Age | Commit message (Collapse) | Author |
|
When zapping a GFN range, pass 0 => ALL_ONES for the to-be-invalidated
range to effectively block all page faults while the zap is in-progress.
The invalidation helpers take a host virtual address, whereas zapping a
GFN obviously provides a guest physical address and with the wrong unit
of measurement (frame vs. byte).
Alternatively, KVM could walk all memslots to get the associated HVAs,
but thanks to SMM, that would require multiple lookups. And practically
speaking, kvm_zap_gfn_range() usage is quite rare and not a hot path,
e.g. MTRR and CR0.CD are almost guaranteed to be done only on vCPU0
during boot, and APICv inhibits are similarly infrequent operations.
Fixes: edb298c663fc ("KVM: x86/mmu: bump mmu notifier count in kvm_zap_gfn_range")
Reported-by: Chao Peng <chao.p.peng@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221111001841.2412598-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm updates from Paolo Bonzini:
"The first batch of KVM patches, mostly covering x86.
ARM:
- Account stage2 page table allocations in memory stats
x86:
- Account EPT/NPT arm64 page table allocations in memory stats
- Tracepoint cleanups/fixes for nested VM-Enter and emulated MSR
accesses
- Drop eVMCS controls filtering for KVM on Hyper-V, all known
versions of Hyper-V now support eVMCS fields associated with
features that are enumerated to the guest
- Use KVM's sanitized VMCS config as the basis for the values of
nested VMX capabilities MSRs
- A myriad event/exception fixes and cleanups. Most notably, pending
exceptions morph into VM-Exits earlier, as soon as the exception is
queued, instead of waiting until the next vmentry. This fixed a
longstanding issue where the exceptions would incorrecly become
double-faults instead of triggering a vmexit; the common case of
page-fault vmexits had a special workaround, but now it's fixed for
good
- A handful of fixes for memory leaks in error paths
- Cleanups for VMREAD trampoline and VMX's VM-Exit assembly flow
- Never write to memory from non-sleepable kvm_vcpu_check_block()
- Selftests refinements and cleanups
- Misc typo cleanups
Generic:
- remove KVM_REQ_UNHALT"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (94 commits)
KVM: remove KVM_REQ_UNHALT
KVM: mips, x86: do not rely on KVM_REQ_UNHALT
KVM: x86: never write to memory from kvm_vcpu_check_block()
KVM: x86: Don't snapshot pending INIT/SIPI prior to checking nested events
KVM: nVMX: Make event request on VMXOFF iff INIT/SIPI is pending
KVM: nVMX: Make an event request if INIT or SIPI is pending on VM-Enter
KVM: SVM: Make an event request if INIT or SIPI is pending when GIF is set
KVM: x86: lapic does not have to process INIT if it is blocked
KVM: x86: Rename kvm_apic_has_events() to make it INIT/SIPI specific
KVM: x86: Rename and expose helper to detect if INIT/SIPI are allowed
KVM: nVMX: Make an event request when pending an MTF nested VM-Exit
KVM: x86: make vendor code check for all nested events
mailmap: Update Oliver's email address
KVM: x86: Allow force_emulation_prefix to be written without a reload
KVM: selftests: Add an x86-only test to verify nested exception queueing
KVM: selftests: Use uapi header to get VMX and SVM exit reasons/codes
KVM: x86: Rename inject_pending_events() to kvm_check_and_inject_events()
KVM: VMX: Update MTF and ICEBP comments to document KVM's subtle behavior
KVM: x86: Treat pending TRIPLE_FAULT requests as pending exceptions
KVM: x86: Morph pending exceptions to pending VM-Exits at queue time
...
|
|
Delete the redundant word 'to'.
Signed-off-by: Jilin Yuan <yuanjilin@cdjrlc.com>
Link: https://lore.kernel.org/r/20220831125217.12313-1-yuanjilin@cdjrlc.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently, kvm_page_fault trace point provide fault_address and error
code. However it is not enough to find which cpu and instruction
cause kvm_page_faults. So add vcpu id and instruction pointer in
kvm_page_fault trace point.
Cc: Baik Song An <bsahn@etri.re.kr>
Cc: Hong Yeon Kim <kimhy@etri.re.kr>
Cc: Taeung Song <taeung@reallinux.co.kr>
Cc: linuxgeek@linuxgeek.io
Signed-off-by: Wonhyuk Yang <vvghjk1234@gmail.com>
Link: https://lore.kernel.org/r/20220510071001.87169-1-vvghjk1234@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The update to statistic max_mmu_rmap_size is unintentionally removed by
commit 4293ddb788c1 ("KVM: x86/mmu: Remove redundant spte present check
in mmu_set_spte"). Add missing update to it or max_mmu_rmap_size will
always be nonsensical 0.
Fixes: 4293ddb788c1 ("KVM: x86/mmu: Remove redundant spte present check in mmu_set_spte")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Message-Id: <20220907080657.42898-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Count the pages used by KVM mmu on x86 in memory stats under secondary
pagetable stats (e.g. "SecPageTables" in /proc/meminfo) to give better
visibility into the memory consumption of KVM mmu in a similar way to
how normal user page tables are accounted.
Add the inner helper in common KVM, ARM will also use it to count stats
in a future commit.
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Marc Zyngier <maz@kernel.org> # generic KVM changes
Link: https://lore.kernel.org/r/20220823004639.2387269-3-yosryahmed@google.com
Link: https://lore.kernel.org/r/20220823004639.2387269-4-yosryahmed@google.com
[sean: squash x86 usage to workaround modpost issues]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When register_shrinker() fails, KVM doesn't release the percpu counter
kvm_total_used_mmu_pages leading to memoryleak. Fix this issue by calling
percpu_counter_destroy() when register_shrinker() fails.
Fixes: ab271bd4dfd5 ("x86: kvm: propagate register_shrinker return code")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Link: https://lore.kernel.org/r/20220823063237.47299-1-linmiaohe@huawei.com
[sean: tweak shortlog and changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
When A/D bits are not available, KVM uses a software access tracking
mechanism, which involves making the SPTEs inaccessible. However,
the clear_young() MMU notifier does not flush TLBs. So it is possible
that there may still be stale, potentially writable, TLB entries.
This is usually fine, but can be problematic when enabling dirty
logging, because it currently only does a TLB flush if any SPTEs were
modified. But if all SPTEs are in access-tracked state, then there
won't be a TLB flush, which means that the guest could still possibly
write to memory and not have it reflected in the dirty bitmap.
So just unconditionally flush the TLBs when enabling dirty logging.
As an alternative, KVM could explicitly check the MMU-Writable bit when
write-protecting SPTEs to decide if a flush is needed (instead of
checking the Writable bit), but given that a flush almost always happens
anyway, so just making it unconditional seems simpler.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20220810224939.2611160-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This is only used by kvm_mmu_pte_write(), which no longer actually
creates the new SPTE and instead just clears the old SPTE. So we
just need to check if the old SPTE was shadow-present instead of
calling need_remote_flush(). Hence we can drop this function. It was
incomplete anyway as it didn't take access-tracking into account.
This patch should not result in any functional change.
Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220723024316.2725328-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The motivation of this renaming is to make these variables and related
helper functions less mmu_notifier bound and can also be used for non
mmu_notifier based page invalidation. mmu_invalidate_* was chosen to
better describe the purpose of 'invalidating' a page that those
variables are used for.
- mmu_notifier_seq/range_start/range_end are renamed to
mmu_invalidate_seq/range_start/range_end.
- mmu_notifier_retry{_hva} helper functions are renamed to
mmu_invalidate_retry{_hva}.
- mmu_notifier_count is renamed to mmu_invalidate_in_progress to
avoid confusion with mn_active_invalidate_count.
- While here, also update kvm_inc/dec_notifier_count() to
kvm_mmu_invalidate_begin/end() to match the change for
mmu_notifier_count.
No functional change intended.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-3-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add compile-time and init-time sanity checks to ensure that the MMIO SPTE
mask doesn't overlap the MMIO SPTE generation or the MMU-present bit.
The generation currently avoids using bit 63, but that's as much
coincidence as it is strictly necessarly. That will change in the future,
as TDX support will require setting bit 63 (SUPPRESS_VE) in the mask.
Explicitly carve out the bits that are allowed in the mask so that any
future shuffling of SPTE bits doesn't silently break MMIO caching (KVM
has broken MMIO caching more than once due to overlapping the generation
with other things).
Suggested-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220805194133.86299-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename the tracepoint function from trace_kvm_async_pf_doublefault() to
trace_kvm_async_pf_repeated_fault() to make it clear, since double fault
has nothing to do with this trace function.
Asynchronous Page Fault (APF) is an artifact generated by KVM when it
cannot find a physical page to satisfy an EPT violation. KVM uses APF to
tell the guest OS to do something else such as scheduling other guest
processes to make forward progress. However, when another guest process
also touches a previously APFed page, KVM halts the vCPU instead of
generating a repeated APF to avoid wasting cycles.
Double fault (#DF) clearly has a different meaning and a different
consequence when triggered. #DF requires two nested contributory exceptions
instead of two page faults faulting at the same address. A prevous bug on
APF indicates that it may trigger a double fault in the guest [1] and
clearly this trace function has nothing to do with it. So rename this
function should be a valid choice.
No functional change intended.
[1] https://www.spinics.net/lists/kvm/msg214957.html
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220807052141.69186-1-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Disable SEV-ES if MMIO caching is disabled as SEV-ES relies on MMIO SPTEs
generating #NPF(RSVD), which are reflected by the CPU into the guest as
a #VC. With SEV-ES, the untrusted host, a.k.a. KVM, doesn't have access
to the guest instruction stream or register state and so can't directly
emulate in response to a #NPF on an emulated MMIO GPA. Disabling MMIO
caching means guest accesses to emulated MMIO ranges cause #NPF(!PRESENT),
and those flavors of #NPF cause automatic VM-Exits, not #VC.
Adjust KVM's MMIO masks to account for the C-bit location prior to doing
SEV(-ES) setup, and document that dependency between adjusting the MMIO
SPTE mask and SEV(-ES) setup.
Fixes: b09763da4dd8 ("KVM: x86/mmu: Add module param to disable MMIO caching (for testing)")
Reported-by: Michael Roth <michael.roth@amd.com>
Tested-by: Michael Roth <michael.roth@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Fully re-evaluate whether or not MMIO caching can be enabled when SPTE
masks change; simply clearing enable_mmio_caching when a configuration
isn't compatible with caching fails to handle the scenario where the
masks are updated, e.g. by VMX for EPT or by SVM to account for the C-bit
location, and toggle compatibility from false=>true.
Snapshot the original module param so that re-evaluating MMIO caching
preserves userspace's desire to allow caching. Use a snapshot approach
so that enable_mmio_caching still reflects KVM's actual behavior.
Fixes: 8b9e74bfbf8c ("KVM: x86/mmu: Use enable_mmio_caching to track if MMIO caching is enabled")
Reported-by: Michael Roth <michael.roth@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220803224957.1285926-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Mark kvm_mmu_x86_module_init() with __init, the entire reason it exists
is to initialize variables when kvm.ko is loaded, i.e. it must never be
called after module initialization.
Fixes: 1d0e84806047 ("KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded")
Cc: stable@vger.kernel.org
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
|
|
The last use of 'pfn' went away with the same-named argument to
host_pfn_mapping_level; now that the hugepage level is obtained
exclusively from the host page tables, kvm_mmu_zap_collapsible_spte
does not need to know host pfns at all.
Fixes: a8ac499bb6ab ("KVM: x86/mmu: Don't require refcounted "struct page" to create huge SPTEs")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Now kvm_tdp_mmu_zap_leafs() only zaps leaf SPTEs but not any non-root
pages within that GFN range anymore, so the comment around it isn't
right.
Fix it by shifting the comment from tdp_mmu_zap_leafs() instead of
duplicating it, as tdp_mmu_zap_leafs() is static and is only called by
kvm_tdp_mmu_zap_leafs().
Opportunistically tweak the blurb about SPTEs being cleared to (a) say
"zapped" instead of "cleared" because "cleared" will be wrong if/when
KVM allows a non-zero value for non-present SPTE (i.e. for Intel TDX),
and (b) to clarify that a flush is needed if and only if a SPTE has been
zapped since MMU lock was last acquired.
Fixes: f47e5bbbc92f ("KVM: x86/mmu: Zap only TDP MMU leafs in zap range and mmu_notifier unmap")
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220728030452.484261-1-kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Treat the NX bit as valid when using NPT, as KVM will set the NX bit when
the NX huge page mitigation is enabled (mindblowing) and trigger the WARN
that fires on reserved SPTE bits being set.
KVM has required NX support for SVM since commit b26a71a1a5b9 ("KVM: SVM:
Refuse to load kvm_amd if NX support is not available") for exactly this
reason, but apparently it never occurred to anyone to actually test NPT
with the mitigation enabled.
------------[ cut here ]------------
spte = 0x800000018a600ee7, level = 2, rsvd bits = 0x800f0000001fe000
WARNING: CPU: 152 PID: 15966 at arch/x86/kvm/mmu/spte.c:215 make_spte+0x327/0x340 [kvm]
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022
RIP: 0010:make_spte+0x327/0x340 [kvm]
Call Trace:
<TASK>
tdp_mmu_map_handle_target_level+0xc3/0x230 [kvm]
kvm_tdp_mmu_map+0x343/0x3b0 [kvm]
direct_page_fault+0x1ae/0x2a0 [kvm]
kvm_tdp_page_fault+0x7d/0x90 [kvm]
kvm_mmu_page_fault+0xfb/0x2e0 [kvm]
npf_interception+0x55/0x90 [kvm_amd]
svm_invoke_exit_handler+0x31/0xf0 [kvm_amd]
svm_handle_exit+0xf6/0x1d0 [kvm_amd]
vcpu_enter_guest+0xb6d/0xee0 [kvm]
? kvm_pmu_trigger_event+0x6d/0x230 [kvm]
vcpu_run+0x65/0x2c0 [kvm]
kvm_arch_vcpu_ioctl_run+0x355/0x610 [kvm]
kvm_vcpu_ioctl+0x551/0x610 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220723013029.1753623-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When zapping collapsible SPTEs in the TDP MMU, don't bottom out on a leaf
SPTE now that KVM doesn't require a PFN to compute the host mapping level,
i.e. now that there's no need to first find a leaf SPTE and then step
back up.
Drop the now unused tdp_iter_step_up(), as it is not the safest of
helpers (using any of the low level iterators requires some understanding
of the various side effects).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715232107.3775620-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a comment to document how host_pfn_mapping_level() can be used safely,
as the line between safe and dangerous is quite thin. E.g. if KVM were
to ever support in-place promotion to create huge pages, consuming the
level is safe if the caller holds mmu_lock and checks that there's an
existing _leaf_ SPTE, but unsafe if the caller only checks that there's a
non-leaf SPTE.
Opportunistically tweak the existing comments to explicitly document why
KVM needs to use READ_ONCE().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715232107.3775620-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop the requirement that a pfn be backed by a refcounted, compound or
or ZONE_DEVICE, struct page, and instead rely solely on the host page
tables to identify huge pages. The PageCompound() check is a remnant of
an old implementation that identified (well, attempt to identify) huge
pages without walking the host page tables. The ZONE_DEVICE check was
added as an exception to the PageCompound() requirement. In other words,
neither check is actually a hard requirement, if the primary has a pfn
backed with a huge page, then KVM can back the pfn with a huge page
regardless of the backing store.
Dropping the @pfn parameter will also allow KVM to query the max host
mapping level without having to first get the pfn, which is advantageous
for use outside of the page fault path where KVM wants to take action if
and only if a page can be mapped huge, i.e. avoids the pfn lookup for
gfns that can't be backed with a huge page.
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220715232107.3775620-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Restrict the mapping level for SPTEs based on the guest MTRRs if and only
if KVM may actually use the guest MTRRs to compute the "real" memtype.
For all forms of paging, guest MTRRs are purely virtual in the sense that
they are completely ignored by hardware, i.e. they affect the memtype
only if software manually consumes them. The only scenario where KVM
consumes the guest MTRRs is when shadow_memtype_mask is non-zero and the
guest has non-coherent DMA, in all other cases KVM simply leaves the PAT
field in SPTEs as '0' to encode WB memtype.
Note, KVM may still ultimately ignore guest MTRRs, e.g. if the backing
pfn is host MMIO, but false positives are ok as they only cause a slight
performance blip (unless the guest is doing weird things with its MTRRs,
which is extremely unlikely).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220715230016.3762909-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add shadow_memtype_mask to capture that EPT needs a non-zero memtype mask
instead of relying on TDP being enabled, as NPT doesn't need a non-zero
mask. This is a glorified nop as kvm_x86_ops.get_mt_mask() returns zero
for NPT anyways.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220715230016.3762909-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove the underscores from __pte_list_remove(), the function formerly
known as pte_list_remove() is now named kvm_zap_one_rmap_spte() to show
that it zaps rmaps/PTEs, i.e. doesn't just remove an entry from a list.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename pte_list_remove() and pte_list_destroy() to kvm_zap_one_rmap_spte()
and kvm_zap_all_rmap_sptes() respectively to document that (a) they zap
SPTEs and (b) to better document how they differ (remove vs. destroy does
not exactly scream "one vs. all").
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename kvm_unmap_rmap() and kvm_zap_rmap() to kvm_zap_rmap() and
__kvm_zap_rmap() respectively to show that what was the "unmap" helper is
just a wrapper for the "zap" helper, i.e. that they do the exact same
thing, one just exists to deal with its caller passing in more params.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Rename __kvm_zap_rmaps() to kvm_rmap_zap_gfn_range() to avoid future
confusion with a soon-to-be-introduced __kvm_zap_rmap(). Using a plural
"rmaps" is somewhat ambiguous without additional context, as it's not
obvious whether it's referring to multiple rmap lists, versus multiple
rmap entries within a single list.
Use kvm_rmap_zap_gfn_range() to align with the pattern established by
kvm_rmap_zap_collapsible_sptes(), without losing the information that it
zaps only rmap-based MMUs, i.e. don't rename it to __kvm_zap_gfn_range().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Drop the trailing "p" from rmap helpers, i.e. rename functions to simply
be kvm_<action>_rmap(). Declaring that a function takes a pointer is
completely unnecessary and goes against kernel style.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use pte_list_destroy() directly when recycling rmaps instead of bouncing
through kvm_unmap_rmapp() and kvm_zap_rmapp(). Calling kvm_unmap_rmapp()
is unnecessary and odd as it requires passing dummy parameters; passing
NULL for @slot when __rmap_add() already has a valid slot is especially
weird and confusing.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Return a u64, not an int, from mmu_spte_clear_track_bits(). The return
value is the old SPTE value, which is very much a 64-bit value. The sole
caller that consumes the return value, drop_spte(), already uses a u64.
The only reason that truncating the SPTE value is not problematic is
because drop_spte() only queries the shadow-present bit, which is in the
lower 32 bits.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220715224226.3749507-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Remove a spurious closing paranthesis and tweak the comment about the
cache capacity for PTE descriptors (rmaps) eager page splitting to tone
down the assertion slightly, and to call out that topup requires dropping
mmu_lock, which is the real motivation for avoiding topup (as opposed to
memory usage).
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220712020724.1262121-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Tweak the comment above the computation of the quadrant for PG_LEVEL_4K
shadow pages to explicitly call out how and why KVM uses role.quadrant to
consume gPTE bits.
Opportunistically wrap an unnecessarily long line.
No functional change intended.
Link: https://lore.kernel.org/all/YqvWvBv27fYzOFdE@google.com
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220712020724.1262121-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add spte_index() to dedup all the code that calculates a SPTE's index
into its parent's page table and/or spt array. Opportunistically tweak
the calculation to avoid pointer arithmetic, which is subtle (subtract in
8-byte chunks) and less performant (requires the compiler to generate the
subtraction).
Suggested-by: David Matlack <dmatlack@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220712020724.1262121-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The result of gva_to_gpa() is physical address not virtual address,
it is odd that UNMAPPED_GVA macro is used as the result for physical
address. Replace UNMAPPED_GVA with INVALID_GPA and drop UNMAPPED_GVA
macro.
No functional change intended.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6104978956449467d3c68f1ad7f2c2f6d771d0ee.1656667239.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Currently shrinkers are anonymous objects. For debugging purposes they
can be identified by count/scan function names, but it's not always
useful: e.g. for superblock's shrinkers it's nice to have at least an
idea of to which superblock the shrinker belongs.
This commit adds names to shrinkers. register_shrinker() and
prealloc_shrinker() functions are extended to take a format and arguments
to master a name.
In some cases it's not possible to determine a good name at the time when
a shrinker is allocated. For such cases shrinker_debugfs_rename() is
provided.
The expected format is:
<subsystem>-<shrinker_type>[:<instance>]-<id>
For some shrinkers an instance can be encoded as (MAJOR:MINOR) pair.
After this change the shrinker debugfs directory looks like:
$ cd /sys/kernel/debug/shrinker/
$ ls
dquota-cache-16 sb-devpts-28 sb-proc-47 sb-tmpfs-42
mm-shadow-18 sb-devtmpfs-5 sb-proc-48 sb-tmpfs-43
mm-zspool:zram0-34 sb-hugetlbfs-17 sb-pstore-31 sb-tmpfs-44
rcu-kfree-0 sb-hugetlbfs-33 sb-rootfs-2 sb-tmpfs-49
sb-aio-20 sb-iomem-12 sb-securityfs-6 sb-tracefs-13
sb-anon_inodefs-15 sb-mqueue-21 sb-selinuxfs-22 sb-xfs:vda1-36
sb-bdev-3 sb-nsfs-4 sb-sockfs-8 sb-zsmalloc-19
sb-bpf-32 sb-pipefs-14 sb-sysfs-26 thp-deferred_split-10
sb-btrfs:vda2-24 sb-proc-25 sb-tmpfs-1 thp-zero-9
sb-cgroup2-30 sb-proc-39 sb-tmpfs-27 xfs-buf:vda1-37
sb-configfs-23 sb-proc-41 sb-tmpfs-29 xfs-inodegc:vda1-38
sb-dax-11 sb-proc-45 sb-tmpfs-35
sb-debugfs-7 sb-proc-46 sb-tmpfs-40
[roman.gushchin@linux.dev: fix build warnings]
Link: https://lkml.kernel.org/r/Yr+ZTnLb9lJk6fJO@castle
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lkml.kernel.org/r/20220601032227.4076670-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Buffer split_desc_cache, the cache used to allcoate rmap list entries,
only by the default cache capacity (currently 40), not by doubling the
minimum (513). Aliasing L2 GPAs to L1 GPAs is uncommon, thus eager page
splitting is unlikely to need 500+ entries. And because each object is a
non-trivial 128 bytes (see struct pte_list_desc), those extra ~500
entries means KVM is in all likelihood wasting ~64kb of memory per VM.
Link: https://lore.kernel.org/all/YrTDcrsn0%2F+alpzf@google.com
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220624171808.2845941-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Use an "unsigned int" for @access parameters instead of a "u32", mostly
to be consistent throughout KVM, but also because "u32" is misleading.
@access can actually squeeze into a u8, i.e. doesn't need 32 bits, but is
as an "unsigned int" because sp->role.access is an unsigned int.
No functional change intended.
Link: https://lore.kernel.org/all/YqyZxEfxXLsHGoZ%2F@google.com
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220624171808.2845941-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The TLB flush before installing the newly-populated lower level
page table is unnecessary if the lower-level page table maps
the huge page identically. KVM knows it is if it did not reuse
an existing shadow page table, tell drop_large_spte() to skip
the flush in that case.
Extracted from a patch by David Matlack.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add support for Eager Page Splitting pages that are mapped by nested
MMUs. Walk through the rmap first splitting all 1GiB pages to 2MiB
pages, and then splitting all 2MiB pages to 4KiB pages.
Note, Eager Page Splitting is limited to nested MMUs as a policy rather
than due to any technical reason (the sp->role.guest_mode check could
just be deleted and Eager Page Splitting would work correctly for all
shadow MMU pages). There is really no reason to support Eager Page
Splitting for tdp_mmu=N, since such support will eventually be phased
out, and there is no current use case supporting Eager Page Splitting on
hosts where TDP is either disabled or unavailable in hardware.
Furthermore, future improvements to nested MMU scalability may diverge
the code from the legacy shadow paging implementation. These
improvements will be simpler to make if Eager Page Splitting does not
have to worry about legacy shadow paging.
Splitting huge pages mapped by nested MMUs requires dealing with some
extra complexity beyond that of the TDP MMU:
(1) The shadow MMU has a limit on the number of shadow pages that are
allowed to be allocated. So, as a policy, Eager Page Splitting
refuses to split if there are KVM_MIN_FREE_MMU_PAGES or fewer
pages available.
(2) Splitting a huge page may end up re-using an existing lower level
shadow page tables. This is unlike the TDP MMU which always allocates
new shadow page tables when splitting.
(3) When installing the lower level SPTEs, they must be added to the
rmap which may require allocating additional pte_list_desc structs.
Case (2) is especially interesting since it may require a TLB flush,
unlike the TDP MMU which can fully split huge pages without any TLB
flushes. Specifically, an existing lower level page table may point to
even lower level page tables that are not fully populated, effectively
unmapping a portion of the huge page, which requires a flush. As of
this commit, a flush is always done always after dropping the huge page
and before installing the lower level page table.
This TLB flush could instead be delayed until the MMU lock is about to be
dropped, which would batch flushes for multiple splits. However these
flushes should be rare in practice (a huge page must be aliased in
multiple SPTEs and have been split for NX Huge Pages in only some of
them). Flushing immediately is simpler to plumb and also reduces the
chances of tripping over a CPU bug (e.g. see iTLB multihit).
[ This commit is based off of the original implementation of Eager Page
Splitting from Peter in Google's kernel from 2016. ]
Suggested-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-23-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Before allocating a child shadow page table, all callers check
whether the parent already points to a huge page and, if so, they
drop that SPTE. This is done by drop_large_spte().
However, dropping the large SPTE is really only necessary before the
sp is installed. While the sp is returned by kvm_mmu_get_child_sp(),
installing it happens later in __link_shadow_page(). Move the call
there instead of having it in each and every caller.
To ensure that the shadow page is not linked twice if it was present,
do _not_ opportunistically make kvm_mmu_get_child_sp() idempotent:
instead, return an error value if the shadow page already existed.
This is a bit more verbose, but clearer than NULL.
Finally, now that the drop_large_spte() name is not taken anymore,
remove the two underscores in front of __drop_large_spte().
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently KVM only zaps collapsible 4KiB SPTEs in the shadow MMU. This
is fine for now since KVM never creates intermediate huge pages during
dirty logging. In other words, KVM always replaces 1GiB pages directly
with 4KiB pages, so there is no reason to look for collapsible 2MiB
pages.
However, this will stop being true once the shadow MMU participates in
eager page splitting. During eager page splitting, each 1GiB is first
split into 2MiB pages and then those are split into 4KiB pages. The
intermediate 2MiB pages may be left behind if an error condition causes
eager page splitting to bail early.
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-20-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Currently make_huge_page_split_spte() assumes execute permissions can be
granted to any 4K SPTE when splitting huge pages. This is true for the
TDP MMU but is not necessarily true for the shadow MMU, since KVM may be
shadowing a non-executable huge page.
To fix this, pass in the role of the child shadow page where the huge
page will be split and derive the execution permission from that. This
is correct because huge pages are always split with direct shadow page
and thus the shadow page role contains the correct access permissions.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-19-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Splitting huge pages requires allocating/finding shadow pages to replace
the huge page. Shadow pages are keyed, in part, off the guest access
permissions they are shadowing. For fully direct MMUs, there is no
shadowing so the access bits in the shadow page role are always ACC_ALL.
But during shadow paging, the guest can enforce whatever access
permissions it wants.
In particular, eager page splitting needs to know the permissions to use
for the subpages, but KVM cannot retrieve them from the guest page
tables because eager page splitting does not have a vCPU. Fortunately,
the guest access permissions are easy to cache whenever page faults or
FNAME(sync_page) update the shadow page tables; this is an extension of
the existing cache of the shadowed GFNs in the gfns array of the shadow
page. The access bits only take up 3 bits, which leaves 61 bits left
over for gfns, which is more than enough.
Now that the gfns array caches more information than just GFNs, rename
it to shadowed_translation.
While here, preemptively fix up the WARN_ON() that detects gfn
mismatches in direct SPs. The WARN_ON() was paired with a
pr_err_ratelimited(), which means that users could sometimes see the
WARN without the accompanying error message. Fix this by outputting the
error message as part of the WARN splat, and opportunistically make
them WARN_ONCE() because if these ever fire, they are all but guaranteed
to fire a lot and will bring down the kernel.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Update the page stats in __rmap_add() rather than at the call site. This
will avoid having to manually update page stats when splitting huge
pages in a subsequent commit.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Allow adding new entries to the rmap and linking shadow pages without a
struct kvm_vcpu pointer by moving the implementation of rmap_add() and
link_shadow_page() into inner helper functions.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Constify rmap_add()'s @slot parameter; it is simply passed on to
gfn_to_rmap(), which takes a const memslot.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-15-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Allow @vcpu to be NULL in kvm_mmu_find_shadow_page() (and its only
caller __kvm_mmu_get_shadow_page()). @vcpu is only required to sync
indirect shadow pages, so it's safe to pass in NULL when looking up
direct shadow pages.
This will be used for doing eager page splitting, which allocates direct
shadow pages from the context of a VM ioctl without access to a vCPU
pointer.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-14-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
kvm_mmu_find_shadow_page()
Get the kvm pointer from the caller, rather than deriving it from
vcpu->kvm, and plumb the kvm pointer all the way from
kvm_mmu_get_shadow_page(). With this change in place, the vcpu pointer
is only needed to sync indirect shadow pages. In other words,
__kvm_mmu_get_shadow_page() can now be used to get *direct* shadow pages
without a vcpu pointer. This enables eager page splitting, which needs
to allocate direct shadow pages during VM ioctls.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-13-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The vcpu pointer in kvm_mmu_alloc_shadow_page() is only used to get the
kvm pointer. So drop the vcpu pointer and just pass in the kvm pointer.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-12-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|