/drivers/mtd/nand/raw/arasan-nand-controller.c
index fbb4ea751be8..549aac00228e 100644
--- a/drivers/mtd/nand/raw/arasan-nand-controller.c
+++ b/drivers/mtd/nand/raw/arasan-nand-controller.c
@@ -118,6 +118,7 @@
* @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
* @len: Data transfer length
* @read: Data transfer direction from the controller point of view
+ * @buf: Data buffer
*/
struct anfc_op {
u32 pkt_reg;
diff --git a/drivers/mtd/nand/raw/au1550nd.c b/drivers/mtd/nand/raw/au1550nd.c
index 7b6b354f2d39..99116896cfd6 100644
--- a/drivers/mtd/nand/raw/au1550nd.c
+++ b/drivers/mtd/nand/raw/au1550nd.c
@@ -3,6 +3,7 @@
* Copyright (C) 2004 Embedded Edge, LLC
*/
+#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
index 2da39ab89286..659eaa6f0980 100644
--- a/drivers/mtd/nand/raw/brcmnand/brcmnand.c
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
@@ -1846,7 +1846,7 @@ static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
}
}
-/**
+/*
* Kick EDU engine
*/
static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
@@ -1937,7 +1937,7 @@ static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
return ret;
}
-/**
+/*
* Construct a FLASH_DMA descriptor as part of a linked list. You must know the
* following ahead of time:
* - Is this descriptor the beginning or end of a linked list?
@@ -1970,7 +1970,7 @@ static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
return 0;
}
-/**
+/*
* Kick the FLASH_DMA engine, with a given DMA descriptor
*/
static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
diff --git a/drivers/mtd/nand/raw/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c
index 2b94f385a1a8..d0e8ffd55c22 100644
--- a/drivers/mtd/nand/raw/cafe_nand.c
+++ b/drivers/mtd/nand/raw/cafe_nand.c
@@ -359,10 +359,10 @@ static int cafe_nand_read_oob(struct nand_chip *chip, int page)
}
/**
* cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read
- * @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller expects OOB data read to chip->oob_poi
+ * @page: page number to read
*
* The hw generator calculates the error syndrome automatically. Therefore
* we need a special oob layout and handling.
diff --git a/drivers/mtd/nand/raw/cs553x_nand.c b/drivers/mtd/nand/raw/cs553x_nand.c
index 282203debd0c..6edf78c16fc8 100644
--- a/drivers/mtd/nand/raw/cs553x_nand.c
+++ b/drivers/mtd/nand/raw/cs553x_nand.c
@@ -19,7 +19,6 @@
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/iopoll.h>
@@ -252,7 +251,7 @@ static int cs553x_attach_chip(struct nand_chip *chip)
chip->ecc.bytes = 3;
chip->ecc.hwctl = cs_enable_hwecc;
chip->ecc.calculate = cs_calculate_ecc;
- chip->ecc.correct = nand_correct_data;
+ chip->ecc.correct = rawnand_sw_hamming_correct;
chip->ecc.strength = 1;
return 0;
diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c
index f8c36d19ab47..118da9944e3b 100644
--- a/drivers/mtd/nand/raw/davinci_nand.c
+++ b/drivers/mtd/nand/raw/davinci_nand.c
@@ -586,10 +586,10 @@ static int davinci_nand_attach_chip(struct nand_chip *chip)
return PTR_ERR(pdata);
/* Use board-specific ECC config */
- info->chip.ecc.engine_type = pdata->engine_type;
- info->chip.ecc.placement = pdata->ecc_placement;
+ chip->ecc.engine_type = pdata->engine_type;
+ chip->ecc.placement = pdata->ecc_placement;
- switch (info->chip.ecc.engine_type) {
+ switch (chip->ecc.engine_type) {
case NAND_ECC_ENGINE_TYPE_NONE:
pdata->ecc_bits = 0;
break;
@@ -601,7 +601,7 @@ static int davinci_nand_attach_chip(struct nand_chip *chip)
* NAND_ECC_ALGO_HAMMING to avoid adding an extra ->ecc_algo
* field to davinci_nand_pdata.
*/
- info->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
+ chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
break;
case NAND_ECC_ENGINE_TYPE_ON_HOST:
if (pdata->ecc_bits == 4) {
@@ -628,12 +628,12 @@ static int davinci_nand_attach_chip(struct nand_chip *chip)
if (ret == -EBUSY)
return ret;
- info->chip.ecc.calculate = nand_davinci_calculate_4bit;
- info->chip.ecc.correct = nand_davinci_correct_4bit;
- info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
- info->chip.ecc.bytes = 10;
- info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
- info->chip.ecc.algo = NAND_ECC_ALGO_BCH;
+ chip->ecc.calculate = nand_davinci_calculate_4bit;
+ chip->ecc.correct = nand_davinci_correct_4bit;
+ chip->ecc.hwctl = nand_davinci_hwctl_4bit;
+ chip->ecc.bytes = 10;
+ chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
+ chip->ecc.algo = NAND_ECC_ALGO_BCH;
/*
* Update ECC layout if needed ... for 1-bit HW ECC, the
@@ -651,20 +651,20 @@ static int davinci_nand_attach_chip(struct nand_chip *chip)
} else if (chunks == 4 || chunks == 8) {
mtd_set_ooblayout(mtd,
nand_get_large_page_ooblayout());
- info->chip.ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
+ chip->ecc.read_page = nand_davinci_read_page_hwecc_oob_first;
} else {
return -EIO;
}
} else {
/* 1bit ecc hamming */
- info->chip.ecc.calculate = nand_davinci_calculate_1bit;
- info->chip.ecc.correct = nand_davinci_correct_1bit;
- info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
- info->chip.ecc.bytes = 3;
- info->chip.ecc.algo = NAND_ECC_ALGO_HAMMING;
+ chip->ecc.calculate = nand_davinci_calculate_1bit;
+ chip->ecc.correct = nand_davinci_correct_1bit;
+ chip->ecc.hwctl = nand_davinci_hwctl_1bit;
+ chip->ecc.bytes = 3;
+ chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
}
- info->chip.ecc.size = 512;
- info->chip.ecc.strength = pdata->ecc_bits;
+ chip->ecc.size = 512;
+ chip->ecc.strength = pdata->ecc_bits;
break;
default:
return -EINVAL;
@@ -899,7 +899,7 @@ static int nand_davinci_remove(struct platform_device *pdev)
int ret;
spin_lock_irq(&davinci_nand_lock);
- if (info->chip.ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
+ if (chip->ecc.placement == NAND_ECC_PLACEMENT_INTERLEAVED)
ecc4_busy = false;
spin_unlock_irq(&davinci_nand_lock);
diff --git a/drivers/mtd/nand/raw/diskonchip.c b/drivers/mtd/nand/raw/diskonchip.c
index 26b265e4384a..5d2ddb037a9a 100644
--- a/drivers/mtd/nand/raw/diskonchip.c
+++ b/drivers/mtd/nand/raw/diskonchip.c
@@ -216,7 +216,7 @@ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
{
- volatile char dummy;
+ volatile char __always_unused dummy;
int i;
for (i = 0; i < cycles; i++) {
@@ -703,7 +703,7 @@ static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat,
struct doc_priv *doc = nand_get_controller_data(this);
void __iomem *docptr = doc->virtadr;
int i;
- int emptymatch = 1;
+ int __always_unused emptymatch = 1;
/* flush the pipeline */
if (DoC_is_2000(doc)) {
diff --git a/drivers/mtd/nand/raw/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c
index b2af7f81fdf8..aab93b9e6052 100644
--- a/drivers/mtd/nand/raw/fsl_elbc_nand.c
+++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c
@@ -22,7 +22,6 @@
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
diff --git a/drivers/mtd/nand/raw/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c
index e345f9d9f8e8..02d500176838 100644
--- a/drivers/mtd/nand/raw/fsl_ifc_nand.c
+++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c
@@ -15,7 +15,6 @@
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/fsl_ifc.h>
#include <linux/iopoll.h>
diff --git a/drivers/mtd/nand/raw/fsl_upm.c b/drivers/mtd/nand/raw/fsl_upm.c
index d5813b9abc8e..b3cc427100a2 100644
--- a/drivers/mtd/nand/raw/fsl_upm.c
+++ b/drivers/mtd/nand/raw/fsl_upm.c
@@ -11,7 +11,6 @@
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
index c88421a1c078..0101c0fab50a 100644
--- a/drivers/mtd/nand/raw/fsmc_nand.c
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -26,7 +26,6 @@
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/mtd/partitions.h>
@@ -918,7 +917,7 @@ static int fsmc_nand_attach_chip(struct nand_chip *nand)
case NAND_ECC_ENGINE_TYPE_ON_HOST:
dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
nand->ecc.calculate = fsmc_read_hwecc_ecc1;
- nand->ecc.correct = nand_correct_data;
+ nand->ecc.correct = rawnand_sw_hamming_correct;
nand->ecc.hwctl = fsmc_enable_hwecc;
nand->ecc.bytes = 3;
nand->ecc.strength = 1;
@@ -942,7 +941,7 @@ static int fsmc_nand_attach_chip(struct nand_chip *nand)
/*
* Don't set layout for BCH4 SW ECC. This will be
- * generated later in nand_bch_init() later.
+ * generated later during BCH initialization.
*/
if (nand->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
switch (mtd->oobsize) {
diff --git a/drivers/mtd/nand/raw/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile
index 9bd81a31e02e..247cbfceaa19 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/Makefile
+++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile
@@ -1,3 +1,2 @@
# SPDX-License-Identifier: GPL-2.0-only
-obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o
-gpmi_nand-objs += gpmi-nand.o
+obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand.o
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
index dc8104e67506..5cdf05bcbf8f 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -149,8 +149,10 @@ static int gpmi_init(struct gpmi_nand_data *this)
int ret;
ret = pm_runtime_get_sync(this->dev);
- if (ret < 0)
+ if (ret < 0) {
+ pm_runtime_put_noidle(this->dev);
return ret;
+ }
ret = gpmi_reset_block(r->gpmi_regs, false);
if (ret)
@@ -179,9 +181,11 @@ static int gpmi_init(struct gpmi_nand_data *this)
/*
* Decouple the chip select from dma channel. We use dma0 for all
- * the chips.
+ * the chips, force all NAND RDY_BUSY inputs to be sourced from
+ * RDY_BUSY0.
*/
- writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+ writel(BM_GPMI_CTRL1_DECOUPLE_CS | BM_GPMI_CTRL1_GANGED_RDYBUSY,
+ r->gpmi_regs + HW_GPMI_CTRL1_SET);
err_out:
pm_runtime_mark_last_busy(this->dev);
@@ -2252,7 +2256,7 @@ static int gpmi_nfc_exec_op(struct nand_chip *chip,
void *buf_read = NULL;
const void *buf_write = NULL;
bool direct = false;
- struct completion *completion;
+ struct completion *dma_completion, *bch_completion;
unsigned long to;
if (check_only)
@@ -2263,8 +2267,10 @@ static int gpmi_nfc_exec_op(struct nand_chip *chip,
this->transfers[i].direction = DMA_NONE;
ret = pm_runtime_get_sync(this->dev);
- if (ret < 0)
+ if (ret < 0) {
+ pm_runtime_put_noidle(this->dev);
return ret;
+ }
/*
* This driver currently supports only one NAND chip. Plus, dies share
@@ -2347,22 +2353,24 @@ static int gpmi_nfc_exec_op(struct nand_chip *chip,
this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
}
+ desc->callback = dma_irq_callback;
+ desc->callback_param = this;
+ dma_completion = &this->dma_done;
+ bch_completion = NULL;
+
+ init_completion(dma_completion);
+
if (this->bch && buf_read) {
writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
this->resources.bch_regs + HW_BCH_CTRL_SET);
- completion = &this->bch_done;
- } else {
- desc->callback = dma_irq_callback;
- desc->callback_param = this;
- completion = &this->dma_done;
+ bch_completion = &this->bch_done;
+ init_completion(bch_completion);
}
- init_completion(completion);
-
dmaengine_submit(desc);
dma_async_issue_pending(get_dma_chan(this));
- to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
+ to = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
if (!to) {
dev_err(this->dev, "DMA timeout, last DMA\n");
gpmi_dump_info(this);
@@ -2370,6 +2378,16 @@ static int gpmi_nfc_exec_op(struct nand_chip *chip,
goto unmap;
}
+ if (this->bch && buf_read) {
+ to = wait_for_completion_timeout(bch_completion, msecs_to_jiffies(1000));
+ if (!to) {
+ dev_err(this->dev, "BCH timeout, last DMA\n");
+ gpmi_dump_info(this);
+ ret = -ETIMEDOUT;
+ goto unmap;
+ }
+ }
+
writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
this->resources.bch_regs + HW_BCH_CTRL_CLR);
gpmi_clear_bch(this);
@@ -2461,43 +2479,25 @@ err_out:
}
static const struct of_device_id gpmi_nand_id_table[] = {
- {
- .compatible = "fsl,imx23-gpmi-nand",
- .data = &gpmi_devdata_imx23,
- }, {
- .compatible = "fsl,imx28-gpmi-nand",
- .data = &gpmi_devdata_imx28,
- }, {
- .compatible = "fsl,imx6q-gpmi-nand",
- .data = &gpmi_devdata_imx6q,
- }, {
- .compatible = "fsl,imx6sx-gpmi-nand",
- .data = &gpmi_devdata_imx6sx,
- }, {
- .compatible = "fsl,imx7d-gpmi-nand",
- .data = &gpmi_devdata_imx7d,
- }, {}
+ { .compatible = "fsl,imx23-gpmi-nand", .data = &gpmi_devdata_imx23, },
+ { .compatible = "fsl,imx28-gpmi-nand", .data = &gpmi_devdata_imx28, },
+ { .compatible = "fsl,imx6q-gpmi-nand", .data = &gpmi_devdata_imx6q, },
+ { .compatible = "fsl,imx6sx-gpmi-nand", .data = &gpmi_devdata_imx6sx, },
+ { .compatible = "fsl,imx7d-gpmi-nand", .data = &gpmi_devdata_imx7d,},
+ {}
};
MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
static int gpmi_nand_probe(struct platform_device *pdev)
{
struct gpmi_nand_data *this;
- const struct of_device_id *of_id;
int ret;
this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL);
if (!this)
return -ENOMEM;
- of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
- if (of_id) {
- this->devdata = of_id->data;
- } else {
- dev_err(&pdev->dev, "Failed to find the right device id.\n");
- return -ENODEV;
- }
-
+ this->devdata = of_device_get_match_data(&pdev->dev);
platform_set_drvdata(pdev, this);
this->pdev = pdev;
this->dev = &pdev->dev;
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
index f5e4f26c34da..fc31fd084dcf 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h
@@ -107,6 +107,7 @@
#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2
#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3
+#define BM_GPMI_CTRL1_GANGED_RDYBUSY (1 << 19)
#define BM_GPMI_CTRL1_BCH_MODE (1 << 18)
#define BP_GPMI_CTRL1_DLL_ENABLE 17
diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c
index 8e22cd6ec71f..efe0ffe4f1ab 100644
--- a/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c
+++ b/drivers/mtd/nand/raw/ingenic/ingenic_ecc.c
@@ -71,8 +71,6 @@ static struct ingenic_ecc *ingenic_ecc_get(struct device_node *np)
if (!pdev || !platform_get_drvdata(pdev))
return ERR_PTR(-EPROBE_DEFER);
- get_device(&pdev->dev);
-
ecc = platform_get_drvdata(pdev);
clk_prepare_enable(ecc->clk);
diff --git a/drivers/mtd/nand/raw/intel-nand-controller.c b/drivers/mtd/nand/raw/intel-nand-controller.c
new file mode 100644
index 000000000000..fdb112e8a90d
--- /dev/null
+++ b/drivers/mtd/nand/raw/intel-nand-controller.c
@@ -0,0 +1,721 @@
+// SPDX-License-Identifier: GPL-2.0+
+/* Copyright (c) 2020 Intel Corporation. */
+
+#include <linux/clk.h>
+#include <linux/completion.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-direction.h>
+#include <linux/dma-mapping.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/iopoll.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand.h>
+
+#include <linux/platform_device.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <asm/unaligned.h>
+
+#define EBU_CLC 0x000
+#define EBU_CLC_RST 0x00000000u
+
+#define EBU_ADDR_SEL(n) (0x020 + (n) * 4)
+/* 5 bits 26:22 included for comparison in the ADDR_SELx */
+#define EBU_ADDR_MASK(x) ((x) << 4)
+#define EBU_ADDR_SEL_REGEN 0x1
+
+#define EBU_BUSCON(n) (0x060 + (n) * 4)
+#define EBU_BUSCON_CMULT_V4 0x1
+#define EBU_BUSCON_RECOVC(n) ((n) << 2)
+#define EBU_BUSCON_HOLDC(n) ((n) << 4)
+#define EBU_BUSCON_WAITRDC(n) ((n) << 6)
+#define EBU_BUSCON_WAITWRC(n) ((n) << 8)
+#define EBU_BUSCON_BCGEN_CS 0x0
+#define EBU_BUSCON_SETUP_EN BIT(22)
+#define EBU_BUSCON_ALEC 0xC000
+
+#define EBU_CON 0x0B0
+#define EBU_CON_NANDM_EN BIT(0)
+#define EBU_CON_NANDM_DIS 0x0
+#define EBU_CON_CSMUX_E_EN BIT(1)
+#define EBU_CON_ALE_P_LOW BIT(2)
+#define EBU_CON_CLE_P_LOW BIT(3)
+#define EBU_CON_CS_P_LOW BIT(4)
+#define EBU_CON_SE_P_LOW BIT(5)
+#define EBU_CON_WP_P_LOW BIT(6)
+#define EBU_CON_PRE_P_LOW BIT(7)
+#define EBU_CON_IN_CS_S(n) ((n) << 8)
+#define EBU_CON_OUT_CS_S(n) ((n) << 10)
+#define EBU_CON_LAT_EN_CS_P ((0x3D) << 18)
+
+#define EBU_WAIT 0x0B4
+#define EBU_WAIT_RDBY BIT(0)
+#define EBU_WAIT_WR_C BIT(3)
+
+#define HSNAND_CTL1 0x110
+#define HSNAND_CTL1_ADDR_SHIFT 24
+
+#define HSNAND_CTL2 0x114
+#define HSNAND_CTL2_ADDR_SHIFT 8
+#define HSNAND_CTL2_CYC_N_V5 (0x2 << 16)
+
+#define HSNAND_INT_MSK_CTL 0x124
+#define HSNAND_INT_MSK_CTL_WR_C BIT(4)
+
+#define HSNAND_INT_STA 0x128
+#define HSNAND_INT_STA_WR_C BIT(4)
+
+#define HSNAND_CTL 0x130
+#define HSNAND_CTL_ENABLE_ECC BIT(0)
+#define HSNAND_CTL_GO BIT(2)
+#define HSNAND_CTL_CE_SEL_CS(n) BIT(3 + (n))
+#define HSNAND_CTL_RW_READ 0x0
+#define HSNAND_CTL_RW_WRITE BIT(10)
+#define HSNAND_CTL_ECC_OFF_V8TH BIT(11)
+#define HSNAND_CTL_CKFF_EN 0x0
+#define HSNAND_CTL_MSG_EN BIT(17)
+
+#define HSNAND_PARA0 0x13c
+#define HSNAND_PARA0_PAGE_V8192 0x3
+#define HSNAND_PARA0_PIB_V256 (0x3 << 4)
+#define HSNAND_PARA0_BYP_EN_NP 0x0
+#define HSNAND_PARA0_BYP_DEC_NP 0x0
+#define HSNAND_PARA0_TYPE_ONFI BIT(18)
+#define HSNAND_PARA0_ADEP_EN BIT(21)
+
+#define HSNAND_CMSG_0 0x150
+#define HSNAND_CMSG_1 0x154
+
+#define HSNAND_ALE_OFFS BIT(2)
+#define HSNAND_CLE_OFFS BIT(3)
+#define HSNAND_CS_OFFS BIT(4)
+
+#define HSNAND_ECC_OFFSET 0x008
+
+#define NAND_DATA_IFACE_CHECK_ONLY -1
+
+#define MAX_CS 2
+
+#define HZ_PER_MHZ 1000000L
+#define USEC_PER_SEC 1000000L
+
+struct ebu_nand_cs {
+ void __iomem *chipaddr;
+ dma_addr_t nand_pa;
+ u32 addr_sel;
+};
+
+struct ebu_nand_controller {
+ struct nand_controller controller;
+ struct nand_chip chip;
+ struct device *dev;
+ void __iomem *ebu;
+ void __iomem *hsnand;
+ struct dma_chan *dma_tx;
+ struct dma_chan *dma_rx;
+ struct completion dma_access_complete;
+ unsigned long clk_rate;
+ struct clk *clk;
+ u32 nd_para0;
+ u8 cs_num;
+ struct ebu_nand_cs cs[MAX_CS];
+};
+
+static inline struct ebu_nand_controller *nand_to_ebu(struct nand_chip *chip)
+{
+ return container_of(chip, struct ebu_nand_controller, chip);
+}
+
+static int ebu_nand_waitrdy(struct nand_chip *chip, int timeout_ms)
+{
+ struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
+ u32 status;
+
+ return readl_poll_timeout(ctrl->ebu + EBU_WAIT, status,
+ (status & EBU_WAIT_RDBY) ||
+ (status & EBU_WAIT_WR_C), 20, timeout_ms);
+}
+
+static u8 ebu_nand_readb(struct nand_chip *chip)
+{
+ struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
+ u8 cs_num = ebu_host->cs_num;
+ u8 val;
+
+ val = readb(ebu_host->cs[cs_num].chipaddr + HSNAND_CS_OFFS);
+ ebu_nand_waitrdy(chip, 1000);
+ return val;
+}
+
+static void ebu_nand_writeb(struct nand_chip *chip, u32 offset, u8 value)
+{
+ struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
+ u8 cs_num = ebu_host->cs_num;
+
+ writeb(value, ebu_host->cs[cs_num].chipaddr + offset);
+ ebu_nand_waitrdy(chip, 1000);
+}
+
+static void ebu_read_buf(struct nand_chip *chip, u_char *buf, unsigned int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = ebu_nand_readb(chip);
+}
+
+static void ebu_write_buf(struct nand_chip *chip, const u_char *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ ebu_nand_writeb(chip, HSNAND_CS_OFFS, buf[i]);
+}
+
+static void ebu_nand_disable(struct nand_chip *chip)
+{
+ struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
+
+ writel(0, ebu_host->ebu + EBU_CON);
+}
+
+static void ebu_select_chip(struct nand_chip *chip)
+{
+ struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
+ void __iomem *nand_con = ebu_host->ebu + EBU_CON;
+ u32 cs = ebu_host->cs_num;
+
+ writel(EBU_CON_NANDM_EN | EBU_CON_CSMUX_E_EN | EBU_CON_CS_P_LOW |
+ EBU_CON_SE_P_LOW | EBU_CON_WP_P_LOW | EBU_CON_PRE_P_LOW |
+ EBU_CON_IN_CS_S(cs) | EBU_CON_OUT_CS_S(cs) |
+ EBU_CON_LAT_EN_CS_P, nand_con);
+}
+
+static int ebu_nand_set_timings(struct nand_chip *chip, int csline,
+ const struct nand_interface_config *conf)
+{
+ struct ebu_nand_controller *ctrl = nand_to_ebu(chip);
+ unsigned int rate = clk_get_rate(ctrl->clk) / HZ_PER_MHZ;
+ unsigned int period = DIV_ROUND_UP(USEC_PER_SEC, rate);
+ const struct nand_sdr_timings *timings;
+ u32 trecov, thold, twrwait, trdwait;
+ u32 reg = 0;
+
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return PTR_ERR(timings);
+
+ if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ trecov = DIV_ROUND_UP(max(timings->tREA_max, timings->tREH_min),
+ period);
+ reg |= EBU_BUSCON_RECOVC(trecov);
+
+ thold = DIV_ROUND_UP(max(timings->tDH_min, timings->tDS_min), period);
+ reg |= EBU_BUSCON_HOLDC(thold);
+
+ trdwait = DIV_ROUND_UP(max(timings->tRC_min, timings->tREH_min),
+ period);
+ reg |= EBU_BUSCON_WAITRDC(trdwait);
+
+ twrwait = DIV_ROUND_UP(max(timings->tWC_min, timings->tWH_min), period);
+ reg |= EBU_BUSCON_WAITWRC(twrwait);
+
+ reg |= EBU_BUSCON_CMULT_V4 | EBU_BUSCON_BCGEN_CS | EBU_BUSCON_ALEC |
+ EBU_BUSCON_SETUP_EN;
+
+ writel(reg, ctrl->ebu + EBU_BUSCON(ctrl->cs_num));
+
+ return 0;
+}
+
+static int ebu_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = HSNAND_ECC_OFFSET;
+ oobregion->length = chip->ecc.total;
+
+ return 0;
+}
+
+static int ebu_nand_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = chip->ecc.total + HSNAND_ECC_OFFSET;
+ oobregion->length = mtd->oobsize - oobregion->offset;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops ebu_nand_ooblayout_ops = {
+ .ecc = ebu_nand_ooblayout_ecc,
+ .free = ebu_nand_ooblayout_free,
+};
+
+static void ebu_dma_rx_callback(void *cookie)
+{
+ struct ebu_nand_controller *ebu_host = cookie;
+
+ dmaengine_terminate_async(ebu_host->dma_rx);
+
+ complete(&ebu_host->dma_access_complete);
+}
+
+static void ebu_dma_tx_callback(void *cookie)
+{
+ struct ebu_nand_controller *ebu_host = cookie;
+
+ dmaengine_terminate_async(ebu_host->dma_tx);
+
+ complete(&ebu_host->dma_access_complete);
+}
+
+static int ebu_dma_start(struct ebu_nand_controller *ebu_host, u32 dir,
+ const u8 *buf, u32 len)
+{
+ struct dma_async_tx_descriptor *tx;
+ struct completion *dma_completion;
+ dma_async_tx_callback callback;
+ struct dma_chan *chan;
+ dma_cookie_t cookie;
+ unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
+ dma_addr_t buf_dma;
+ int ret;
+ u32 timeout;
+
+ if (dir == DMA_DEV_TO_MEM) {
+ chan = ebu_host->dma_rx;
+ dma_completion = &ebu_host->dma_access_complete;
+ callback = ebu_dma_rx_callback;
+ } else {
+ chan = ebu_host->dma_tx;
+ dma_completion = &ebu_host->dma_access_complete;
+ callback = ebu_dma_tx_callback;
+ }
+
+ buf_dma = dma_map_single(chan->device->dev, (void *)buf, len, dir);
+ if (dma_mapping_error(chan->device->dev, buf_dma)) {
+ dev_err(ebu_host->dev, "Failed to map DMA buffer\n");
+ ret = -EIO;
+ goto err_unmap;
+ }
+
+ tx = dmaengine_prep_slave_single(chan, buf_dma, len, dir, flags);
+ if (!tx)
+ return -ENXIO;
+
+ tx->callback = callback;
+ tx->callback_param = ebu_host;
+ cookie = tx->tx_submit(tx);
+
+ ret = dma_submit_error(cookie);
+ if (ret) {
+ dev_err(ebu_host->dev, "dma_submit_error %d\n", cookie);
+ ret = -EIO;
+ goto err_unmap;
+ }
+
+ init_completion(dma_completion);
+ dma_async_issue_pending(chan);
+
+ /* Wait DMA to finish the data transfer.*/
+ timeout = wait_for_completion_timeout(dma_completion, msecs_to_jiffies(1000));
+ if (!timeout) {
+ dev_err(ebu_host->dev, "I/O Error in DMA RX (status %d)\n",
+ dmaengine_tx_status(chan, cookie, NULL));
+ dmaengine_terminate_sync(chan);
+ ret = -ETIMEDOUT;
+ goto err_unmap;
+ }
+
+ return 0;
+
+err_unmap:
+ dma_unmap_single(ebu_host->dev, buf_dma, len, dir);
+
+ return ret;
+}
+
+static void ebu_nand_trigger(struct ebu_nand_controller *ebu_host,
+ int page, u32 cmd)
+{
+ unsigned int val;
+
+ val = cmd | (page & 0xFF) << HSNAND_CTL1_ADDR_SHIFT;
+ writel(val, ebu_host->hsnand + HSNAND_CTL1);
+ val = (page & 0xFFFF00) >> 8 | HSNAND_CTL2_CYC_N_V5;
+ writel(val, ebu_host->hsnand + HSNAND_CTL2);
+
+ writel(ebu_host->nd_para0, ebu_host->hsnand + HSNAND_PARA0);
+
+ /* clear first, will update later */
+ writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_0);
+ writel(0xFFFFFFFF, ebu_host->hsnand + HSNAND_CMSG_1);
+
+ writel(HSNAND_INT_MSK_CTL_WR_C,
+ ebu_host->hsnand + HSNAND_INT_MSK_CTL);
+
+ if (!cmd)
+ val = HSNAND_CTL_RW_READ;
+ else
+ val = HSNAND_CTL_RW_WRITE;
+
+ writel(HSNAND_CTL_MSG_EN | HSNAND_CTL_CKFF_EN |
+ HSNAND_CTL_ECC_OFF_V8TH | HSNAND_CTL_CE_SEL_CS(ebu_host->cs_num) |
+ HSNAND_CTL_ENABLE_ECC | HSNAND_CTL_GO | val,
+ ebu_host->hsnand + HSNAND_CTL);
+}
+
+static int ebu_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
+ int ret, reg_data;
+
+ ebu_nand_trigger(ebu_host, page, NAND_CMD_READ0);
+
+ ret = ebu_dma_start(ebu_host, DMA_DEV_TO_MEM, buf, mtd->writesize);
+ if (ret)
+ return ret;
+
+ if (oob_required)
+ chip->ecc.read_oob(chip, page);
+
+ reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
+ reg_data &= ~HSNAND_CTL_GO;
+ writel(reg_data, ebu_host->hsnand + HSNAND_CTL);
+
+ return 0;
+}
+
+static int ebu_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
+ void __iomem *int_sta = ebu_host->hsnand + HSNAND_INT_STA;
+ int reg_data, ret, val;
+ u32 reg;
+
+ ebu_nand_trigger(ebu_host, page, NAND_CMD_SEQIN);
+
+ ret = ebu_dma_start(ebu_host, DMA_MEM_TO_DEV, buf, mtd->writesize);
+ if (ret)
+ return ret;
+
+ if (oob_required) {
+ reg = get_unaligned_le32(chip->oob_poi);
+ writel(reg, ebu_host->hsnand + HSNAND_CMSG_0);
+
+ reg = get_unaligned_le32(chip->oob_poi + 4);
+ writel(reg, ebu_host->hsnand + HSNAND_CMSG_1);
+ }
+
+ ret = readl_poll_timeout_atomic(int_sta, val, !(val & HSNAND_INT_STA_WR_C),
+ 10, 1000);
+ if (ret)
+ return ret;
+
+ reg_data = readl(ebu_host->hsnand + HSNAND_CTL);
+ reg_data &= ~HSNAND_CTL_GO;
+ writel(reg_data, ebu_host->hsnand + HSNAND_CTL);
+
+ return 0;
+}
+
+static const u8 ecc_strength[] = { 1, 1, 4, 8, 24, 32, 40, 60, };
+
+static int ebu_nand_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct ebu_nand_controller *ebu_host = nand_get_controller_data(chip);
+ u32 ecc_steps, ecc_bytes, ecc_total, pagesize, pg_per_blk;
+ u32 ecc_strength_ds = chip->ecc.strength;
+ u32 ecc_size = chip->ecc.size;
+ u32 writesize = mtd->writesize;
+ u32 blocksize = mtd->erasesize;
+ int bch_algo, start, val;
+
+ /* Default to an ECC size of 512 */
+ if (!chip->ecc.size)
+ chip->ecc.size = 512;
+
+ switch (ecc_size) {
+ case 512:
+ start = 1;
+ if (!ecc_strength_ds)
+ ecc_strength_ds = 4;
+ break;
+ case 1024:
+ start = 4;
+ if (!ecc_strength_ds)
+ ecc_strength_ds = 32;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* BCH ECC algorithm Settings for number of bits per 512B/1024B */
+ bch_algo = round_up(start + 1, 4);
+ for (val = start; val < bch_algo; val++) {
+ if (ecc_strength_ds == ecc_strength[val])
+ break;
+ }
+ if (val == bch_algo)
+ return -EINVAL;
+
+ if (ecc_strength_ds == 8)
+ ecc_bytes = 14;
+ else
+ ecc_bytes = DIV_ROUND_UP(ecc_strength_ds * fls(8 * ecc_size), 8);
+
+ ecc_steps = writesize / ecc_size;
+ ecc_total = ecc_steps * ecc_bytes;
+ if ((ecc_total + 8) > mtd->oobsize)
+ return -ERANGE;
+
+ chip->ecc.total = ecc_total;
+ pagesize = fls(writesize >> 11);
+ if (pagesize > HSNAND_PARA0_PAGE_V8192)
+ return -ERANGE;
+
+ pg_per_blk = fls((blocksize / writesize) >> 6) / 8;
+ if (pg_per_blk > HSNAND_PARA0_PIB_V256)
+ return -ERANGE;
+
+ ebu_host->nd_para0 = pagesize | pg_per_blk | HSNAND_PARA0_BYP_EN_NP |
+ HSNAND_PARA0_BYP_DEC_NP | HSNAND_PARA0_ADEP_EN |
+ HSNAND_PARA0_TYPE_ONFI | (val << 29);
+
+ mtd_set_ooblayout(mtd, &ebu_nand_ooblayout_ops);
+ chip->ecc.read_page = ebu_nand_read_page_hwecc;
+ chip->ecc.write_page = ebu_nand_write_page_hwecc;
+
+ return 0;
+}
+
+static int ebu_nand_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op, bool check_only)
+{
+ const struct nand_op_instr *instr = NULL;
+ unsigned int op_id;
+ int i, timeout_ms, ret = 0;
+
+ if (check_only)
+ return 0;
+
+ ebu_select_chip(chip);
+ for (op_id = 0; op_id < op->ninstrs; op_id++) {
+ instr = &op->instrs[op_id];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ ebu_nand_writeb(chip, HSNAND_CLE_OFFS | HSNAND_CS_OFFS,
+ instr->ctx.cmd.opcode);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ for (i = 0; i < instr->ctx.addr.naddrs; i++)
+ ebu_nand_writeb(chip,
+ HSNAND_ALE_OFFS | HSNAND_CS_OFFS,
+ instr->ctx.addr.addrs[i]);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ ebu_read_buf(chip, instr->ctx.data.buf.in,
+ instr->ctx.data.len);
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ ebu_write_buf(chip, instr->ctx.data.buf.out,
+ instr->ctx.data.len);
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ timeout_ms = instr->ctx.waitrdy.timeout_ms * 1000;
+ ret = ebu_nand_waitrdy(chip, timeout_ms);
+ break;
+ }
+ }
+
+ return ret;
+}
+
+static const struct nand_controller_ops ebu_nand_controller_ops = {
+ .attach_chip = ebu_nand_attach_chip,
+ .setup_interface = ebu_nand_set_timings,
+ .exec_op = ebu_nand_exec_op,
+};
+
+static void ebu_dma_cleanup(struct ebu_nand_controller *ebu_host)
+{
+ if (ebu_host->dma_rx)
+ dma_release_channel(ebu_host->dma_rx);
+
+ if (ebu_host->dma_tx)
+ dma_release_channel(ebu_host->dma_tx);
+}
+
+static int ebu_nand_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct ebu_nand_controller *ebu_host;
+ struct nand_chip *nand;
+ struct mtd_info *mtd = NULL;
+ struct resource *res;
+ char *resname;
+ int ret;
+ u32 cs;
+
+ ebu_host = devm_kzalloc(dev, sizeof(*ebu_host), GFP_KERNEL);
+ if (!ebu_host)
+ return -ENOMEM;
+
+ ebu_host->dev = dev;
+ nand_controller_init(&ebu_host->controller);
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ebunand");
+ ebu_host->ebu = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(ebu_host->ebu))
+ return PTR_ERR(ebu_host->ebu);
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hsnand");
+ ebu_host->hsnand = devm_ioremap_resource(&pdev->dev, res);
+ if (IS_ERR(ebu_host->hsnand))
+ return PTR_ERR(ebu_host->hsnand);
+
+ ret = device_property_read_u32(dev, "reg", &cs);
+ if (ret) {
+ dev_err(dev, "failed to get chip select: %d\n", ret);
+ return ret;
+ }
+ ebu_host->cs_num = cs;
+
+ resname = devm_kasprintf(dev, GFP_KERNEL, "nand_cs%d", cs);
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname);
+ ebu_host->cs[cs].chipaddr = devm_ioremap_resource(dev, res);
+ ebu_host->cs[cs].nand_pa = res->start;
+ if (IS_ERR(ebu_host->cs[cs].chipaddr))
+ return PTR_ERR(ebu_host->cs[cs].chipaddr);
+
+ ebu_host->clk = devm_clk_get(dev, NULL);
+ if (IS_ERR(ebu_host->clk))
+ return dev_err_probe(dev, PTR_ERR(ebu_host->clk),
+ "failed to get clock\n");
+
+ ret = clk_prepare_enable(ebu_host->clk);
+ if (ret) {
+ dev_err(dev, "failed to enable clock: %d\n", ret);
+ return ret;
+ }
+ ebu_host->clk_rate = clk_get_rate(ebu_host->clk);
+
+ ebu_host->dma_tx = dma_request_chan(dev, "tx");
+ if (IS_ERR(ebu_host->dma_tx))
+ return dev_err_probe(dev, PTR_ERR(ebu_host->dma_tx),
+ "failed to request DMA tx chan!.\n");
+
+ ebu_host->dma_rx = dma_request_chan(dev, "rx");
+ if (IS_ERR(ebu_host->dma_rx))
+ return dev_err_probe(dev, PTR_ERR(ebu_host->dma_rx),
+ "failed to request DMA rx chan!.\n");
+
+ resname = devm_kasprintf(dev, GFP_KERNEL, "addr_sel%d", cs);
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, resname);
+ if (!res)
+ return -EINVAL;
+ ebu_host->cs[cs].addr_sel = res->start;
+ writel(ebu_host->cs[cs].addr_sel | EBU_ADDR_MASK(5) | EBU_ADDR_SEL_REGEN,
+ ebu_host->ebu + EBU_ADDR_SEL(cs));
+
+ nand_set_flash_node(&ebu_host->chip, dev->of_node);
+ if (!mtd->name) {
+ dev_err(ebu_host->dev, "NAND label property is mandatory\n");
+ return -EINVAL;
+ }
+
+ mtd = nand_to_mtd(&ebu_host->chip);
+ mtd->dev.parent = dev;
+ ebu_host->dev = dev;
+
+ platform_set_drvdata(pdev, ebu_host);
+ nand_set_controller_data(&ebu_host->chip, ebu_host);
+
+ nand = &ebu_host->chip;
+ nand->controller = &ebu_host->controller;
+ nand->controller->ops = &ebu_nand_controller_ops;
+
+ /* Scan to find existence of the device */
+ ret = nand_scan(&ebu_host->chip, 1);
+ if (ret)
+ goto err_cleanup_dma;
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret)
+ goto err_clean_nand;
+
+ return 0;
+
+err_clean_nand:
+ nand_cleanup(&ebu_host->chip);
+err_cleanup_dma:
+ ebu_dma_cleanup(ebu_host);
+ clk_disable_unprepare(ebu_host->clk);
+
+ return ret;
+}
+
+static int ebu_nand_remove(struct platform_device *pdev)
+{
+ struct ebu_nand_controller *ebu_host = platform_get_drvdata(pdev);
+ int ret;
+
+ ret = mtd_device_unregister(nand_to_mtd(&ebu_host->chip));
+ WARN_ON(ret);
+ nand_cleanup(&ebu_host->chip);
+ ebu_nand_disable(&ebu_host->chip);
+ ebu_dma_cleanup(ebu_host);
+ clk_disable_unprepare(ebu_host->clk);
+
+ return 0;
+}
+
+static const struct of_device_id ebu_nand_match[] = {
+ { .compatible = "intel,nand-controller" },
+ { .compatible = "intel,lgm-ebunand" },
+ {}
+};
+MODULE_DEVICE_TABLE(of, ebu_nand_match);
+
+static struct platform_driver ebu_nand_driver = {
+ .probe = ebu_nand_probe,
+ .remove = ebu_nand_remove,
+ .driver = {
+ .name = "intel-nand-controller",
+ .of_match_table = ebu_nand_match,
+ },
+
+};
+module_platform_driver(ebu_nand_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
+MODULE_DESCRIPTION("Intel's LGM External Bus NAND Controller driver");
diff --git a/drivers/mtd/nand/raw/lpc32xx_mlc.c b/drivers/mtd/nand/raw/lpc32xx_mlc.c
index 9e728c731795..452ecaf7775a 100644
--- a/drivers/mtd/nand/raw/lpc32xx_mlc.c
+++ b/drivers/mtd/nand/raw/lpc32xx_mlc.c
@@ -31,7 +31,6 @@
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
-#include <linux/mtd/nand_ecc.h>
#define DRV_NAME "lpc32xx_mlc"
diff --git a/drivers/mtd/nand/raw/lpc32xx_slc.c b/drivers/mtd/nand/raw/lpc32xx_slc.c
index dc7785e30d2f..6b7269cfb7d8 100644
--- a/drivers/mtd/nand/raw/lpc32xx_slc.c
+++ b/drivers/mtd/nand/raw/lpc32xx_slc.c
@@ -23,7 +23,6 @@
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
@@ -803,7 +802,7 @@ static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
- chip->ecc.correct = nand_correct_data;
+ chip->ecc.correct = rawnand_sw_hamming_correct;
chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
/*
diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c
index f5ca2002d08e..42d4881d598d 100644
--- a/drivers/mtd/nand/raw/marvell_nand.c
+++ b/drivers/mtd/nand/raw/marvell_nand.c
@@ -2679,12 +2679,6 @@ static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc,
mtd->dev.parent = dev;
/*
- * Default to HW ECC engine mode. If the nand-ecc-mode property is given
- * in the DT node, this entry will be overwritten in nand_scan_ident().
- */
- chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
-
- /*
* Save a reference value for timing registers before
* ->setup_interface() is called.
*/
diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c
index 48e6dac96be6..817bddccb775 100644
--- a/drivers/mtd/nand/raw/meson_nand.c
+++ b/drivers/mtd/nand/raw/meson_nand.c
@@ -510,7 +510,7 @@ static int meson_nfc_dma_buffer_setup(struct nand_chip *nand, void *databuf,
}
static void meson_nfc_dma_buffer_release(struct nand_chip *nand,
- int infolen, int datalen,
+ int datalen, int infolen,
enum dma_data_direction dir)
{
struct meson_nfc *nfc = nand_get_controller_data(nand);
@@ -1044,9 +1044,12 @@ static int meson_nfc_clk_init(struct meson_nfc *nfc)
ret = clk_set_rate(nfc->device_clk, 24000000);
if (ret)
- goto err_phase_rx;
+ goto err_disable_rx;
return 0;
+
+err_disable_rx:
+ clk_disable_unprepare(nfc->phase_rx);
err_phase_rx:
clk_disable_unprepare(nfc->phase_tx);
err_phase_tx:
diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c
index 684c51e5e60d..fd705dd1768d 100644
--- a/drivers/mtd/nand/raw/mxc_nand.c
+++ b/drivers/mtd/nand/raw/mxc_nand.c
@@ -21,7 +21,6 @@
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/of_device.h>
-#include <linux/platform_data/mtd-mxc_nand.h>
#define DRIVER_NAME "mxc_nand"
@@ -184,7 +183,6 @@ struct mxc_nand_host {
unsigned int buf_start;
const struct mxc_nand_devtype_data *devtype_data;
- struct mxc_nand_platform_data pdata;
};
static const char * const part_probes[] = {
@@ -1611,70 +1609,16 @@ static inline int is_imx53_nfc(struct mxc_nand_host *host)
return host->devtype_data == &imx53_nand_devtype_data;
}
-static const struct platform_device_id mxcnd_devtype[] = {
- {
- .name = "imx21-nand",
- .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
- }, {
- .name = "imx27-nand",
- .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
- }, {
- .name = "imx25-nand",
- .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
- }, {
- .name = "imx51-nand",
- .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
- }, {
- .name = "imx53-nand",
- .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
- }, {
- /* sentinel */
- }
-};
-MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
-
-#ifdef CONFIG_OF
static const struct of_device_id mxcnd_dt_ids[] = {
- {
- .compatible = "fsl,imx21-nand",
- .data = &imx21_nand_devtype_data,
- }, {
- .compatible = "fsl,imx27-nand",
- .data = &imx27_nand_devtype_data,
- }, {
- .compatible = "fsl,imx25-nand",
- .data = &imx25_nand_devtype_data,
- }, {
- .compatible = "fsl,imx51-nand",
- .data = &imx51_nand_devtype_data,
- }, {
- .compatible = "fsl,imx53-nand",
- .data = &imx53_nand_devtype_data,
- },
+ { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, },
+ { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, },
+ { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, },
+ { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, },
+ { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
-static int mxcnd_probe_dt(struct mxc_nand_host *host)
-{
- struct device_node *np = host->dev->of_node;
- const struct of_device_id *of_id =
- of_match_device(mxcnd_dt_ids, host->dev);
-
- if (!np)
- return 1;
-
- host->devtype_data = of_id->data;
-
- return 0;
-}
-#else
-static int mxcnd_probe_dt(struct mxc_nand_host *host)
-{
- return 1;
-}
-#endif
-
static int mxcnd_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
@@ -1800,20 +1744,7 @@ static int mxcnd_probe(struct platform_device *pdev)
if (IS_ERR(host->clk))
return PTR_ERR(host->clk);
- err = mxcnd_probe_dt(host);
- if (err > 0) {
- struct mxc_nand_platform_data *pdata =
- dev_get_platdata(&pdev->dev);
- if (pdata) {
- host->pdata = *pdata;
- host->devtype_data = (struct mxc_nand_devtype_data *)
- pdev->id_entry->driver_data;
- } else {
- err = -ENODEV;
- }
- }
- if (err < 0)
- return err;
+ host->devtype_data = device_get_match_data(&pdev->dev);
if (!host->devtype_data->setup_interface)
this->options |= NAND_KEEP_TIMINGS;
@@ -1843,14 +1774,6 @@ static int mxcnd_probe(struct platform_device *pdev)
this->legacy.select_chip = host->devtype_data->select_chip;
- /* NAND bus width determines access functions used by upper layer */
- if (host->pdata.width == 2)
- this->options |= NAND_BUSWIDTH_16;
-
- /* update flash based bbt */
- if (host->pdata.flash_bbt)
- this->bbt_options |= NAND_BBT_USE_FLASH;
-
init_completion(&host->op_completion);
host->irq = platform_get_irq(pdev, 0);
@@ -1891,9 +1814,7 @@ static int mxcnd_probe(struct platform_device *pdev)
goto escan;
/* Register the partitions */
- err = mtd_device_parse_register(mtd, part_probes, NULL,
- host->pdata.parts,
- host->pdata.nr_parts);
+ err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
if (err)
goto cleanup_nand;
@@ -1930,7 +1851,6 @@ static struct platform_driver mxcnd_driver = {
.name = DRIVER_NAME,
.of_match_table = of_match_ptr(mxcnd_dt_ids),
},
- .id_table = mxcnd_devtype,
.probe = mxcnd_probe,
.remove = mxcnd_remove,
};
diff --git a/drivers/mtd/nand/raw/mxic_nand.c b/drivers/mtd/nand/raw/mxic_nand.c
index d66b5b0971fa..da1070993994 100644
--- a/drivers/mtd/nand/raw/mxic_nand.c
+++ b/drivers/mtd/nand/raw/mxic_nand.c
@@ -12,8 +12,8 @@
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand-ecc-sw-hamming.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/platform_device.h>
#include "internals.h"
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index 1f0d542d5923..c33fa1b1847f 100644
--- a/drivers/mtd/nand/raw/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -35,8 +35,8 @@
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <linux/mtd/nand_bch.h>
+#include <linux/mtd/nand-ecc-sw-hamming.h>
+#include <linux/mtd/nand-ecc-sw-bch.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/io.h>
@@ -5139,6 +5139,118 @@ static void nand_scan_ident_cleanup(struct nand_chip *chip)
kfree(chip->parameters.onfi);
}
+int rawnand_sw_hamming_init(struct nand_chip *chip)
+{
+ struct nand_ecc_sw_hamming_conf *engine_conf;
+ struct nand_device *base = &chip->base;
+ int ret;
+
+ base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
+ base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
+ base->ecc.user_conf.strength = chip->ecc.strength;
+ base->ecc.user_conf.step_size = chip->ecc.size;
+
+ ret = nand_ecc_sw_hamming_init_ctx(base);
+ if (ret)
+ return ret;
+
+ engine_conf = base->ecc.ctx.priv;
+
+ if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
+ engine_conf->sm_order = true;
+
+ chip->ecc.size = base->ecc.ctx.conf.step_size;
+ chip->ecc.strength = base->ecc.ctx.conf.strength;
+ chip->ecc.total = base->ecc.ctx.total;
+ chip->ecc.steps = engine_conf->nsteps;
+ chip->ecc.bytes = engine_conf->code_size;
+
+ return 0;
+}
+EXPORT_SYMBOL(rawnand_sw_hamming_init);
+
+int rawnand_sw_hamming_calculate(struct nand_chip *chip,
+ const unsigned char *buf,
+ unsigned char *code)
+{
+ struct nand_device *base = &chip->base;
+
+ return nand_ecc_sw_hamming_calculate(base, buf, code);
+}
+EXPORT_SYMBOL(rawnand_sw_hamming_calculate);
+
+int rawnand_sw_hamming_correct(struct nand_chip *chip,
+ unsigned char *buf,
+ unsigned char *read_ecc,
+ unsigned char *calc_ecc)
+{
+ struct nand_device *base = &chip->base;
+
+ return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
+}
+EXPORT_SYMBOL(rawnand_sw_hamming_correct);
+
+void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
+{
+ struct nand_device *base = &chip->base;
+
+ nand_ecc_sw_hamming_cleanup_ctx(base);
+}
+EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);
+
+int rawnand_sw_bch_init(struct nand_chip *chip)
+{
+ struct nand_device *base = &chip->base;
+ struct nand_ecc_sw_bch_conf *engine_conf;
+ int ret;
+
+ base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
+ base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
+ base->ecc.user_conf.step_size = chip->ecc.size;
+ base->ecc.user_conf.strength = chip->ecc.strength;
+
+ ret = nand_ecc_sw_bch_init_ctx(base);
+ if (ret)
+ return ret;
+
+ engine_conf = base->ecc.ctx.priv;
+
+ chip->ecc.size = base->ecc.ctx.conf.step_size;
+ chip->ecc.strength = base->ecc.ctx.conf.strength;
+ chip->ecc.total = base->ecc.ctx.total;
+ chip->ecc.steps = engine_conf->nsteps;
+ chip->ecc.bytes = engine_conf->code_size;
+
+ return 0;
+}
+EXPORT_SYMBOL(rawnand_sw_bch_init);
+
+static int rawnand_sw_bch_calculate(struct nand_chip *chip,
+ const unsigned char *buf,
+ unsigned char *code)
+{
+ struct nand_device *base = &chip->base;
+
+ return nand_ecc_sw_bch_calculate(base, buf, code);
+}
+
+int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
+ unsigned char *read_ecc, unsigned char *calc_ecc)
+{
+ struct nand_device *base = &chip->base;
+
+ return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
+}
+EXPORT_SYMBOL(rawnand_sw_bch_correct);
+
+void rawnand_sw_bch_cleanup(struct nand_chip *chip)
+{
+ struct nand_device *base = &chip->base;
+
+ nand_ecc_sw_bch_cleanup_ctx(base);
+}
+EXPORT_SYMBOL(rawnand_sw_bch_cleanup);
+
static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
{
struct nand_ecc_ctrl *ecc = &chip->ecc;
@@ -5203,14 +5315,15 @@ static int nand_set_ecc_soft_ops(struct nand_chip *chip)
struct mtd_info *mtd = nand_to_mtd(chip);
struct nand_device *nanddev = mtd_to_nanddev(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int ret;
if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
return -EINVAL;
switch (ecc->algo) {
case NAND_ECC_ALGO_HAMMING:
- ecc->calculate = nand_calculate_ecc;
- ecc->correct = nand_correct_data;
+ ecc->calculate = rawnand_sw_hamming_calculate;
+ ecc->correct = rawnand_sw_hamming_correct;
ecc->read_page = nand_read_page_swecc;
ecc->read_subpage = nand_read_subpage;
ecc->write_page = nand_write_page_swecc;
@@ -5228,14 +5341,20 @@ static int nand_set_ecc_soft_ops(struct nand_chip *chip)
if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
+ ret = rawnand_sw_hamming_init(chip);
+ if (ret) {
+ WARN(1, "Hamming ECC initialization failed!\n");
+ return ret;
+ }
+
return 0;
case NAND_ECC_ALGO_BCH:
- if (!mtd_nand_has_bch()) {
+ if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
return -EINVAL;
}
- ecc->calculate = nand_bch_calculate_ecc;
- ecc->correct = nand_bch_correct_data;
+ ecc->calculate = rawnand_sw_bch_calculate;
+ ecc->correct = rawnand_sw_bch_correct;
ecc->read_page = nand_read_page_swecc;
ecc->read_subpage = nand_read_subpage;
ecc->write_page = nand_write_page_swecc;
@@ -5247,55 +5366,20 @@ static int nand_set_ecc_soft_ops(struct nand_chip *chip)
ecc->write_oob = nand_write_oob_std;
/*
- * Board driver should supply ecc.size and ecc.strength
- * values to select how many bits are correctable.
- * Otherwise, default to 4 bits for large page devices.
- */
- if (!ecc->size && (mtd->oobsize >= 64)) {
- ecc->size = 512;
- ecc->strength = 4;
- }
-
- /*
- * if no ecc placement scheme was provided pickup the default
- * large page one.
- */
- if (!mtd->ooblayout) {
- /* handle large page devices only */
- if (mtd->oobsize < 64) {
- WARN(1, "OOB layout is required when using software BCH on small pages\n");
- return -EINVAL;
- }
-
- mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
-
- }
-
- /*
* We can only maximize ECC config when the default layout is
* used, otherwise we don't know how many bytes can really be
* used.
*/
- if (mtd->ooblayout == nand_get_large_page_ooblayout() &&
- nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH) {
- int steps, bytes;
-
- /* Always prefer 1k blocks over 512bytes ones */
- ecc->size = 1024;
- steps = mtd->writesize / ecc->size;
+ if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
+ mtd->ooblayout != nand_get_large_page_ooblayout())
+ nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;
- /* Reserve 2 bytes for the BBM */
- bytes = (mtd->oobsize - 2) / steps;
- ecc->strength = bytes * 8 / fls(8 * ecc->size);
- }
-
- /* See nand_bch_init() for details. */
- ecc->bytes = 0;
- ecc->priv = nand_bch_init(mtd);
- if (!ecc->priv) {
+ ret = rawnand_sw_bch_init(chip);
+ if (ret) {
WARN(1, "BCH ECC initialization failed!\n");
- return -EINVAL;
+ return ret;
}
+
return 0;
default:
WARN(1, "Unsupported ECC algorithm!\n");
@@ -5639,7 +5723,9 @@ static int nand_scan_tail(struct nand_chip *chip)
*/
if (!mtd->ooblayout &&
!(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
- ecc->algo == NAND_ECC_ALGO_BCH)) {
+ ecc->algo == NAND_ECC_ALGO_BCH) &&
+ !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
+ ecc->algo == NAND_ECC_ALGO_HAMMING)) {
switch (mtd->oobsize) {
case 8:
case 16:
@@ -5756,15 +5842,18 @@ static int nand_scan_tail(struct nand_chip *chip)
* Set the number of read / write steps for one page depending on ECC
* mode.
*/
- ecc->steps = mtd->writesize / ecc->size;
+ if (!ecc->steps)
+ ecc->steps = mtd->writesize / ecc->size;
if (ecc->steps * ecc->size != mtd->writesize) {
WARN(1, "Invalid ECC parameters\n");
ret = -EINVAL;
goto err_nand_manuf_cleanup;
}
- ecc->total = ecc->steps * ecc->bytes;
- chip->base.ecc.ctx.total = ecc->total;
+ if (!ecc->total) {
+ ecc->total = ecc->steps * ecc->bytes;
+ chip->base.ecc.ctx.total = ecc->total;
+ }
if (ecc->total > mtd->oobsize) {
WARN(1, "Total number of ECC bytes exceeded oobsize\n");
@@ -5953,9 +6042,12 @@ EXPORT_SYMBOL(nand_scan_with_ids);
*/
void nand_cleanup(struct nand_chip *chip)
{
- if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
- chip->ecc.algo == NAND_ECC_ALGO_BCH)
- nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
+ if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
+ if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
+ rawnand_sw_hamming_cleanup(chip);
+ else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
+ rawnand_sw_bch_cleanup(chip);
+ }
nanddev_cleanup(&chip->base);
diff --git a/drivers/mtd/nand/raw/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c
index 344a24fd2ca8..dced32a126d9 100644
--- a/drivers/mtd/nand/raw/nand_bbt.c
+++ b/drivers/mtd/nand/raw/nand_bbt.c
@@ -1087,7 +1087,7 @@ static int nand_update_bbt(struct nand_chip *this, loff_t offs)
}
/**
- * mark_bbt_regions - [GENERIC] mark the bad block table regions
+ * mark_bbt_region - [GENERIC] mark the bad block table regions
* @this: the NAND device
* @td: bad block table descriptor
*
diff --git a/drivers/mtd/nand/raw/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c
deleted file mode 100644
index 9d19ac14c196..000000000000
--- a/drivers/mtd/nand/raw/nand_bch.c
+++ /dev/null
@@ -1,219 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * This file provides ECC correction for more than 1 bit per block of data,
- * using binary BCH codes. It relies on the generic BCH library lib/bch.c.
- *
- * Copyright © 2011 Ivan Djelic <ivan.djelic@parrot.com>
- */
-
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/slab.h>
-#include <linux/bitops.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_bch.h>
-#include <linux/bch.h>
-
-/**
- * struct nand_bch_control - private NAND BCH control structure
- * @bch: BCH control structure
- * @errloc: error location array
- * @eccmask: XOR ecc mask, allows erased pages to be decoded as valid
- */
-struct nand_bch_control {
- struct bch_control *bch;
- unsigned int *errloc;
- unsigned char *eccmask;
-};
-
-/**
- * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block
- * @chip: NAND chip object
- * @buf: input buffer with raw data
- * @code: output buffer with ECC
- */
-int nand_bch_calculate_ecc(struct nand_chip *chip, const unsigned char *buf,
- unsigned char *code)
-{
- struct nand_bch_control *nbc = chip->ecc.priv;
- unsigned int i;
-
- memset(code, 0, chip->ecc.bytes);
- bch_encode(nbc->bch, buf, chip->ecc.size, code);
-
- /* apply mask so that an erased page is a valid codeword */
- for (i = 0; i < chip->ecc.bytes; i++)
- code[i] ^= nbc->eccmask[i];
-
- return 0;
-}
-EXPORT_SYMBOL(nand_bch_calculate_ecc);
-
-/**
- * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s)
- * @chip: NAND chip object
- * @buf: raw data read from the chip
- * @read_ecc: ECC from the chip
- * @calc_ecc: the ECC calculated from raw data
- *
- * Detect and correct bit errors for a data byte block
- */
-int nand_bch_correct_data(struct nand_chip *chip, unsigned char *buf,
- unsigned char *read_ecc, unsigned char *calc_ecc)
-{
- struct nand_bch_control *nbc = chip->ecc.priv;
- unsigned int *errloc = nbc->errloc;
- int i, count;
-
- count = bch_decode(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc,
- NULL, errloc);
- if (count > 0) {
- for (i = 0; i < count; i++) {
- if (errloc[i] < (chip->ecc.size*8))
- /* error is located in data, correct it */
- buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7));
- /* else error in ecc, no action needed */
-
- pr_debug("%s: corrected bitflip %u\n", __func__,
- errloc[i]);
- }
- } else if (count < 0) {
- pr_err("ecc unrecoverable error\n");
- count = -EBADMSG;
- }
- return count;
-}
-EXPORT_SYMBOL(nand_bch_correct_data);
-
-/**
- * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction
- * @mtd: MTD block structure
- *
- * Returns:
- * a pointer to a new NAND BCH control structure, or NULL upon failure
- *
- * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes
- * are used to compute BCH parameters m (Galois field order) and t (error
- * correction capability). @eccbytes should be equal to the number of bytes
- * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8.
- *
- * Example: to configure 4 bit correction per 512 bytes, you should pass
- * @eccsize = 512 (thus, m=13 is the smallest integer such that 2^m-1 > 512*8)
- * @eccbytes = 7 (7 bytes are required to store m*t = 13*4 = 52 bits)
- */
-struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
-{
- struct nand_chip *nand = mtd_to_nand(mtd);
- unsigned int m, t, eccsteps, i;
- struct nand_bch_control *nbc = NULL;
- unsigned char *erased_page;
- unsigned int eccsize = nand->ecc.size;
- unsigned int eccbytes = nand->ecc.bytes;
- unsigned int eccstrength = nand->ecc.strength;
-
- if (!eccbytes && eccstrength) {
- eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8);
- nand->ecc.bytes = eccbytes;
- }
-
- if (!eccsize || !eccbytes) {
- pr_warn("ecc parameters not supplied\n");
- goto fail;
- }
-
- m = fls(1+8*eccsize);
- t = (eccbytes*8)/m;
-
- nbc = kzalloc(sizeof(*nbc), GFP_KERNEL);
- if (!nbc)
- goto fail;
-
- nbc->bch = bch_init(m, t, 0, false);
- if (!nbc->bch)
- goto fail;
-
- /* verify that eccbytes has the expected value */
- if (nbc->bch->ecc_bytes != eccbytes) {
- pr_warn("invalid eccbytes %u, should be %u\n",
- eccbytes, nbc->bch->ecc_bytes);
- goto fail;
- }
-
- eccsteps = mtd->writesize/eccsize;
-
- /* Check that we have an oob layout description. */
- if (!mtd->ooblayout) {
- pr_warn("missing oob scheme");
- goto fail;
- }
-
- /* sanity checks */
- if (8*(eccsize+eccbytes) >= (1 << m)) {
- pr_warn("eccsize %u is too large\n", eccsize);
- goto fail;
- }
-
- /*
- * ecc->steps and ecc->total might be used by mtd->ooblayout->ecc(),
- * which is called by mtd_ooblayout_count_eccbytes().
- * Make sure they are properly initialized before calling
- * mtd_ooblayout_count_eccbytes().
- * FIXME: we should probably rework the sequencing in nand_scan_tail()
- * to avoid setting those fields twice.
- */
- nand->ecc.steps = eccsteps;
- nand->ecc.total = eccsteps * eccbytes;
- nand->base.ecc.ctx.total = nand->ecc.total;
- if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) {
- pr_warn("invalid ecc layout\n");
- goto fail;
- }
-
- nbc->eccmask = kzalloc(eccbytes, GFP_KERNEL);
- nbc->errloc = kmalloc_array(t, sizeof(*nbc->errloc), GFP_KERNEL);
- if (!nbc->eccmask || !nbc->errloc)
- goto fail;
- /*
- * compute and store the inverted ecc of an erased ecc block
- */
- erased_page = kmalloc(eccsize, GFP_KERNEL);
- if (!erased_page)
- goto fail;
-
- memset(erased_page, 0xff, eccsize);
- bch_encode(nbc->bch, erased_page, eccsize, nbc->eccmask);
- kfree(erased_page);
-
- for (i = 0; i < eccbytes; i++)
- nbc->eccmask[i] ^= 0xff;
-
- if (!eccstrength)
- nand->ecc.strength = (eccbytes * 8) / fls(8 * eccsize);
-
- return nbc;
-fail:
- nand_bch_free(nbc);
- return NULL;
-}
-EXPORT_SYMBOL(nand_bch_init);
-
-/**
- * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources
- * @nbc: NAND BCH control structure
- */
-void nand_bch_free(struct nand_bch_control *nbc)
-{
- if (nbc) {
- bch_free(nbc->bch);
- kfree(nbc->errloc);
- kfree(nbc->eccmask);
- kfree(nbc);
- }
-}
-EXPORT_SYMBOL(nand_bch_free);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
-MODULE_DESCRIPTION("NAND software BCH ECC support");
diff --git a/drivers/mtd/nand/raw/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c
deleted file mode 100644
index b6a46b1b7781..000000000000
--- a/drivers/mtd/nand/raw/nand_ecc.c
+++ /dev/null
@@ -1,484 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * This file contains an ECC algorithm that detects and corrects 1 bit
- * errors in a 256 byte block of data.
- *
- * Copyright © 2008 Koninklijke Philips Electronics NV.
- * Author: Frans Meulenbroeks
- *
- * Completely replaces the previous ECC implementation which was written by:
- * Steven J. Hill (sjhill@realitydiluted.com)
- * Thomas Gleixner (tglx@linutronix.de)
- *
- * Information on how this algorithm works and how it was developed
- * can be found in Documentation/driver-api/mtd/nand_ecc.rst
- */
-
-#include <linux/types.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
-#include <asm/byteorder.h>
-
-/*
- * invparity is a 256 byte table that contains the odd parity
- * for each byte. So if the number of bits in a byte is even,
- * the array element is 1, and when the number of bits is odd
- * the array eleemnt is 0.
- */
-static const char invparity[256] = {
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
- 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
-};
-
-/*
- * bitsperbyte contains the number of bits per byte
- * this is only used for testing and repairing parity
- * (a precalculated value slightly improves performance)
- */
-static const char bitsperbyte[256] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
-};
-
-/*
- * addressbits is a lookup table to filter out the bits from the xor-ed
- * ECC data that identify the faulty location.
- * this is only used for repairing parity
- * see the comments in nand_correct_data for more details
- */
-static const char addressbits[256] = {
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
- 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
- 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
- 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
- 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
- 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
-};
-
-/**
- * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
- * block
- * @buf: input buffer with raw data
- * @eccsize: data bytes per ECC step (256 or 512)
- * @code: output buffer with ECC
- * @sm_order: Smart Media byte ordering
- */
-void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
- unsigned char *code, bool sm_order)
-{
- int i;
- const uint32_t *bp = (uint32_t *)buf;
- /* 256 or 512 bytes/ecc */
- const uint32_t eccsize_mult = eccsize >> 8;
- uint32_t cur; /* current value in buffer */
- /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
- uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
- uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
- uint32_t rp17;
- uint32_t par; /* the cumulative parity for all data */
- uint32_t tmppar; /* the cumulative parity for this iteration;
- for rp12, rp14 and rp16 at the end of the
- loop */
-
- par = 0;
- rp4 = 0;
- rp6 = 0;
- rp8 = 0;
- rp10 = 0;
- rp12 = 0;
- rp14 = 0;
- rp16 = 0;
-
- /*
- * The loop is unrolled a number of times;
- * This avoids if statements to decide on which rp value to update
- * Also we process the data by longwords.
- * Note: passing unaligned data might give a performance penalty.
- * It is assumed that the buffers are aligned.
- * tmppar is the cumulative sum of this iteration.
- * needed for calculating rp12, rp14, rp16 and par
- * also used as a performance improvement for rp6, rp8 and rp10
- */
- for (i = 0; i < eccsize_mult << 2; i++) {
- cur = *bp++;
- tmppar = cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= tmppar;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp8 ^= tmppar;
-
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp10 ^= tmppar;
-
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp8 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp8 ^= cur;
-
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp6 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
- rp4 ^= cur;
- cur = *bp++;
- tmppar ^= cur;
-
- par ^= tmppar;
- if ((i & 0x1) == 0)
- rp12 ^= tmppar;
- if ((i & 0x2) == 0)
- rp14 ^= tmppar;
- if (eccsize_mult == 2 && (i & 0x4) == 0)
- rp16 ^= tmppar;
- }
-
- /*
- * handle the fact that we use longword operations
- * we'll bring rp4..rp14..rp16 back to single byte entities by
- * shifting and xoring first fold the upper and lower 16 bits,
- * then the upper and lower 8 bits.
- */
- rp4 ^= (rp4 >> 16);
- rp4 ^= (rp4 >> 8);
- rp4 &= 0xff;
- rp6 ^= (rp6 >> 16);
- rp6 ^= (rp6 >> 8);
- rp6 &= 0xff;
- rp8 ^= (rp8 >> 16);
- rp8 ^= (rp8 >> 8);
- rp8 &= 0xff;
- rp10 ^= (rp10 >> 16);
- rp10 ^= (rp10 >> 8);
- rp10 &= 0xff;
- rp12 ^= (rp12 >> 16);
- rp12 ^= (rp12 >> 8);
- rp12 &= 0xff;
- rp14 ^= (rp14 >> 16);
- rp14 ^= (rp14 >> 8);
- rp14 &= 0xff;
- if (eccsize_mult == 2) {
- rp16 ^= (rp16 >> 16);
- rp16 ^= (rp16 >> 8);
- rp16 &= 0xff;
- }
-
- /*
- * we also need to calculate the row parity for rp0..rp3
- * This is present in par, because par is now
- * rp3 rp3 rp2 rp2 in little endian and
- * rp2 rp2 rp3 rp3 in big endian
- * as well as
- * rp1 rp0 rp1 rp0 in little endian and
- * rp0 rp1 rp0 rp1 in big endian
- * First calculate rp2 and rp3
- */
-#ifdef __BIG_ENDIAN
- rp2 = (par >> 16);
- rp2 ^= (rp2 >> 8);
- rp2 &= 0xff;
- rp3 = par & 0xffff;
- rp3 ^= (rp3 >> 8);
- rp3 &= 0xff;
-#else
- rp3 = (par >> 16);
- rp3 ^= (rp3 >> 8);
- rp3 &= 0xff;
- rp2 = par & 0xffff;
- rp2 ^= (rp2 >> 8);
- rp2 &= 0xff;
-#endif
-
- /* reduce par to 16 bits then calculate rp1 and rp0 */
- par ^= (par >> 16);
-#ifdef __BIG_ENDIAN
- rp0 = (par >> 8) & 0xff;
- rp1 = (par & 0xff);
-#else
- rp1 = (par >> 8) & 0xff;
- rp0 = (par & 0xff);
-#endif
-
- /* finally reduce par to 8 bits */
- par ^= (par >> 8);
- par &= 0xff;
-
- /*
- * and calculate rp5..rp15..rp17
- * note that par = rp4 ^ rp5 and due to the commutative property
- * of the ^ operator we can say:
- * rp5 = (par ^ rp4);
- * The & 0xff seems superfluous, but benchmarking learned that
- * leaving it out gives slightly worse results. No idea why, probably
- * it has to do with the way the pipeline in pentium is organized.
- */
- rp5 = (par ^ rp4) & 0xff;
- rp7 = (par ^ rp6) & 0xff;
- rp9 = (par ^ rp8) & 0xff;
- rp11 = (par ^ rp10) & 0xff;
- rp13 = (par ^ rp12) & 0xff;
- rp15 = (par ^ rp14) & 0xff;
- if (eccsize_mult == 2)
- rp17 = (par ^ rp16) & 0xff;
-
- /*
- * Finally calculate the ECC bits.
- * Again here it might seem that there are performance optimisations
- * possible, but benchmarks showed that on the system this is developed
- * the code below is the fastest
- */
- if (sm_order) {
- code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) |
- (invparity[rp5] << 5) | (invparity[rp4] << 4) |
- (invparity[rp3] << 3) | (invparity[rp2] << 2) |
- (invparity[rp1] << 1) | (invparity[rp0]);
- code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) |
- (invparity[rp13] << 5) | (invparity[rp12] << 4) |
- (invparity[rp11] << 3) | (invparity[rp10] << 2) |
- (invparity[rp9] << 1) | (invparity[rp8]);
- } else {
- code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) |
- (invparity[rp5] << 5) | (invparity[rp4] << 4) |
- (invparity[rp3] << 3) | (invparity[rp2] << 2) |
- (invparity[rp1] << 1) | (invparity[rp0]);
- code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) |
- (invparity[rp13] << 5) | (invparity[rp12] << 4) |
- (invparity[rp11] << 3) | (invparity[rp10] << 2) |
- (invparity[rp9] << 1) | (invparity[rp8]);
- }
-
- if (eccsize_mult == 1)
- code[2] =
- (invparity[par & 0xf0] << 7) |
- (invparity[par & 0x0f] << 6) |
- (invparity[par & 0xcc] << 5) |
- (invparity[par & 0x33] << 4) |
- (invparity[par & 0xaa] << 3) |
- (invparity[par & 0x55] << 2) |
- 3;
- else
- code[2] =
- (invparity[par & 0xf0] << 7) |
- (invparity[par & 0x0f] << 6) |
- (invparity[par & 0xcc] << 5) |
- (invparity[par & 0x33] << 4) |
- (invparity[par & 0xaa] << 3) |
- (invparity[par & 0x55] << 2) |
- (invparity[rp17] << 1) |
- (invparity[rp16] << 0);
-}
-EXPORT_SYMBOL(__nand_calculate_ecc);
-
-/**
- * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
- * block
- * @chip: NAND chip object
- * @buf: input buffer with raw data
- * @code: output buffer with ECC
- */
-int nand_calculate_ecc(struct nand_chip *chip, const unsigned char *buf,
- unsigned char *code)
-{
- bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER;
-
- __nand_calculate_ecc(buf, chip->ecc.size, code, sm_order);
-
- return 0;
-}
-EXPORT_SYMBOL(nand_calculate_ecc);
-
-/**
- * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
- * @buf: raw data read from the chip
- * @read_ecc: ECC from the chip
- * @calc_ecc: the ECC calculated from raw data
- * @eccsize: data bytes per ECC step (256 or 512)
- * @sm_order: Smart Media byte order
- *
- * Detect and correct a 1 bit error for eccsize byte block
- */
-int __nand_correct_data(unsigned char *buf,
- unsigned char *read_ecc, unsigned char *calc_ecc,
- unsigned int eccsize, bool sm_order)
-{
- unsigned char b0, b1, b2, bit_addr;
- unsigned int byte_addr;
- /* 256 or 512 bytes/ecc */
- const uint32_t eccsize_mult = eccsize >> 8;
-
- /*
- * b0 to b2 indicate which bit is faulty (if any)
- * we might need the xor result more than once,
- * so keep them in a local var
- */
- if (sm_order) {
- b0 = read_ecc[0] ^ calc_ecc[0];
- b1 = read_ecc[1] ^ calc_ecc[1];
- } else {
- b0 = read_ecc[1] ^ calc_ecc[1];
- b1 = read_ecc[0] ^ calc_ecc[0];
- }
-
- b2 = read_ecc[2] ^ calc_ecc[2];
-
- /* check if there are any bitfaults */
-
- /* repeated if statements are slightly more efficient than switch ... */
- /* ordered in order of likelihood */
-
- if ((b0 | b1 | b2) == 0)
- return 0; /* no error */
-
- if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
- (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
- ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
- (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
- /* single bit error */
- /*
- * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
- * byte, cp 5/3/1 indicate the faulty bit.
- * A lookup table (called addressbits) is used to filter
- * the bits from the byte they are in.
- * A marginal optimisation is possible by having three
- * different lookup tables.
- * One as we have now (for b0), one for b2
- * (that would avoid the >> 1), and one for b1 (with all values
- * << 4). However it was felt that introducing two more tables
- * hardly justify the gain.
- *
- * The b2 shift is there to get rid of the lowest two bits.
- * We could also do addressbits[b2] >> 1 but for the
- * performance it does not make any difference
- */
- if (eccsize_mult == 1)
- byte_addr = (addressbits[b1] << 4) + addressbits[b0];
- else
- byte_addr = (addressbits[b2 & 0x3] << 8) +
- (addressbits[b1] << 4) + addressbits[b0];
- bit_addr = addressbits[b2 >> 2];
- /* flip the bit */
- buf[byte_addr] ^= (1 << bit_addr);
- return 1;
-
- }
- /* count nr of bits; use table lookup, faster than calculating it */
- if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
- return 1; /* error in ECC data; no action needed */
-
- pr_err("%s: uncorrectable ECC error\n", __func__);
- return -EBADMSG;
-}
-EXPORT_SYMBOL(__nand_correct_data);
-
-/**
- * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
- * @chip: NAND chip object
- * @buf: raw data read from the chip
- * @read_ecc: ECC from the chip
- * @calc_ecc: the ECC calculated from raw data
- *
- * Detect and correct a 1 bit error for 256/512 byte block
- */
-int nand_correct_data(struct nand_chip *chip, unsigned char *buf,
- unsigned char *read_ecc, unsigned char *calc_ecc)
-{
- bool sm_order = chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER;
-
- return __nand_correct_data(buf, read_ecc, calc_ecc, chip->ecc.size,
- sm_order);
-}
-EXPORT_SYMBOL(nand_correct_data);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
-MODULE_DESCRIPTION("Generic NAND ECC support");
diff --git a/drivers/mtd/nand/raw/nand_legacy.c b/drivers/mtd/nand/raw/nand_legacy.c
index 2bcc03714432..eccc18b266d5 100644
--- a/drivers/mtd/nand/raw/nand_legacy.c
+++ b/drivers/mtd/nand/raw/nand_legacy.c
@@ -192,9 +192,10 @@ static void panic_nand_wait_ready(struct nand_chip *chip, unsigned long timeo)
*/
void nand_wait_ready(struct nand_chip *chip)
{
+ struct mtd_info *mtd = nand_to_mtd(chip);
unsigned long timeo = 400;
- if (in_interrupt() || oops_in_progress)
+ if (mtd->oops_panic_write)
return panic_nand_wait_ready(chip, timeo);
/* Wait until command is processed or timeout occurs */
@@ -531,7 +532,7 @@ EXPORT_SYMBOL(nand_get_set_features_notsupp);
*/
static int nand_wait(struct nand_chip *chip)
{
-
+ struct mtd_info *mtd = nand_to_mtd(chip);
unsigned long timeo = 400;
u8 status;
int ret;
@@ -546,9 +547,9 @@ static int nand_wait(struct nand_chip *chip)
if (ret)
return ret;
- if (in_interrupt() || oops_in_progress)
+ if (mtd->oops_panic_write) {
panic_nand_wait(chip, timeo);
- else {
+ } else {
timeo = jiffies + msecs_to_jiffies(timeo);
do {
if (chip->legacy.dev_ready) {
diff --git a/drivers/mtd/nand/raw/nandsim.c b/drivers/mtd/nand/raw/nandsim.c
index a8048cb8d220..f2b9250c0ea8 100644
--- a/drivers/mtd/nand/raw/nandsim.c
+++ b/drivers/mtd/nand/raw/nandsim.c
@@ -23,7 +23,6 @@
#include <linux/string.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_bch.h>
#include <linux/mtd/partitions.h>
#include <linux/delay.h>
#include <linux/list.h>
@@ -2214,7 +2213,7 @@ static int ns_attach_chip(struct nand_chip *chip)
if (!bch)
return 0;
- if (!mtd_nand_has_bch()) {
+ if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
NS_ERR("BCH ECC support is disabled\n");
return -EINVAL;
}
diff --git a/drivers/mtd/nand/raw/ndfc.c b/drivers/mtd/nand/raw/ndfc.c
index 0fb4ba93c41e..338d6b1a189e 100644
--- a/drivers/mtd/nand/raw/ndfc.c
+++ b/drivers/mtd/nand/raw/ndfc.c
@@ -18,7 +18,6 @@
*/
#include <linux/module.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/ndfc.h>
#include <linux/slab.h>
@@ -146,7 +145,7 @@ static int ndfc_chip_init(struct ndfc_controller *ndfc,
chip->controller = &ndfc->ndfc_control;
chip->legacy.read_buf = ndfc_read_buf;
chip->legacy.write_buf = ndfc_write_buf;
- chip->ecc.correct = nand_correct_data;
+ chip->ecc.correct = rawnand_sw_hamming_correct;
chip->ecc.hwctl = ndfc_enable_hwecc;
chip->ecc.calculate = ndfc_calculate_ecc;
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c
index 512f60780a50..fbb9955f2467 100644
--- a/drivers/mtd/nand/raw/omap2.c
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -23,7 +23,6 @@
#include <linux/of.h>
#include <linux/of_device.h>
-#include <linux/mtd/nand_bch.h>
#include <linux/platform_data/elm.h>
#include <linux/omap-gpmc.h>
@@ -185,6 +184,7 @@ static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd)
* @dma_mode: dma mode enable (1) or disable (0)
* @u32_count: number of bytes to be transferred
* @is_write: prefetch read(0) or write post(1) mode
+ * @info: NAND device structure containing platform data
*/
static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
unsigned int u32_count, int is_write, struct omap_nand_info *info)
@@ -214,7 +214,7 @@ static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode,
return 0;
}
-/**
+/*
* omap_prefetch_reset - disables and stops the prefetch engine
*/
static int omap_prefetch_reset(int cs, struct omap_nand_info *info)
@@ -939,7 +939,7 @@ static int omap_calculate_ecc(struct nand_chip *chip, const u_char *dat,
/**
* omap_enable_hwecc - This function enables the hardware ecc functionality
- * @mtd: MTD device structure
+ * @chip: NAND chip object
* @mode: Read/Write mode
*/
static void omap_enable_hwecc(struct nand_chip *chip, int mode)
@@ -1009,7 +1009,7 @@ static int omap_wait(struct nand_chip *this)
/**
* omap_dev_ready - checks the NAND Ready GPIO line
- * @mtd: MTD device structure
+ * @chip: NAND chip object
*
* Returns true if ready and false if busy.
*/
@@ -1022,7 +1022,7 @@ static int omap_dev_ready(struct nand_chip *chip)
/**
* omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
- * @mtd: MTD device structure
+ * @chip: NAND chip object
* @mode: Read/Write mode
*
* When using BCH with SW correction (i.e. no ELM), sector size is set
@@ -1131,7 +1131,7 @@ static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
* _omap_calculate_ecc_bch - Generate ECC bytes for one sector
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
+ * @ecc_calc: The ecc_code buffer
* @i: The sector number (for a multi sector page)
*
* Support calculating of BCH4/8/16 ECC vectors for one sector
@@ -1259,7 +1259,7 @@ static int _omap_calculate_ecc_bch(struct mtd_info *mtd,
* omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction
* @chip: NAND chip object
* @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
+ * @ecc_calc: Buffer storing the calculated ECC bytes
*
* Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
* when SW based correction is required as ECC is required for one sector
@@ -1275,7 +1275,7 @@ static int omap_calculate_ecc_bch_sw(struct nand_chip *chip,
* omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
+ * @ecc_calc: Buffer storing the calculated ECC bytes
*
* Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
*/
@@ -1674,7 +1674,8 @@ static int omap_read_page_bch(struct nand_chip *chip, uint8_t *buf,
/**
* is_elm_present - checks for presence of ELM module by scanning DT nodes
- * @omap_nand_info: NAND device structure containing platform data
+ * @info: NAND device structure containing platform data
+ * @elm_node: ELM's DT node
*/
static bool is_elm_present(struct omap_nand_info *info,
struct device_node *elm_node)
@@ -2041,16 +2042,16 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
chip->ecc.bytes = 7;
chip->ecc.strength = 4;
chip->ecc.hwctl = omap_enable_hwecc_bch;
- chip->ecc.correct = nand_bch_correct_data;
+ chip->ecc.correct = rawnand_sw_bch_correct;
chip->ecc.calculate = omap_calculate_ecc_bch_sw;
mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
/* Reserve one byte for the OMAP marker */
oobbytes_per_step = chip->ecc.bytes + 1;
/* Software BCH library is used for locating errors */
- chip->ecc.priv = nand_bch_init(mtd);
- if (!chip->ecc.priv) {
+ err = rawnand_sw_bch_init(chip);
+ if (err) {
dev_err(dev, "Unable to use BCH library\n");
- return -EINVAL;
+ return err;
}
break;
@@ -2083,16 +2084,16 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
chip->ecc.bytes = 13;
chip->ecc.strength = 8;
chip->ecc.hwctl = omap_enable_hwecc_bch;
- chip->ecc.correct = nand_bch_correct_data;
+ chip->ecc.correct = rawnand_sw_bch_correct;
chip->ecc.calculate = omap_calculate_ecc_bch_sw;
mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops);
/* Reserve one byte for the OMAP marker */
oobbytes_per_step = chip->ecc.bytes + 1;
/* Software BCH library is used for locating errors */
- chip->ecc.priv = nand_bch_init(mtd);
- if (!chip->ecc.priv) {
+ err = rawnand_sw_bch_init(chip);
+ if (err) {
dev_err(dev, "unable to use BCH library\n");
- return -EINVAL;
+ return err;
}
break;
@@ -2195,7 +2196,6 @@ static int omap_nand_probe(struct platform_device *pdev)
nand_chip = &info->nand;
mtd = nand_to_mtd(nand_chip);
mtd->dev.parent = &pdev->dev;
- nand_chip->ecc.priv = NULL;
nand_set_flash_node(nand_chip, dev->of_node);
if (!mtd->name) {
@@ -2271,10 +2271,9 @@ cleanup_nand:
return_error:
if (!IS_ERR_OR_NULL(info->dma))
dma_release_channel(info->dma);
- if (nand_chip->ecc.priv) {
- nand_bch_free(nand_chip->ecc.priv);
- nand_chip->ecc.priv = NULL;
- }
+
+ rawnand_sw_bch_cleanup(nand_chip);
+
return err;
}
@@ -2285,10 +2284,8 @@ static int omap_nand_remove(struct platform_device *pdev)
struct omap_nand_info *info = mtd_to_omap(mtd);
int ret;
- if (nand_chip->ecc.priv) {
- nand_bch_free(nand_chip->ecc.priv);
- nand_chip->ecc.priv = NULL;
- }
+ rawnand_sw_bch_cleanup(nand_chip);
+
if (info->dma)
dma_release_channel(info->dma);
ret = mtd_device_unregister(mtd);
diff --git a/drivers/mtd/nand/raw/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c
index 4b799521a427..550695a4c1ab 100644
--- a/drivers/mtd/nand/raw/omap_elm.c
+++ b/drivers/mtd/nand/raw/omap_elm.c
@@ -96,6 +96,9 @@ static u32 elm_read_reg(struct elm_info *info, int offset)
* elm_config - Configure ELM module
* @dev: ELM device
* @bch_type: Type of BCH ecc
+ * @ecc_steps: ECC steps to assign to config
+ * @ecc_step_size: ECC step size to assign to config
+ * @ecc_syndrome_size: ECC syndrome size to assign to config
*/
int elm_config(struct device *dev, enum bch_ecc bch_type,
int ecc_steps, int ecc_step_size, int ecc_syndrome_size)
@@ -432,7 +435,7 @@ static int elm_remove(struct platform_device *pdev)
}
#ifdef CONFIG_PM_SLEEP
-/**
+/*
* elm_context_save
* saves ELM configurations to preserve them across Hardware powered-down
*/
@@ -480,7 +483,7 @@ static int elm_context_save(struct elm_info *info)
return 0;
}
-/**
+/*
* elm_context_restore
* writes configurations saved duing power-down back into ELM registers
*/
diff --git a/drivers/mtd/nand/raw/pasemi_nand.c b/drivers/mtd/nand/raw/pasemi_nand.c
index 68c08772d7c2..789f33312c15 100644
--- a/drivers/mtd/nand/raw/pasemi_nand.c
+++ b/drivers/mtd/nand/raw/pasemi_nand.c
@@ -14,7 +14,6 @@
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
index 777fb0de0680..667e4bfe369f 100644
--- a/drivers/mtd/nand/raw/qcom_nandc.c
+++ b/drivers/mtd/nand/raw/qcom_nandc.c
@@ -145,6 +145,7 @@
#define OP_PAGE_READ 0x2
#define OP_PAGE_READ_WITH_ECC 0x3
#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
+#define OP_PAGE_READ_ONFI_READ 0x5
#define OP_PROGRAM_PAGE 0x6
#define OP_PAGE_PROGRAM_WITH_ECC 0x7
#define OP_PROGRAM_PAGE_SPARE 0x9
@@ -460,12 +461,14 @@ struct qcom_nand_host {
* @ecc_modes - ecc mode for NAND
* @is_bam - whether NAND controller is using BAM
* @is_qpic - whether NAND CTRL is part of qpic IP
+ * @qpic_v2 - flag to indicate QPIC IP version 2
* @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
*/
struct qcom_nandc_props {
u32 ecc_modes;
bool is_bam;
bool is_qpic;
+ bool qpic_v2;
u32 dev_cmd_reg_start;
};
@@ -1164,7 +1167,13 @@ static int nandc_param(struct qcom_nand_host *host)
* in use. we configure the controller to perform a raw read of 512
* bytes to read onfi params
*/
- nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
+ if (nandc->props->qpic_v2)
+ nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ_ONFI_READ |
+ PAGE_ACC | LAST_PAGE);
+ else
+ nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ |
+ PAGE_ACC | LAST_PAGE);
+
nandc_set_reg(nandc, NAND_ADDR0, 0);
nandc_set_reg(nandc, NAND_ADDR1, 0);
nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
@@ -1180,21 +1189,28 @@ static int nandc_param(struct qcom_nand_host *host)
| 1 << DEV0_CFG1_ECC_DISABLE);
nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
- /* configure CMD1 and VLD for ONFI param probing */
- nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
- (nandc->vld & ~READ_START_VLD));
- nandc_set_reg(nandc, NAND_DEV_CMD1,
- (nandc->cmd1 & ~(0xFF << READ_ADDR))
- | NAND_CMD_PARAM << READ_ADDR);
+ /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
+ if (!nandc->props->qpic_v2) {
+ nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
+ (nandc->vld & ~READ_START_VLD));
+ nandc_set_reg(nandc, NAND_DEV_CMD1,
+ (nandc->cmd1 & ~(0xFF << READ_ADDR))
+ | NAND_CMD_PARAM << READ_ADDR);
+ }
nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
- nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
- nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
+ if (!nandc->props->qpic_v2) {
+ nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
+ nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
+ }
+
nandc_set_read_loc(nandc, 0, 0, 512, 1);
- write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
- write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
+ if (!nandc->props->qpic_v2) {
+ write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
+ write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
+ }
nandc->buf_count = 512;
memset(nandc->data_buffer, 0xff, nandc->buf_count);
@@ -1205,8 +1221,10 @@ static int nandc_param(struct qcom_nand_host *host)
nandc->buf_count, 0);
/* restore CMD1 and VLD regs */
- write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
- write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
+ if (!nandc->props->qpic_v2) {
+ write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
+ write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
+ }
return 0;
}
@@ -1570,6 +1588,8 @@ static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
int i;
+ nandc_read_buffer_sync(nandc, true);
+
for (i = 0; i < cw_cnt; i++) {
u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
@@ -2770,8 +2790,10 @@ static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
/* kill onenand */
if (!nandc->props->is_qpic)
nandc_write(nandc, SFLASHC_BURST_CFG, 0);
- nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
- NAND_DEV_CMD_VLD_VAL);
+
+ if (!nandc->props->qpic_v2)
+ nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
+ NAND_DEV_CMD_VLD_VAL);
/* enable ADM or BAM DMA */
if (nandc->props->is_bam) {
@@ -2791,8 +2813,10 @@ static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
}
/* save the original values of these registers */
- nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
- nandc->vld = NAND_DEV_CMD_VLD_VAL;
+ if (!nandc->props->qpic_v2) {
+ nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
+ nandc->vld = NAND_DEV_CMD_VLD_VAL;
+ }
return 0;
}
@@ -3050,6 +3074,14 @@ static const struct qcom_nandc_props ipq8074_nandc_props = {
.dev_cmd_reg_start = 0x7000,
};
+static const struct qcom_nandc_props sdx55_nandc_props = {
+ .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
+ .is_bam = true,
+ .is_qpic = true,
+ .qpic_v2 = true,
+ .dev_cmd_reg_start = 0x7000,
+};
+
/*
* data will hold a struct pointer containing more differences once we support
* more controller variants
@@ -3064,9 +3096,17 @@ static const struct of_device_id qcom_nandc_of_match[] = {
.data = &ipq4019_nandc_props,
},
{
+ .compatible = "qcom,ipq6018-nand",
+ .data = &ipq8074_nandc_props,
+ },
+ {
.compatible = "qcom,ipq8074-nand",
.data = &ipq8074_nandc_props,
},
+ {
+ .compatible = "qcom,sdx55-nand",
+ .data = &sdx55_nandc_props,
+ },
{}
};
MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
diff --git a/drivers/mtd/nand/raw/rockchip-nand-controller.c b/drivers/mtd/nand/raw/rockchip-nand-controller.c
new file mode 100644
index 000000000000..796b678cb108
--- /dev/null
+++ b/drivers/mtd/nand/raw/rockchip-nand-controller.c
@@ -0,0 +1,1495 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Rockchip NAND Flash controller driver.
+ * Copyright (C) 2020 Rockchip Inc.
+ * Author: Yifeng Zhao <yifeng.zhao@rock-chips.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+/*
+ * NFC Page Data Layout:
+ * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
+ * 1024 bytes data + 4Bytes sys data + 28Bytes~124Bytes ECC data +
+ * ......
+ * NAND Page Data Layout:
+ * 1024 * n data + m Bytes oob
+ * Original Bad Block Mask Location:
+ * First byte of oob(spare).
+ * nand_chip->oob_poi data layout:
+ * 4Bytes sys data + .... + 4Bytes sys data + ECC data.
+ */
+
+/* NAND controller register definition */
+#define NFC_READ (0)
+#define NFC_WRITE (1)
+
+#define NFC_FMCTL (0x00)
+#define FMCTL_CE_SEL_M 0xFF
+#define FMCTL_CE_SEL(x) (1 << (x))
+#define FMCTL_WP BIT(8)
+#define FMCTL_RDY BIT(9)
+
+#define NFC_FMWAIT (0x04)
+#define FLCTL_RST BIT(0)
+#define FLCTL_WR (1) /* 0: read, 1: write */
+#define FLCTL_XFER_ST BIT(2)
+#define FLCTL_XFER_EN BIT(3)
+#define FLCTL_ACORRECT BIT(10) /* Auto correct error bits. */
+#define FLCTL_XFER_READY BIT(20)
+#define FLCTL_XFER_SECTOR (22)
+#define FLCTL_TOG_FIX BIT(29)
+
+#define BCHCTL_BANK_M (7 << 5)
+#define BCHCTL_BANK (5)
+
+#define DMA_ST BIT(0)
+#define DMA_WR (1) /* 0: write, 1: read */
+#define DMA_EN BIT(2)
+#define DMA_AHB_SIZE (3) /* 0: 1, 1: 2, 2: 4 */
+#define DMA_BURST_SIZE (6) /* 0: 1, 3: 4, 5: 8, 7: 16 */
+#define DMA_INC_NUM (9) /* 1 - 16 */
+
+#define ECC_ERR_CNT(x, e) ((((x) >> (e).low) & (e).low_mask) |\
+ (((x) >> (e).high) & (e).high_mask) << (e).low_bn)
+#define INT_DMA BIT(0)
+#define NFC_BANK (0x800)
+#define NFC_BANK_STEP (0x100)
+#define BANK_DATA (0x00)
+#define BANK_ADDR (0x04)
+#define BANK_CMD (0x08)
+#define NFC_SRAM0 (0x1000)
+#define NFC_SRAM1 (0x1400)
+#define NFC_SRAM_SIZE (0x400)
+#define NFC_TIMEOUT (500000)
+#define NFC_MAX_OOB_PER_STEP 128
+#define NFC_MIN_OOB_PER_STEP 64
+#define MAX_DATA_SIZE 0xFFFC
+#define MAX_ADDRESS_CYC 6
+#define NFC_ECC_MAX_MODES 4
+#define NFC_MAX_NSELS (8) /* Some Socs only have 1 or 2 CSs. */
+#define NFC_SYS_DATA_SIZE (4) /* 4 bytes sys data in oob pre 1024 data.*/
+#define RK_DEFAULT_CLOCK_RATE (150 * 1000 * 1000) /* 150 Mhz */
+#define ACCTIMING(csrw, rwpw, rwcs) ((csrw) << 12 | (rwpw) << 5 | (rwcs))
+
+enum nfc_type {
+ NFC_V6,
+ NFC_V8,
+ NFC_V9,
+};
+
+/**
+ * struct rk_ecc_cnt_status: represent a ecc status data.
+ * @err_flag_bit: error flag bit index at register.
+ * @low: ECC count low bit index at register.
+ * @low_mask: mask bit.
+ * @low_bn: ECC count low bit number.
+ * @high: ECC count high bit index at register.
+ * @high_mask: mask bit
+ */
+struct ecc_cnt_status {
+ u8 err_flag_bit;
+ u8 low;
+ u8 low_mask;
+ u8 low_bn;
+ u8 high;
+ u8 high_mask;
+};
+
+/**
+ * @type: NFC version
+ * @ecc_strengths: ECC strengths
+ * @ecc_cfgs: ECC config values
+ * @flctl_off: FLCTL register offset
+ * @bchctl_off: BCHCTL register offset
+ * @dma_data_buf_off: DMA_DATA_BUF register offset
+ * @dma_oob_buf_off: DMA_OOB_BUF register offset
+ * @dma_cfg_off: DMA_CFG register offset
+ * @dma_st_off: DMA_ST register offset
+ * @bch_st_off: BCG_ST register offset
+ * @randmz_off: RANDMZ register offset
+ * @int_en_off: interrupt enable register offset
+ * @int_clr_off: interrupt clean register offset
+ * @int_st_off: interrupt status register offset
+ * @oob0_off: oob0 register offset
+ * @oob1_off: oob1 register offset
+ * @ecc0: represent ECC0 status data
+ * @ecc1: represent ECC1 status data
+ */
+struct nfc_cfg {
+ enum nfc_type type;
+ u8 ecc_strengths[NFC_ECC_MAX_MODES];
+ u32 ecc_cfgs[NFC_ECC_MAX_MODES];
+ u32 flctl_off;
+ u32 bchctl_off;
+ u32 dma_cfg_off;
+ u32 dma_data_buf_off;
+ u32 dma_oob_buf_off;
+ u32 dma_st_off;
+ u32 bch_st_off;
+ u32 randmz_off;
+ u32 int_en_off;
+ u32 int_clr_off;
+ u32 int_st_off;
+ u32 oob0_off;
+ u32 oob1_off;
+ struct ecc_cnt_status ecc0;
+ struct ecc_cnt_status ecc1;
+};
+
+struct rk_nfc_nand_chip {
+ struct list_head node;
+ struct nand_chip chip;
+
+ u16 boot_blks;
+ u16 metadata_size;
+ u32 boot_ecc;
+ u32 timing;
+
+ u8 nsels;
+ u8 sels[0];
+ /* Nothing after this field. */
+};
+
+struct rk_nfc {
+ struct nand_controller controller;
+ const struct nfc_cfg *cfg;
+ struct device *dev;
+
+ struct clk *nfc_clk;
+ struct clk *ahb_clk;
+ void __iomem *regs;
+
+ u32 selected_bank;
+ u32 band_offset;
+ u32 cur_ecc;
+ u32 cur_timing;
+
+ struct completion done;
+ struct list_head chips;
+
+ u8 *page_buf;
+ u32 *oob_buf;
+ u32 page_buf_size;
+ u32 oob_buf_size;
+
+ unsigned long assigned_cs;
+};
+
+static inline struct rk_nfc_nand_chip *rk_nfc_to_rknand(struct nand_chip *chip)
+{
+ return container_of(chip, struct rk_nfc_nand_chip, chip);
+}
+
+static inline u8 *rk_nfc_buf_to_data_ptr(struct nand_chip *chip, const u8 *p, int i)
+{
+ return (u8 *)p + i * chip->ecc.size;
+}
+
+static inline u8 *rk_nfc_buf_to_oob_ptr(struct nand_chip *chip, int i)
+{
+ u8 *poi;
+
+ poi = chip->oob_poi + i * NFC_SYS_DATA_SIZE;
+
+ return poi;
+}
+
+static inline u8 *rk_nfc_buf_to_oob_ecc_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ u8 *poi;
+
+ poi = chip->oob_poi + rknand->metadata_size + chip->ecc.bytes * i;
+
+ return poi;
+}
+
+static inline int rk_nfc_data_len(struct nand_chip *chip)
+{
+ return chip->ecc.size + chip->ecc.bytes + NFC_SYS_DATA_SIZE;
+}
+
+static inline u8 *rk_nfc_data_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->page_buf + i * rk_nfc_data_len(chip);
+}
+
+static inline u8 *rk_nfc_oob_ptr(struct nand_chip *chip, int i)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+
+ return nfc->page_buf + i * rk_nfc_data_len(chip) + chip->ecc.size;
+}
+
+static int rk_nfc_hw_ecc_setup(struct nand_chip *chip, u32 strength)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ u32 reg, i;
+
+ for (i = 0; i < NFC_ECC_MAX_MODES; i++) {
+ if (strength == nfc->cfg->ecc_strengths[i]) {
+ reg = nfc->cfg->ecc_cfgs[i];
+ break;
+ }
+ }
+
+ if (i >= NFC_ECC_MAX_MODES)
+ return -EINVAL;
+
+ writel(reg, nfc->regs + nfc->cfg->bchctl_off);
+
+ /* Save chip ECC setting */
+ nfc->cur_ecc = strength;
+
+ return 0;
+}
+
+static void rk_nfc_select_chip(struct nand_chip *chip, int cs)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ u32 val;
+
+ if (cs < 0) {
+ nfc->selected_bank = -1;
+ /* Deselect the currently selected target. */
+ val = readl_relaxed(nfc->regs + NFC_FMCTL);
+ val &= ~FMCTL_CE_SEL_M;
+ writel(val, nfc->regs + NFC_FMCTL);
+ return;
+ }
+
+ nfc->selected_bank = rknand->sels[cs];
+ nfc->band_offset = NFC_BANK + nfc->selected_bank * NFC_BANK_STEP;
+
+ val = readl_relaxed(nfc->regs + NFC_FMCTL);
+ val &= ~FMCTL_CE_SEL_M;
+ val |= FMCTL_CE_SEL(nfc->selected_bank);
+
+ writel(val, nfc->regs + NFC_FMCTL);
+
+ /*
+ * Compare current chip timing with selected chip timing and
+ * change if needed.
+ */
+ if (nfc->cur_timing != rknand->timing) {
+ writel(rknand->timing, nfc->regs + NFC_FMWAIT);
+ nfc->cur_timing = rknand->timing;
+ }
+
+ /*
+ * Compare current chip ECC setting with selected chip ECC setting and
+ * change if needed.
+ */
+ if (nfc->cur_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc->strength);
+}
+
+static inline int rk_nfc_wait_ioready(struct rk_nfc *nfc)
+{
+ int rc;
+ u32 val;
+
+ rc = readl_relaxed_poll_timeout(nfc->regs + NFC_FMCTL, val,
+ val & FMCTL_RDY, 10, NFC_TIMEOUT);
+
+ return rc;
+}
+
+static void rk_nfc_read_buf(struct rk_nfc *nfc, u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = readb_relaxed(nfc->regs + nfc->band_offset +
+ BANK_DATA);
+}
+
+static void rk_nfc_write_buf(struct rk_nfc *nfc, const u8 *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ writeb(buf[i], nfc->regs + nfc->band_offset + BANK_DATA);
+}
+
+static int rk_nfc_cmd(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ unsigned int i, j, remaining, start;
+ int reg_offset = nfc->band_offset;
+ u8 *inbuf = NULL;
+ const u8 *outbuf;
+ u32 cnt = 0;
+ int ret = 0;
+
+ for (i = 0; i < subop->ninstrs; i++) {
+ const struct nand_op_instr *instr = &subop->instrs[i];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ writeb(instr->ctx.cmd.opcode,
+ nfc->regs + reg_offset + BANK_CMD);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ remaining = nand_subop_get_num_addr_cyc(subop, i);
+ start = nand_subop_get_addr_start_off(subop, i);
+
+ for (j = 0; j < 8 && j + start < remaining; j++)
+ writeb(instr->ctx.addr.addrs[j + start],
+ nfc->regs + reg_offset + BANK_ADDR);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ case NAND_OP_DATA_OUT_INSTR:
+ start = nand_subop_get_data_start_off(subop, i);
+ cnt = nand_subop_get_data_len(subop, i);
+
+ if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+ outbuf = instr->ctx.data.buf.out + start;
+ rk_nfc_write_buf(nfc, outbuf, cnt);
+ } else {
+ inbuf = instr->ctx.data.buf.in + start;
+ rk_nfc_read_buf(nfc, inbuf, cnt);
+ }
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ if (rk_nfc_wait_ioready(nfc) < 0) {
+ ret = -ETIMEDOUT;
+ dev_err(nfc->dev, "IO not ready\n");
+ }
+ break;
+ }
+ }
+
+ return ret;
+}
+
+static const struct nand_op_parser rk_nfc_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ rk_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, MAX_DATA_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ rk_nfc_cmd,
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, MAX_DATA_SIZE),
+ NAND_OP_PARSER_PAT_CMD_ELEM(true),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+);
+
+static int rk_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ if (!check_only)
+ rk_nfc_select_chip(chip, op->cs);
+
+ return nand_op_parser_exec_op(chip, &rk_nfc_op_parser, op,
+ check_only);
+}
+
+static int rk_nfc_setup_interface(struct nand_chip *chip, int target,
+ const struct nand_interface_config *conf)
+{
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *timings;
+ u32 rate, tc2rw, trwpw, trw2c;
+ u32 temp;
+
+ if (target < 0)
+ return 0;
+
+ timings = nand_get_sdr_timings(conf);
+ if (IS_ERR(timings))
+ return -EOPNOTSUPP;
+
+ if (IS_ERR(nfc->nfc_clk))
+ rate = clk_get_rate(nfc->ahb_clk);
+ else
+ rate = clk_get_rate(nfc->nfc_clk);
+
+ /* Turn clock rate into kHz. */
+ rate /= 1000;
+
+ tc2rw = 1;
+ trw2c = 1;
+
+ trwpw = max(timings->tWC_min, timings->tRC_min) / 1000;
+ trwpw = DIV_ROUND_UP(trwpw * rate, 1000000);
+
+ temp = timings->tREA_max / 1000;
+ temp = DIV_ROUND_UP(temp * rate, 1000000);
+
+ if (trwpw < temp)
+ trwpw = temp;
+
+ /*
+ * ACCON: access timing control register
+ * -------------------------------------
+ * 31:18: reserved
+ * 17:12: csrw, clock cycles from the falling edge of CSn to the
+ * falling edge of RDn or WRn
+ * 11:11: reserved
+ * 10:05: rwpw, the width of RDn or WRn in processor clock cycles
+ * 04:00: rwcs, clock cycles from the rising edge of RDn or WRn to the
+ * rising edge of CSn
+ */
+
+ /* Save chip timing */
+ rknand->timing = ACCTIMING(tc2rw, trwpw, trw2c);
+
+ return 0;
+}
+
+static void rk_nfc_xfer_start(struct rk_nfc *nfc, u8 rw, u8 n_KB,
+ dma_addr_t dma_data, dma_addr_t dma_oob)
+{
+ u32 dma_reg, fl_reg, bch_reg;
+
+ dma_reg = DMA_ST | ((!rw) << DMA_WR) | DMA_EN | (2 << DMA_AHB_SIZE) |
+ (7 << DMA_BURST_SIZE) | (16 << DMA_INC_NUM);
+
+ fl_reg = (rw << FLCTL_WR) | FLCTL_XFER_EN | FLCTL_ACORRECT |
+ (n_KB << FLCTL_XFER_SECTOR) | FLCTL_TOG_FIX;
+
+ if (nfc->cfg->type == NFC_V6 || nfc->cfg->type == NFC_V8) {
+ bch_reg = readl_relaxed(nfc->regs + nfc->cfg->bchctl_off);
+ bch_reg = (bch_reg & (~BCHCTL_BANK_M)) |
+ (nfc->selected_bank << BCHCTL_BANK);
+ writel(bch_reg, nfc->regs + nfc->cfg->bchctl_off);
+ }
+
+ writel(dma_reg, nfc->regs + nfc->cfg->dma_cfg_off);
+ writel((u32)dma_data, nfc->regs + nfc->cfg->dma_data_buf_off);
+ writel((u32)dma_oob, nfc->regs + nfc->cfg->dma_oob_buf_off);
+ writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+ fl_reg |= FLCTL_XFER_ST;
+ writel(fl_reg, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static int rk_nfc_wait_for_xfer_done(struct rk_nfc *nfc)
+{
+ void __iomem *ptr;
+ u32 reg;
+
+ ptr = nfc->regs + nfc->cfg->flctl_off;
+
+ return readl_relaxed_poll_timeout(ptr, reg,
+ reg & FLCTL_XFER_READY,
+ 10, NFC_TIMEOUT);
+}
+
+static int rk_nfc_write_page_raw(struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int i, pages_per_blk;
+
+ pages_per_blk = mtd->erasesize / mtd->writesize;
+ if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
+ (page < (pages_per_blk * rknand->boot_blks)) &&
+ rknand->boot_ecc != ecc->strength) {
+ /*
+ * There's currently no method to notify the MTD framework that
+ * a different ECC strength is in use for the boot blocks.
+ */
+ return -EIO;
+ }
+
+ if (!buf)
+ memset(nfc->page_buf, 0xff, mtd->writesize + mtd->oobsize);
+
+ for (i = 0; i < ecc->steps; i++) {
+ /* Copy data to the NFC buffer. */
+ if (buf)
+ memcpy(rk_nfc_data_ptr(chip, i),
+ rk_nfc_buf_to_data_ptr(chip, buf, i),
+ ecc->size);
+ /*
+ * The first four bytes of OOB are reserved for the
+ * boot ROM. In some debugging cases, such as with a
+ * read, erase and write back test these 4 bytes stored
+ * in OOB also need to be written back.
+ *
+ * The function nand_block_bad detects bad blocks like:
+ *
+ * bad = chip->oob_poi[chip->badblockpos];
+ *
+ * chip->badblockpos == 0 for a large page NAND Flash,
+ * so chip->oob_poi[0] is the bad block mask (BBM).
+ *
+ * The OOB data layout on the NFC is:
+ *
+ * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
+ *
+ * or
+ *
+ * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
+ *
+ * The code here just swaps the first 4 bytes with the last
+ * 4 bytes without losing any data.
+ *
+ * The chip->oob_poi data layout:
+ *
+ * BBM OOB1 OOB2 OOB3 |......| PA0 PA1 PA2 PA3
+ *
+ * The rk_nfc_ooblayout_free() function already has reserved
+ * these 4 bytes with:
+ *
+ * oob_region->offset = NFC_SYS_DATA_SIZE + 2;
+ */
+ if (!i)
+ memcpy(rk_nfc_oob_ptr(chip, i),
+ rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
+ NFC_SYS_DATA_SIZE);
+ else
+ memcpy(rk_nfc_oob_ptr(chip, i),
+ rk_nfc_buf_to_oob_ptr(chip, i - 1),
+ NFC_SYS_DATA_SIZE);
+ /* Copy ECC data to the NFC buffer. */
+ memcpy(rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
+ rk_nfc_buf_to_oob_ecc_ptr(chip, i),
+ ecc->bytes);
+ }
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+ rk_nfc_write_buf(nfc, buf, mtd->writesize + mtd->oobsize);
+ return nand_prog_page_end_op(chip);
+}
+
+static int rk_nfc_write_page_hwecc(struct nand_chip *chip, const u8 *buf,
+ int oob_on, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+ NFC_MIN_OOB_PER_STEP;
+ int pages_per_blk = mtd->erasesize / mtd->writesize;
+ int ret = 0, i, boot_rom_mode = 0;
+ dma_addr_t dma_data, dma_oob;
+ u32 reg;
+ u8 *oob;
+
+ nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+
+ if (buf)
+ memcpy(nfc->page_buf, buf, mtd->writesize);
+ else
+ memset(nfc->page_buf, 0xFF, mtd->writesize);
+
+ /*
+ * The first blocks (4, 8 or 16 depending on the device) are used
+ * by the boot ROM and the first 32 bits of OOB need to link to
+ * the next page address in the same block. We can't directly copy
+ * OOB data from the MTD framework, because this page address
+ * conflicts for example with the bad block marker (BBM),
+ * so we shift all OOB data including the BBM with 4 byte positions.
+ * As a consequence the OOB size available to the MTD framework is
+ * also reduced with 4 bytes.
+ *
+ * PA0 PA1 PA2 PA3 | BBM OOB1 OOB2 OOB3 | ...
+ *
+ * If a NAND is not a boot medium or the page is not a boot block,
+ * the first 4 bytes are left untouched by writing 0xFF to them.
+ *
+ * 0xFF 0xFF 0xFF 0xFF | BBM OOB1 OOB2 OOB3 | ...
+ *
+ * Configure the ECC algorithm supported by the boot ROM.
+ */
+ if ((page < (pages_per_blk * rknand->boot_blks)) &&
+ (chip->options & NAND_IS_BOOT_MEDIUM)) {
+ boot_rom_mode = 1;
+ if (rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
+ }
+
+ for (i = 0; i < ecc->steps; i++) {
+ if (!i) {
+ reg = 0xFFFFFFFF;
+ } else {
+ oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
+ reg = oob[0] | oob[1] << 8 | oob[2] << 16 |
+ oob[3] << 24;
+ }
+
+ if (!i && boot_rom_mode)
+ reg = (page & (pages_per_blk - 1)) * 4;
+
+ if (nfc->cfg->type == NFC_V9)
+ nfc->oob_buf[i] = reg;
+ else
+ nfc->oob_buf[i * (oob_step / 4)] = reg;
+ }
+
+ dma_data = dma_map_single(nfc->dev, (void *)nfc->page_buf,
+ mtd->writesize, DMA_TO_DEVICE);
+ dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+ ecc->steps * oob_step,
+ DMA_TO_DEVICE);
+
+ reinit_completion(&nfc->done);
+ writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+
+ rk_nfc_xfer_start(nfc, NFC_WRITE, ecc->steps, dma_data,
+ dma_oob);
+ ret = wait_for_completion_timeout(&nfc->done,
+ msecs_to_jiffies(100));
+ if (!ret)
+ dev_warn(nfc->dev, "write: wait dma done timeout.\n");
+ /*
+ * Whether the DMA transfer is completed or not. The driver
+ * needs to check the NFC`s status register to see if the data
+ * transfer was completed.
+ */
+ ret = rk_nfc_wait_for_xfer_done(nfc);
+
+ dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+ DMA_TO_DEVICE);
+ dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+ DMA_TO_DEVICE);
+
+ if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc->strength);
+
+ if (ret) {
+ dev_err(nfc->dev, "write: wait transfer done timeout.\n");
+ return -ETIMEDOUT;
+ }
+
+ return nand_prog_page_end_op(chip);
+}
+
+static int rk_nfc_write_oob(struct nand_chip *chip, int page)
+{
+ return rk_nfc_write_page_hwecc(chip, NULL, 1, page);
+}
+
+static int rk_nfc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_on,
+ int page)
+{
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int i, pages_per_blk;
+
+ pages_per_blk = mtd->erasesize / mtd->writesize;
+ if ((chip->options & NAND_IS_BOOT_MEDIUM) &&
+ (page < (pages_per_blk * rknand->boot_blks)) &&
+ rknand->boot_ecc != ecc->strength) {
+ /*
+ * There's currently no method to notify the MTD framework that
+ * a different ECC strength is in use for the boot blocks.
+ */
+ return -EIO;
+ }
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+ rk_nfc_read_buf(nfc, nfc->page_buf, mtd->writesize + mtd->oobsize);
+ for (i = 0; i < ecc->steps; i++) {
+ /*
+ * The first four bytes of OOB are reserved for the
+ * boot ROM. In some debugging cases, such as with a read,
+ * erase and write back test, these 4 bytes also must be
+ * saved somewhere, otherwise this information will be
+ * lost during a write back.
+ */
+ if (!i)
+ memcpy(rk_nfc_buf_to_oob_ptr(chip, ecc->steps - 1),
+ rk_nfc_oob_ptr(chip, i),
+ NFC_SYS_DATA_SIZE);
+ else
+ memcpy(rk_nfc_buf_to_oob_ptr(chip, i - 1),
+ rk_nfc_oob_ptr(chip, i),
+ NFC_SYS_DATA_SIZE);
+
+ /* Copy ECC data from the NFC buffer. */
+ memcpy(rk_nfc_buf_to_oob_ecc_ptr(chip, i),
+ rk_nfc_oob_ptr(chip, i) + NFC_SYS_DATA_SIZE,
+ ecc->bytes);
+
+ /* Copy data from the NFC buffer. */
+ if (buf)
+ memcpy(rk_nfc_buf_to_data_ptr(chip, buf, i),
+ rk_nfc_data_ptr(chip, i),
+ ecc->size);
+ }
+
+ return 0;
+}
+
+static int rk_nfc_read_page_hwecc(struct nand_chip *chip, u8 *buf, int oob_on,
+ int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int oob_step = (ecc->bytes > 60) ? NFC_MAX_OOB_PER_STEP :
+ NFC_MIN_OOB_PER_STEP;
+ int pages_per_blk = mtd->erasesize / mtd->writesize;
+ dma_addr_t dma_data, dma_oob;
+ int ret = 0, i, cnt, boot_rom_mode = 0;
+ int max_bitflips = 0, bch_st, ecc_fail = 0;
+ u8 *oob;
+ u32 tmp;
+
+ nand_read_page_op(chip, page, 0, NULL, 0);
+
+ dma_data = dma_map_single(nfc->dev, nfc->page_buf,
+ mtd->writesize,
+ DMA_FROM_DEVICE);
+ dma_oob = dma_map_single(nfc->dev, nfc->oob_buf,
+ ecc->steps * oob_step,
+ DMA_FROM_DEVICE);
+
+ /*
+ * The first blocks (4, 8 or 16 depending on the device)
+ * are used by the boot ROM.
+ * Configure the ECC algorithm supported by the boot ROM.
+ */
+ if ((page < (pages_per_blk * rknand->boot_blks)) &&
+ (chip->options & NAND_IS_BOOT_MEDIUM)) {
+ boot_rom_mode = 1;
+ if (rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, rknand->boot_ecc);
+ }
+
+ reinit_completion(&nfc->done);
+ writel(INT_DMA, nfc->regs + nfc->cfg->int_en_off);
+ rk_nfc_xfer_start(nfc, NFC_READ, ecc->steps, dma_data,
+ dma_oob);
+ ret = wait_for_completion_timeout(&nfc->done,
+ msecs_to_jiffies(100));
+ if (!ret)
+ dev_warn(nfc->dev, "read: wait dma done timeout.\n");
+ /*
+ * Whether the DMA transfer is completed or not. The driver
+ * needs to check the NFC`s status register to see if the data
+ * transfer was completed.
+ */
+ ret = rk_nfc_wait_for_xfer_done(nfc);
+
+ dma_unmap_single(nfc->dev, dma_data, mtd->writesize,
+ DMA_FROM_DEVICE);
+ dma_unmap_single(nfc->dev, dma_oob, ecc->steps * oob_step,
+ DMA_FROM_DEVICE);
+
+ if (ret) {
+ ret = -ETIMEDOUT;
+ dev_err(nfc->dev, "read: wait transfer done timeout.\n");
+ goto timeout_err;
+ }
+
+ for (i = 1; i < ecc->steps; i++) {
+ oob = chip->oob_poi + (i - 1) * NFC_SYS_DATA_SIZE;
+ if (nfc->cfg->type == NFC_V9)
+ tmp = nfc->oob_buf[i];
+ else
+ tmp = nfc->oob_buf[i * (oob_step / 4)];
+ *oob++ = (u8)tmp;
+ *oob++ = (u8)(tmp >> 8);
+ *oob++ = (u8)(tmp >> 16);
+ *oob++ = (u8)(tmp >> 24);
+ }
+
+ for (i = 0; i < (ecc->steps / 2); i++) {
+ bch_st = readl_relaxed(nfc->regs +
+ nfc->cfg->bch_st_off + i * 4);
+ if (bch_st & BIT(nfc->cfg->ecc0.err_flag_bit) ||
+ bch_st & BIT(nfc->cfg->ecc1.err_flag_bit)) {
+ mtd->ecc_stats.failed++;
+ ecc_fail = 1;
+ } else {
+ cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc0);
+ mtd->ecc_stats.corrected += cnt;
+ max_bitflips = max_t(u32, max_bitflips, cnt);
+
+ cnt = ECC_ERR_CNT(bch_st, nfc->cfg->ecc1);
+ mtd->ecc_stats.corrected += cnt;
+ max_bitflips = max_t(u32, max_bitflips, cnt);
+ }
+ }
+
+ if (buf)
+ memcpy(buf, nfc->page_buf, mtd->writesize);
+
+timeout_err:
+ if (boot_rom_mode && rknand->boot_ecc != ecc->strength)
+ rk_nfc_hw_ecc_setup(chip, ecc->strength);
+
+ if (ret)
+ return ret;
+
+ if (ecc_fail) {
+ dev_err(nfc->dev, "read page: %x ecc error!\n", page);
+ return 0;
+ }
+
+ return max_bitflips;
+}
+
+static int rk_nfc_read_oob(struct nand_chip *chip, int page)
+{
+ return rk_nfc_read_page_hwecc(chip, NULL, 1, page);
+}
+
+static inline void rk_nfc_hw_init(struct rk_nfc *nfc)
+{
+ /* Disable flash wp. */
+ writel(FMCTL_WP, nfc->regs + NFC_FMCTL);
+ /* Config default timing 40ns at 150 Mhz NFC clock. */
+ writel(0x1081, nfc->regs + NFC_FMWAIT);
+ nfc->cur_timing = 0x1081;
+ /* Disable randomizer and DMA. */
+ writel(0, nfc->regs + nfc->cfg->randmz_off);
+ writel(0, nfc->regs + nfc->cfg->dma_cfg_off);
+ writel(FLCTL_RST, nfc->regs + nfc->cfg->flctl_off);
+}
+
+static irqreturn_t rk_nfc_irq(int irq, void *id)
+{
+ struct rk_nfc *nfc = id;
+ u32 sta, ien;
+
+ sta = readl_relaxed(nfc->regs + nfc->cfg->int_st_off);
+ ien = readl_relaxed(nfc->regs + nfc->cfg->int_en_off);
+
+ if (!(sta & ien))
+ return IRQ_NONE;
+
+ writel(sta, nfc->regs + nfc->cfg->int_clr_off);
+ writel(~sta & ien, nfc->regs + nfc->cfg->int_en_off);
+
+ complete(&nfc->done);
+
+ return IRQ_HANDLED;
+}
+
+static int rk_nfc_enable_clks(struct device *dev, struct rk_nfc *nfc)
+{
+ int ret;
+
+ if (!IS_ERR(nfc->nfc_clk)) {
+ ret = clk_prepare_enable(nfc->nfc_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable NFC clk\n");
+ return ret;
+ }
+ }
+
+ ret = clk_prepare_enable(nfc->ahb_clk);
+ if (ret) {
+ dev_err(dev, "failed to enable ahb clk\n");
+ if (!IS_ERR(nfc->nfc_clk))
+ clk_disable_unprepare(nfc->nfc_clk);
+ return ret;
+ }
+
+ return 0;
+}
+
+static void rk_nfc_disable_clks(struct rk_nfc *nfc)
+{
+ if (!IS_ERR(nfc->nfc_clk))
+ clk_disable_unprepare(nfc->nfc_clk);
+ clk_disable_unprepare(nfc->ahb_clk);
+}
+
+static int rk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+
+ if (section)
+ return -ERANGE;
+
+ /*
+ * The beginning of the OOB area stores the reserved data for the NFC,
+ * the size of the reserved data is NFC_SYS_DATA_SIZE bytes.
+ */
+ oob_region->length = rknand->metadata_size - NFC_SYS_DATA_SIZE - 2;
+ oob_region->offset = NFC_SYS_DATA_SIZE + 2;
+
+ return 0;
+}
+
+static int rk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oob_region)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+
+ if (section)
+ return -ERANGE;
+
+ oob_region->length = mtd->oobsize - rknand->metadata_size;
+ oob_region->offset = rknand->metadata_size;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops rk_nfc_ooblayout_ops = {
+ .free = rk_nfc_ooblayout_free,
+ .ecc = rk_nfc_ooblayout_ecc,
+};
+
+static int rk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ const u8 *strengths = nfc->cfg->ecc_strengths;
+ u8 max_strength, nfc_max_strength;
+ int i;
+
+ nfc_max_strength = nfc->cfg->ecc_strengths[0];
+ /* If optional dt settings not present. */
+ if (!ecc->size || !ecc->strength ||
+ ecc->strength > nfc_max_strength) {
+ chip->ecc.size = 1024;
+ ecc->steps = mtd->writesize / ecc->size;
+
+ /*
+ * HW ECC always requests the number of ECC bytes per 1024 byte
+ * blocks. The first 4 OOB bytes are reserved for sys data.
+ */
+ max_strength = ((mtd->oobsize / ecc->steps) - 4) * 8 /
+ fls(8 * 1024);
+ if (max_strength > nfc_max_strength)
+ max_strength = nfc_max_strength;
+
+ for (i = 0; i < 4; i++) {
+ if (max_strength >= strengths[i])
+ break;
+ }
+
+ if (i >= 4) {
+ dev_err(nfc->dev, "unsupported ECC strength\n");
+ return -EOPNOTSUPP;
+ }
+
+ ecc->strength = strengths[i];
+ }
+ ecc->steps = mtd->writesize / ecc->size;
+ ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * chip->ecc.size), 8);
+
+ return 0;
+}
+
+static int rk_nfc_attach_chip(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct device *dev = mtd->dev.parent;
+ struct rk_nfc *nfc = nand_get_controller_data(chip);
+ struct rk_nfc_nand_chip *rknand = rk_nfc_to_rknand(chip);
+ struct nand_ecc_ctrl *ecc = &chip->ecc;
+ int new_page_len, new_oob_len;
+ void *buf;
+ int ret;
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ dev_err(dev, "16 bits bus width not supported");
+ return -EINVAL;
+ }
+
+ if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
+ return 0;
+
+ ret = rk_nfc_ecc_init(dev, mtd);
+ if (ret)
+ return ret;
+
+ rknand->metadata_size = NFC_SYS_DATA_SIZE * ecc->steps;
+
+ if (rknand->metadata_size < NFC_SYS_DATA_SIZE + 2) {
+ dev_err(dev,
+ "driver needs at least %d bytes of meta data\n",
+ NFC_SYS_DATA_SIZE + 2);
+ return -EIO;
+ }
+
+ /* Check buffer first, avoid duplicate alloc buffer. */
+ new_page_len = mtd->writesize + mtd->oobsize;
+ if (nfc->page_buf && new_page_len > nfc->page_buf_size) {
+ buf = krealloc(nfc->page_buf, new_page_len,
+ GFP_KERNEL | GFP_DMA);
+ if (!buf)
+ return -ENOMEM;
+ nfc->page_buf = buf;
+ nfc->page_buf_size = new_page_len;
+ }
+
+ new_oob_len = ecc->steps * NFC_MAX_OOB_PER_STEP;
+ if (nfc->oob_buf && new_oob_len > nfc->oob_buf_size) {
+ buf = krealloc(nfc->oob_buf, new_oob_len,
+ GFP_KERNEL | GFP_DMA);
+ if (!buf) {
+ kfree(nfc->page_buf);
+ nfc->page_buf = NULL;
+ return -ENOMEM;
+ }
+ nfc->oob_buf = buf;
+ nfc->oob_buf_size = new_oob_len;
+ }
+
+ if (!nfc->page_buf) {
+ nfc->page_buf = kzalloc(new_page_len, GFP_KERNEL | GFP_DMA);
+ if (!nfc->page_buf)
+ return -ENOMEM;
+ nfc->page_buf_size = new_page_len;
+ }
+
+ if (!nfc->oob_buf) {
+ nfc->oob_buf = kzalloc(new_oob_len, GFP_KERNEL | GFP_DMA);
+ if (!nfc->oob_buf) {
+ kfree(nfc->page_buf);
+ nfc->page_buf = NULL;
+ return -ENOMEM;
+ }
+ nfc->oob_buf_size = new_oob_len;
+ }
+
+ chip->ecc.write_page_raw = rk_nfc_write_page_raw;
+ chip->ecc.write_page = rk_nfc_write_page_hwecc;
+ chip->ecc.write_oob = rk_nfc_write_oob;
+
+ chip->ecc.read_page_raw = rk_nfc_read_page_raw;
+ chip->ecc.read_page = rk_nfc_read_page_hwecc;
+ chip->ecc.read_oob = rk_nfc_read_oob;
+
+ return 0;
+}
+
+static const struct nand_controller_ops rk_nfc_controller_ops = {
+ .attach_chip = rk_nfc_attach_chip,
+ .exec_op = rk_nfc_exec_op,
+ .setup_interface = rk_nfc_setup_interface,
+};
+
+static int rk_nfc_nand_chip_init(struct device *dev, struct rk_nfc *nfc,
+ struct device_node *np)
+{
+ struct rk_nfc_nand_chip *rknand;
+ struct nand_chip *chip;
+ struct mtd_info *mtd;
+ int nsels;
+ u32 tmp;
+ int ret;
+ int i;
+
+ if (!of_get_property(np, "reg", &nsels))
+ return -ENODEV;
+ nsels /= sizeof(u32);
+ if (!nsels || nsels > NFC_MAX_NSELS) {
+ dev_err(dev, "invalid reg property size %d\n", nsels);
+ return -EINVAL;
+ }
+
+ rknand = devm_kzalloc(dev, sizeof(*rknand) + nsels * sizeof(u8),
+ GFP_KERNEL);
+ if (!rknand)
+ return -ENOMEM;
+
+ rknand->nsels = nsels;
+ for (i = 0; i < nsels; i++) {
+ ret = of_property_read_u32_index(np, "reg", i, &tmp);
+ if (ret) {
+ dev_err(dev, "reg property failure : %d\n", ret);
+ return ret;
+ }
+
+ if (tmp >= NFC_MAX_NSELS) {
+ dev_err(dev, "invalid CS: %u\n", tmp);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+ dev_err(dev, "CS %u already assigned\n", tmp);
+ return -EINVAL;
+ }
+
+ rknand->sels[i] = tmp;
+ }
+
+ chip = &rknand->chip;
+ chip->controller = &nfc->controller;
+
+ nand_set_flash_node(chip, np);
+
+ nand_set_controller_data(chip, nfc);
+
+ chip->options |= NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
+ chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
+
+ /* Set default mode in case dt entry is missing. */
+ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
+
+ mtd = nand_to_mtd(chip);
+ mtd->owner = THIS_MODULE;
+ mtd->dev.parent = dev;
+
+ if (!mtd->name) {
+ dev_err(nfc->dev, "NAND label property is mandatory\n");
+ return -EINVAL;
+ }
+
+ mtd_set_ooblayout(mtd, &rk_nfc_ooblayout_ops);
+ rk_nfc_hw_init(nfc);
+ ret = nand_scan(chip, nsels);
+ if (ret)
+ return ret;
+
+ if (chip->options & NAND_IS_BOOT_MEDIUM) {
+ ret = of_property_read_u32(np, "rockchip,boot-blks", &tmp);
+ rknand->boot_blks = ret ? 0 : tmp;
+
+ ret = of_property_read_u32(np, "rockchip,boot-ecc-strength",
+ &tmp);
+ rknand->boot_ecc = ret ? chip->ecc.strength : tmp;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "MTD parse partition error\n");
+ nand_cleanup(chip);
+ return ret;
+ }
+
+ list_add_tail(&rknand->node, &nfc->chips);
+
+ return 0;
+}
+
+static void rk_nfc_chips_cleanup(struct rk_nfc *nfc)
+{
+ struct rk_nfc_nand_chip *rknand, *tmp;
+ struct nand_chip *chip;
+ int ret;
+
+ list_for_each_entry_safe(rknand, tmp, &nfc->chips, node) {
+ chip = &rknand->chip;
+ ret = mtd_device_unregister(nand_to_mtd(chip));
+ WARN_ON(ret);
+ nand_cleanup(chip);
+ list_del(&rknand->node);
+ }
+}
+
+static int rk_nfc_nand_chips_init(struct device *dev, struct rk_nfc *nfc)
+{
+ struct device_node *np = dev->of_node, *nand_np;
+ int nchips = of_get_child_count(np);
+ int ret;
+
+ if (!nchips || nchips > NFC_MAX_NSELS) {
+ dev_err(nfc->dev, "incorrect number of NAND chips (%d)\n",
+ nchips);
+ return -EINVAL;
+ }
+
+ for_each_child_of_node(np, nand_np) {
+ ret = rk_nfc_nand_chip_init(dev, nfc, nand_np);
+ if (ret) {
+ of_node_put(nand_np);
+ rk_nfc_chips_cleanup(nfc);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static struct nfc_cfg nfc_v6_cfg = {
+ .type = NFC_V6,
+ .ecc_strengths = {60, 40, 24, 16},
+ .ecc_cfgs = {
+ 0x00040011, 0x00040001, 0x00000011, 0x00000001,
+ },
+ .flctl_off = 0x08,
+ .bchctl_off = 0x0C,
+ .dma_cfg_off = 0x10,
+ .dma_data_buf_off = 0x14,
+ .dma_oob_buf_off = 0x18,
+ .dma_st_off = 0x1C,
+ .bch_st_off = 0x20,
+ .randmz_off = 0x150,
+ .int_en_off = 0x16C,
+ .int_clr_off = 0x170,
+ .int_st_off = 0x174,
+ .oob0_off = 0x200,
+ .oob1_off = 0x230,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 27,
+ .high_mask = 0x1,
+ },
+ .ecc1 = {
+ .err_flag_bit = 15,
+ .low = 16,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 29,
+ .high_mask = 0x1,
+ },
+};
+
+static struct nfc_cfg nfc_v8_cfg = {
+ .type = NFC_V8,
+ .ecc_strengths = {16, 16, 16, 16},
+ .ecc_cfgs = {
+ 0x00000001, 0x00000001, 0x00000001, 0x00000001,
+ },
+ .flctl_off = 0x08,
+ .bchctl_off = 0x0C,
+ .dma_cfg_off = 0x10,
+ .dma_data_buf_off = 0x14,
+ .dma_oob_buf_off = 0x18,
+ .dma_st_off = 0x1C,
+ .bch_st_off = 0x20,
+ .randmz_off = 0x150,
+ .int_en_off = 0x16C,
+ .int_clr_off = 0x170,
+ .int_st_off = 0x174,
+ .oob0_off = 0x200,
+ .oob1_off = 0x230,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 27,
+ .high_mask = 0x1,
+ },
+ .ecc1 = {
+ .err_flag_bit = 15,
+ .low = 16,
+ .low_mask = 0x1F,
+ .low_bn = 5,
+ .high = 29,
+ .high_mask = 0x1,
+ },
+};
+
+static struct nfc_cfg nfc_v9_cfg = {
+ .type = NFC_V9,
+ .ecc_strengths = {70, 60, 40, 16},
+ .ecc_cfgs = {
+ 0x00000001, 0x06000001, 0x04000001, 0x02000001,
+ },
+ .flctl_off = 0x10,
+ .bchctl_off = 0x20,
+ .dma_cfg_off = 0x30,
+ .dma_data_buf_off = 0x34,
+ .dma_oob_buf_off = 0x38,
+ .dma_st_off = 0x3C,
+ .bch_st_off = 0x150,
+ .randmz_off = 0x208,
+ .int_en_off = 0x120,
+ .int_clr_off = 0x124,
+ .int_st_off = 0x128,
+ .oob0_off = 0x200,
+ .oob1_off = 0x204,
+ .ecc0 = {
+ .err_flag_bit = 2,
+ .low = 3,
+ .low_mask = 0x7F,
+ .low_bn = 7,
+ .high = 0,
+ .high_mask = 0x0,
+ },
+ .ecc1 = {
+ .err_flag_bit = 18,
+ .low = 19,
+ .low_mask = 0x7F,
+ .low_bn = 7,
+ .high = 0,
+ .high_mask = 0x0,
+ },
+};
+
+static const struct of_device_id rk_nfc_id_table[] = {
+ {
+ .compatible = "rockchip,px30-nfc",
+ .data = &nfc_v9_cfg
+ },
+ {
+ .compatible = "rockchip,rk2928-nfc",
+ .data = &nfc_v6_cfg
+ },
+ {
+ .compatible = "rockchip,rv1108-nfc",
+ .data = &nfc_v8_cfg
+ },
+ { /* sentinel */ }
+};
+MODULE_DEVICE_TABLE(of, rk_nfc_id_table);
+
+static int rk_nfc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct rk_nfc *nfc;
+ int ret, irq;
+
+ nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nand_controller_init(&nfc->controller);
+ INIT_LIST_HEAD(&nfc->chips);
+ nfc->controller.ops = &rk_nfc_controller_ops;
+
+ nfc->cfg = of_device_get_match_data(dev);
+ nfc->dev = dev;
+
+ init_completion(&nfc->done);
+
+ nfc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(nfc->regs)) {
+ ret = PTR_ERR(nfc->regs);
+ goto release_nfc;
+ }
+
+ nfc->nfc_clk = devm_clk_get(dev, "nfc");
+ if (IS_ERR(nfc->nfc_clk)) {
+ dev_dbg(dev, "no NFC clk\n");
+ /* Some earlier models, such as rk3066, have no NFC clk. */
+ }
+
+ nfc->ahb_clk = devm_clk_get(dev, "ahb");
+ if (IS_ERR(nfc->ahb_clk)) {
+ dev_err(dev, "no ahb clk\n");
+ ret = PTR_ERR(nfc->ahb_clk);
+ goto release_nfc;
+ }
+
+ ret = rk_nfc_enable_clks(dev, nfc);
+ if (ret)
+ goto release_nfc;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0) {
+ dev_err(dev, "no NFC irq resource\n");
+ ret = -EINVAL;
+ goto clk_disable;
+ }
+
+ writel(0, nfc->regs + nfc->cfg->int_en_off);
+ ret = devm_request_irq(dev, irq, rk_nfc_irq, 0x0, "rk-nand", nfc);
+ if (ret) {
+ dev_err(dev, "failed to request NFC irq\n");
+ goto clk_disable;
+ }
+
+ platform_set_drvdata(pdev, nfc);
+
+ ret = rk_nfc_nand_chips_init(dev, nfc);
+ if (ret) {
+ dev_err(dev, "failed to init NAND chips\n");
+ goto clk_disable;
+ }
+ return 0;
+
+clk_disable:
+ rk_nfc_disable_clks(nfc);
+release_nfc:
+ return ret;
+}
+
+static int rk_nfc_remove(struct platform_device *pdev)
+{
+ struct rk_nfc *nfc = platform_get_drvdata(pdev);
+
+ kfree(nfc->page_buf);
+ kfree(nfc->oob_buf);
+ rk_nfc_chips_cleanup(nfc);
+ rk_nfc_disable_clks(nfc);
+
+ return 0;
+}
+
+static int __maybe_unused rk_nfc_suspend(struct device *dev)
+{
+ struct rk_nfc *nfc = dev_get_drvdata(dev);
+
+ rk_nfc_disable_clks(nfc);
+
+ return 0;
+}
+
+static int __maybe_unused rk_nfc_resume(struct device *dev)
+{
+ struct rk_nfc *nfc = dev_get_drvdata(dev);
+ struct rk_nfc_nand_chip *rknand;
+ struct nand_chip *chip;
+ int ret;
+ u32 i;
+
+ ret = rk_nfc_enable_clks(dev, nfc);
+ if (ret)
+ return ret;
+
+ /* Reset NAND chip if VCC was powered off. */
+ list_for_each_entry(rknand, &nfc->chips, node) {
+ chip = &rknand->chip;
+ for (i = 0; i < rknand->nsels; i++)
+ nand_reset(chip, i);
+ }
+
+ return 0;
+}
+
+static const struct dev_pm_ops rk_nfc_pm_ops = {
+ SET_SYSTEM_SLEEP_PM_OPS(rk_nfc_suspend, rk_nfc_resume)
+};
+
+static struct platform_driver rk_nfc_driver = {
+ .probe = rk_nfc_probe,
+ .remove = rk_nfc_remove,
+ .driver = {
+ .name = "rockchip-nfc",
+ .of_match_table = rk_nfc_id_table,
+ .pm = &rk_nfc_pm_ops,
+ },
+};
+
+module_platform_driver(rk_nfc_driver);
+
+MODULE_LICENSE("Dual MIT/GPL");
+MODULE_AUTHOR("Yifeng Zhao <yifeng.zhao@rock-chips.com>");
+MODULE_DESCRIPTION("Rockchip Nand Flash Controller Driver");
+MODULE_ALIAS("platform:rockchip-nand-controller");
diff --git a/drivers/mtd/nand/raw/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c
index fbd0fa48e063..f0a4535c812a 100644
--- a/drivers/mtd/nand/raw/s3c2410.c
+++ b/drivers/mtd/nand/raw/s3c2410.c
@@ -30,7 +30,6 @@
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/platform_data/mtd-nand-s3c2410.h>
@@ -134,7 +133,8 @@ enum s3c_nand_clk_state {
/**
* struct s3c2410_nand_info - NAND controller state.
- * @mtds: An array of MTD instances on this controoler.
+ * @controller: Base controller structure.
+ * @mtds: An array of MTD instances on this controller.
* @platform: The platform data for this board.
* @device: The platform device we bound to.
* @clk: The clock resource for this controller.
@@ -146,6 +146,7 @@ enum s3c_nand_clk_state {
* @clk_rate: The clock rate from @clk.
* @clk_state: The current clock state.
* @cpu_type: The exact type of this controller.
+ * @freq_transition: CPUFreq notifier block
*/
struct s3c2410_nand_info {
/* mtd info */
diff --git a/drivers/mtd/nand/raw/sharpsl.c b/drivers/mtd/nand/raw/sharpsl.c
index af98bcc9d689..5612ee628425 100644
--- a/drivers/mtd/nand/raw/sharpsl.c
+++ b/drivers/mtd/nand/raw/sharpsl.c
@@ -12,7 +12,6 @@
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/sharpsl.h>
#include <linux/interrupt.h>
@@ -107,7 +106,7 @@ static int sharpsl_attach_chip(struct nand_chip *chip)
chip->ecc.strength = 1;
chip->ecc.hwctl = sharpsl_nand_enable_hwecc;
chip->ecc.calculate = sharpsl_nand_calculate_ecc;
- chip->ecc.correct = nand_correct_data;
+ chip->ecc.correct = rawnand_sw_hamming_correct;
return 0;
}
diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
index 2a7ca3072f35..923a9e236fcf 100644
--- a/drivers/mtd/nand/raw/sunxi_nand.c
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -51,6 +51,7 @@
#define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4))
#define NFC_REG_SPARE_AREA 0x00A0
#define NFC_REG_PAT_ID 0x00A4
+#define NFC_REG_MDMA_ADDR 0x00C0
#define NFC_REG_MDMA_CNT 0x00C4
#define NFC_RAM0_BASE 0x0400
#define NFC_RAM1_BASE 0x0800
@@ -182,6 +183,7 @@ struct sunxi_nand_hw_ecc {
*
* @node: used to store NAND chips into a list
* @nand: base NAND chip structure
+ * @ecc: ECC controller structure
* @clk_rate: clk_rate required for this NAND chip
* @timing_cfg: TIMING_CFG register value for this NAND chip
* @timing_ctl: TIMING_CTL register value for this NAND chip
@@ -191,6 +193,7 @@ struct sunxi_nand_hw_ecc {
struct sunxi_nand_chip {
struct list_head node;
struct nand_chip nand;
+ struct sunxi_nand_hw_ecc *ecc;
unsigned long clk_rate;
u32 timing_cfg;
u32 timing_ctl;
@@ -207,13 +210,13 @@ static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
* NAND Controller capabilities structure: stores NAND controller capabilities
* for distinction between compatible strings.
*
- * @extra_mbus_conf: Contrary to A10, A10s and A13, accessing internal RAM
+ * @has_mdma: Use mbus dma mode, otherwise general dma
* through MBUS on A23/A33 needs extra configuration.
* @reg_io_data: I/O data register
* @dma_maxburst: DMA maxburst
*/
struct sunxi_nfc_caps {
- bool extra_mbus_conf;
+ bool has_mdma;
unsigned int reg_io_data;
unsigned int dma_maxburst;
};
@@ -233,6 +236,7 @@ struct sunxi_nfc_caps {
* controller
* @complete: a completion object used to wait for NAND controller events
* @dmac: the DMA channel attached to the NAND controller
+ * @caps: NAND Controller capabilities
*/
struct sunxi_nfc {
struct nand_controller controller;
@@ -363,24 +367,31 @@ static int sunxi_nfc_dma_op_prepare(struct sunxi_nfc *nfc, const void *buf,
if (!ret)
return -ENOMEM;
- dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK);
- if (!dmad) {
- ret = -EINVAL;
- goto err_unmap_buf;
+ if (!nfc->caps->has_mdma) {
+ dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK);
+ if (!dmad) {
+ ret = -EINVAL;
+ goto err_unmap_buf;
+ }
}
writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD,
nfc->regs + NFC_REG_CTL);
writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM);
writel(chunksize, nfc->regs + NFC_REG_CNT);
- if (nfc->caps->extra_mbus_conf)
- writel(chunksize * nchunks, nfc->regs + NFC_REG_MDMA_CNT);
- dmat = dmaengine_submit(dmad);
+ if (nfc->caps->has_mdma) {
+ writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_DMA_TYPE_NORMAL,
+ nfc->regs + NFC_REG_CTL);
+ writel(chunksize * nchunks, nfc->regs + NFC_REG_MDMA_CNT);
+ writel(sg_dma_address(sg), nfc->regs + NFC_REG_MDMA_ADDR);
+ } else {
+ dmat = dmaengine_submit(dmad);
- ret = dma_submit_error(dmat);
- if (ret)
- goto err_clr_dma_flag;
+ ret = dma_submit_error(dmat);
+ if (ret)
+ goto err_clr_dma_flag;
+ }
return 0;
@@ -676,15 +687,15 @@ static void sunxi_nfc_randomizer_read_buf(struct nand_chip *nand, uint8_t *buf,
static void sunxi_nfc_hw_ecc_enable(struct nand_chip *nand)
{
+ struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
- struct sunxi_nand_hw_ecc *data = nand->ecc.priv;
u32 ecc_ctl;
ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL);
ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE |
NFC_ECC_BLOCK_SIZE_MSK);
- ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION |
- NFC_ECC_PIPELINE;
+ ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(sunxi_nand->ecc->mode) |
+ NFC_ECC_EXCEPTION | NFC_ECC_PIPELINE;
if (nand->ecc.size == 512)
ecc_ctl |= NFC_ECC_BLOCK_512;
@@ -911,7 +922,7 @@ static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf
unsigned int max_bitflips = 0;
int ret, i, raw_mode = 0;
struct scatterlist sg;
- u32 status;
+ u32 status, wait;
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
@@ -929,13 +940,18 @@ static int sunxi_nfc_hw_ecc_read_chunks_dma(struct nand_chip *nand, uint8_t *buf
writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) |
NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET);
- dma_async_issue_pending(nfc->dmac);
+ wait = NFC_CMD_INT_FLAG;
+
+ if (nfc->caps->has_mdma)
+ wait |= NFC_DMA_INT_FLAG;
+ else
+ dma_async_issue_pending(nfc->dmac);
writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS,
nfc->regs + NFC_REG_CMD);
- ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
- if (ret)
+ ret = sunxi_nfc_wait_events(nfc, wait, false, 0);
+ if (ret && !nfc->caps->has_mdma)
dmaengine_terminate_all(nfc->dmac);
sunxi_nfc_randomizer_disable(nand);
@@ -1276,6 +1292,7 @@ static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand,
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
struct nand_ecc_ctrl *ecc = &nand->ecc;
struct scatterlist sg;
+ u32 wait;
int ret, i;
sunxi_nfc_select_chip(nand, nand->cur_cs);
@@ -1304,14 +1321,19 @@ static int sunxi_nfc_hw_ecc_write_page_dma(struct nand_chip *nand,
writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG,
nfc->regs + NFC_REG_WCMD_SET);
- dma_async_issue_pending(nfc->dmac);
+ wait = NFC_CMD_INT_FLAG;
+
+ if (nfc->caps->has_mdma)
+ wait |= NFC_DMA_INT_FLAG;
+ else
+ dma_async_issue_pending(nfc->dmac);
writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD |
NFC_DATA_TRANS | NFC_ACCESS_DIR,
nfc->regs + NFC_REG_CMD);
- ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0);
- if (ret)
+ ret = sunxi_nfc_wait_events(nfc, wait, false, 0);
+ if (ret && !nfc->caps->has_mdma)
dmaengine_terminate_all(nfc->dmac);
sunxi_nfc_randomizer_disable(nand);
@@ -1597,9 +1619,9 @@ static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = {
.free = sunxi_nand_ooblayout_free,
};
-static void sunxi_nand_hw_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
+static void sunxi_nand_hw_ecc_ctrl_cleanup(struct sunxi_nand_chip *sunxi_nand)
{
- kfree(ecc->priv);
+ kfree(sunxi_nand->ecc);
}
static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
@@ -1607,10 +1629,10 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
struct device_node *np)
{
static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
+ struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller);
struct mtd_info *mtd = nand_to_mtd(nand);
struct nand_device *nanddev = mtd_to_nanddev(mtd);
- struct sunxi_nand_hw_ecc *data;
int nsectors;
int ret;
int i;
@@ -1647,8 +1669,8 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
if (ecc->size != 512 && ecc->size != 1024)
return -EINVAL;
- data = kzalloc(sizeof(*data), GFP_KERNEL);
- if (!data)
+ sunxi_nand->ecc = kzalloc(sizeof(*sunxi_nand->ecc), GFP_KERNEL);
+ if (!sunxi_nand->ecc)
return -ENOMEM;
/* Prefer 1k ECC chunk over 512 ones */
@@ -1675,7 +1697,7 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
goto err;
}
- data->mode = i;
+ sunxi_nand->ecc->mode = i;
/* HW ECC always request ECC bytes for 1024 bytes blocks */
ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
@@ -1693,9 +1715,8 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
ecc->read_oob = sunxi_nfc_hw_ecc_read_oob;
ecc->write_oob = sunxi_nfc_hw_ecc_write_oob;
mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops);
- ecc->priv = data;
- if (nfc->dmac) {
+ if (nfc->dmac || nfc->caps->has_mdma) {
ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma;
ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma;
ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma;
@@ -1714,16 +1735,18 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct nand_chip *nand,
return 0;
err:
- kfree(data);
+ kfree(sunxi_nand->ecc);
return ret;
}
-static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
+static void sunxi_nand_ecc_cleanup(struct sunxi_nand_chip *sunxi_nand)
{
+ struct nand_ecc_ctrl *ecc = &sunxi_nand->nand.ecc;
+
switch (ecc->engine_type) {
case NAND_ECC_ENGINE_TYPE_ON_HOST:
- sunxi_nand_hw_ecc_ctrl_cleanup(ecc);
+ sunxi_nand_hw_ecc_ctrl_cleanup(sunxi_nand);
break;
case NAND_ECC_ENGINE_TYPE_NONE:
default:
@@ -2053,11 +2076,41 @@ static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
- sunxi_nand_ecc_cleanup(&chip->ecc);
+ sunxi_nand_ecc_cleanup(sunxi_nand);
list_del(&sunxi_nand->node);
}
}
+static int sunxi_nfc_dma_init(struct sunxi_nfc *nfc, struct resource *r)
+{
+ int ret;
+
+ if (nfc->caps->has_mdma)
+ return 0;
+
+ nfc->dmac = dma_request_chan(nfc->dev, "rxtx");
+ if (IS_ERR(nfc->dmac)) {
+ ret = PTR_ERR(nfc->dmac);
+ if (ret == -EPROBE_DEFER)
+ return ret;
+
+ /* Ignore errors to fall back to PIO mode */
+ dev_warn(nfc->dev, "failed to request rxtx DMA channel: %d\n", ret);
+ nfc->dmac = NULL;
+ } else {
+ struct dma_slave_config dmac_cfg = { };
+
+ dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data;
+ dmac_cfg.dst_addr = dmac_cfg.src_addr;
+ dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width;
+ dmac_cfg.src_maxburst = nfc->caps->dma_maxburst;
+ dmac_cfg.dst_maxburst = nfc->caps->dma_maxburst;
+ dmaengine_slave_config(nfc->dmac, &dmac_cfg);
+ }
+ return 0;
+}
+
static int sunxi_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
@@ -2132,30 +2185,10 @@ static int sunxi_nfc_probe(struct platform_device *pdev)
if (ret)
goto out_ahb_reset_reassert;
- nfc->dmac = dma_request_chan(dev, "rxtx");
- if (IS_ERR(nfc->dmac)) {
- ret = PTR_ERR(nfc->dmac);
- if (ret == -EPROBE_DEFER)
- goto out_ahb_reset_reassert;
-
- /* Ignore errors to fall back to PIO mode */
- dev_warn(dev, "failed to request rxtx DMA channel: %d\n", ret);
- nfc->dmac = NULL;
- } else {
- struct dma_slave_config dmac_cfg = { };
-
- dmac_cfg.src_addr = r->start + nfc->caps->reg_io_data;
- dmac_cfg.dst_addr = dmac_cfg.src_addr;
- dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
- dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width;
- dmac_cfg.src_maxburst = nfc->caps->dma_maxburst;
- dmac_cfg.dst_maxburst = nfc->caps->dma_maxburst;
- dmaengine_slave_config(nfc->dmac, &dmac_cfg);
+ ret = sunxi_nfc_dma_init(nfc, r);
- if (nfc->caps->extra_mbus_conf)
- writel(readl(nfc->regs + NFC_REG_CTL) |
- NFC_DMA_TYPE_NORMAL, nfc->regs + NFC_REG_CTL);
- }
+ if (ret)
+ goto out_ahb_reset_reassert;
platform_set_drvdata(pdev, nfc);
@@ -2202,7 +2235,7 @@ static const struct sunxi_nfc_caps sunxi_nfc_a10_caps = {
};
static const struct sunxi_nfc_caps sunxi_nfc_a23_caps = {
- .extra_mbus_conf = true,
+ .has_mdma = true,
.reg_io_data = NFC_REG_A23_IO_DATA,
.dma_maxburst = 8,
};
diff --git a/drivers/mtd/nand/raw/tmio_nand.c b/drivers/mtd/nand/raw/tmio_nand.c
index aa6c7e7bbf1b..de8e919d0ebe 100644
--- a/drivers/mtd/nand/raw/tmio_nand.c
+++ b/drivers/mtd/nand/raw/tmio_nand.c
@@ -35,7 +35,6 @@
#include <linux/ioport.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/slab.h>
@@ -293,11 +292,11 @@ static int tmio_nand_correct_data(struct nand_chip *chip, unsigned char *buf,
int r0, r1;
/* assume ecc.size = 512 and ecc.bytes = 6 */
- r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256, false);
+ r0 = rawnand_sw_hamming_correct(chip, buf, read_ecc, calc_ecc);
if (r0 < 0)
return r0;
- r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256,
- false);
+ r1 = rawnand_sw_hamming_correct(chip, buf + 256, read_ecc + 3,
+ calc_ecc + 3);
if (r1 < 0)
return r1;
return r0 + r1;
diff --git a/drivers/mtd/nand/raw/txx9ndfmc.c b/drivers/mtd/nand/raw/txx9ndfmc.c
index fe8ed2441588..1a9449e53bf9 100644
--- a/drivers/mtd/nand/raw/txx9ndfmc.c
+++ b/drivers/mtd/nand/raw/txx9ndfmc.c
@@ -14,7 +14,6 @@
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
-#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <linux/platform_data/txx9/ndfmc.h>
@@ -194,8 +193,8 @@ static int txx9ndfmc_correct_data(struct nand_chip *chip, unsigned char *buf,
int stat;
for (eccsize = chip->ecc.size; eccsize > 0; eccsize -= 256) {
- stat = __nand_correct_data(buf, read_ecc, calc_ecc, 256,
- false);
+ stat = rawnand_sw_hamming_correct(chip, buf, read_ecc,
+ calc_ecc);
if (stat < 0)
return stat;
corrected += stat;