libATA Developer's Guide Jeff Garzik 2003 Jeff Garzik The contents of this file are subject to the Open Software License version 1.1 that can be found at http://www.opensource.org/licenses/osl-1.1.txt and is included herein by reference. Alternatively, the contents of this file may be used under the terms of the GNU General Public License version 2 (the "GPL") as distributed in the kernel source COPYING file, in which case the provisions of the GPL are applicable instead of the above. If you wish to allow the use of your version of this file only under the terms of the GPL and not to allow others to use your version of this file under the OSL, indicate your decision by deleting the provisions above and replace them with the notice and other provisions required by the GPL. If you do not delete the provisions above, a recipient may use your version of this file under either the OSL or the GPL. Thanks The bulk of the ATA knowledge comes thanks to long conversations with Andre Hedrick (www.linux-ide.org). Thanks to Alan Cox for pointing out similarities between SATA and SCSI, and in general for motivation to hack on libata. libata's device detection method, ata_pio_devchk, and in general all the early probing was based on extensive study of Hale Landis's probe/reset code in his ATADRVR driver (www.ata-atapi.com). libata Driver API struct ata_port_operations void (*port_disable) (struct ata_port *); Called from ata_bus_probe() and ata_bus_reset() error paths, as well as when unregistering from the SCSI module (rmmod, hot unplug). void (*dev_config) (struct ata_port *, struct ata_device *); Called after IDENTIFY [PACKET] DEVICE is issued to each device found. Typically used to apply device-specific fixups prior to issue of SET FEATURES - XFER MODE, and prior to operation. void (*set_piomode) (struct ata_port *, struct ata_device *); void (*set_dmamode) (struct ata_port *, struct ata_device *); void (*post_set_mode) (struct ata_port *ap); Hooks called prior to the issue of SET FEATURES - XFER MODE command. dev->pio_mode is guaranteed to be valid when ->set_piomode() is called, and dev->dma_mode is guaranteed to be valid when ->set_dmamode() is called. ->post_set_mode() is called unconditionally, after the SET FEATURES - XFER MODE command completes successfully. ->set_piomode() is always called (if present), but ->set_dma_mode() is only called if DMA is possible. void (*tf_load) (struct ata_port *ap, struct ata_taskfile *tf); void (*tf_read) (struct ata_port *ap, struct ata_taskfile *tf); ->tf_load() is called to load the given taskfile into hardware registers / DMA buffers. ->tf_read() is called to read the hardware registers / DMA buffers, to obtain the current set of taskfile register values. void (*exec_command)(struct ata_port *ap, struct ata_taskfile *tf); causes an ATA command, previously loaded with ->tf_load(), to be initiated in hardware. u8 (*check_status)(struct ata_port *ap); void (*dev_select)(struct ata_port *ap, unsigned int device); Reads the Status ATA shadow register from hardware. On some hardware, this has the side effect of clearing the interrupt condition. void (*dev_select)(struct ata_port *ap, unsigned int device); Issues the low-level hardware command(s) that causes one of N hardware devices to be considered 'selected' (active and available for use) on the ATA bus. void (*phy_reset) (struct ata_port *ap); The very first step in the probe phase. Actions vary depending on the bus type, typically. After waking up the device and probing for device presence (PATA and SATA), typically a soft reset (SRST) will be performed. Drivers typically use the helper functions ata_bus_reset() or sata_phy_reset() for this hook. void (*bmdma_setup) (struct ata_queued_cmd *qc); void (*bmdma_start) (struct ata_queued_cmd *qc); When setting up an IDE BMDMA transaction, these hooks arm (->bmdma_setup) and fire (->bmdma_start) the hardware's DMA engine. void (*qc_prep) (struct ata_queued_cmd *qc); int (*qc_issue) (struct ata_queued_cmd *qc); Higher-level hooks, these two hooks can potentially supercede several of the above taskfile/DMA engine hooks. ->qc_prep is called after the buffers have been DMA-mapped, and is typically used to populate the hardware's DMA scatter-gather table. Most drivers use the standard ata_qc_prep() helper function, but more advanced drivers roll their own. ->qc_issue is used to make a command active, once the hardware and S/G tables have been prepared. IDE BMDMA drivers use the helper function ata_qc_issue_prot() for taskfile protocol-based dispatch. More advanced drivers roll their own ->qc_issue implementation, using this as the "issue new ATA command to hardware" hook. void (*eng_timeout) (struct ata_port *ap); This is a high level error handling function, called from the error handling thread, when a command times out. irqreturn_t (*irq_handler)(int, void *, struct pt_regs *); void (*irq_clear) (struct ata_port *); ->irq_handler is the interrupt handling routine registered with the system, by libata. ->irq_clear is called during probe just before the interrupt handler is registered, to be sure hardware is quiet. u32 (*scr_read) (struct ata_port *ap, unsigned int sc_reg); void (*scr_write) (struct ata_port *ap, unsigned int sc_reg, u32 val); Read and write standard SATA phy registers. Currently only used if ->phy_reset hook called the sata_phy_reset() helper function. int (*port_start) (struct ata_port *ap); void (*port_stop) (struct ata_port *ap); void (*host_stop) (struct ata_host_set *host_set); ->port_start() is called just after the data structures for each port are initialized. Typically this is used to alloc per-port DMA buffers / tables / rings, enable DMA engines, and similar tasks. ->host_stop() is called when the rmmod or hot unplug process begins. The hook must stop all hardware interrupts, DMA engines, etc. ->port_stop() is called after ->host_stop(). It's sole function is to release DMA/memory resources, now that they are no longer actively being used. libata Library !Edrivers/scsi/libata-core.c libata Core Internals !Idrivers/scsi/libata-core.c libata SCSI translation/emulation !Edrivers/scsi/libata-scsi.c !Idrivers/scsi/libata-scsi.c ata_piix Internals !Idrivers/scsi/ata_piix.c sata_sil Internals !Idrivers/scsi/sata_sil.c