summaryrefslogtreecommitdiff
path: root/kernel/locking/mutex.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/locking/mutex.c')
-rw-r--r--kernel/locking/mutex.c39
1 files changed, 20 insertions, 19 deletions
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index acca2c1a3c5e..ae712b25e492 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -46,12 +46,6 @@
# include <asm/mutex.h>
#endif
-/*
- * A negative mutex count indicates that waiters are sleeping waiting for the
- * mutex.
- */
-#define MUTEX_SHOW_NO_WAITER(mutex) (atomic_read(&(mutex)->count) >= 0)
-
void
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
{
@@ -152,7 +146,7 @@ int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
if (need_resched())
break;
- arch_mutex_cpu_relax();
+ cpu_relax_lowlatency();
}
rcu_read_unlock();
@@ -388,12 +382,10 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
/*
* Optimistic spinning.
*
- * We try to spin for acquisition when we find that there are no
- * pending waiters and the lock owner is currently running on a
- * (different) CPU.
- *
- * The rationale is that if the lock owner is running, it is likely to
- * release the lock soon.
+ * We try to spin for acquisition when we find that the lock owner
+ * is currently running on a (different) CPU and while we don't
+ * need to reschedule. The rationale is that if the lock owner is
+ * running, it is likely to release the lock soon.
*
* Since this needs the lock owner, and this mutex implementation
* doesn't track the owner atomically in the lock field, we need to
@@ -440,7 +432,8 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
if (owner && !mutex_spin_on_owner(lock, owner))
break;
- if ((atomic_read(&lock->count) == 1) &&
+ /* Try to acquire the mutex if it is unlocked. */
+ if (!mutex_is_locked(lock) &&
(atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
lock_acquired(&lock->dep_map, ip);
if (use_ww_ctx) {
@@ -471,7 +464,7 @@ __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
* memory barriers as we'll eventually observe the right
* values at the cost of a few extra spins.
*/
- arch_mutex_cpu_relax();
+ cpu_relax_lowlatency();
}
osq_unlock(&lock->osq);
slowpath:
@@ -485,8 +478,11 @@ slowpath:
#endif
spin_lock_mutex(&lock->wait_lock, flags);
- /* once more, can we acquire the lock? */
- if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1))
+ /*
+ * Once more, try to acquire the lock. Only try-lock the mutex if
+ * it is unlocked to reduce unnecessary xchg() operations.
+ */
+ if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
goto skip_wait;
debug_mutex_lock_common(lock, &waiter);
@@ -506,9 +502,10 @@ slowpath:
* it's unlocked. Later on, if we sleep, this is the
* operation that gives us the lock. We xchg it to -1, so
* that when we release the lock, we properly wake up the
- * other waiters:
+ * other waiters. We only attempt the xchg if the count is
+ * non-negative in order to avoid unnecessary xchg operations:
*/
- if (MUTEX_SHOW_NO_WAITER(lock) &&
+ if (atomic_read(&lock->count) >= 0 &&
(atomic_xchg(&lock->count, -1) == 1))
break;
@@ -823,6 +820,10 @@ static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
unsigned long flags;
int prev;
+ /* No need to trylock if the mutex is locked. */
+ if (mutex_is_locked(lock))
+ return 0;
+
spin_lock_mutex(&lock->wait_lock, flags);
prev = atomic_xchg(&lock->count, -1);