/* * arch/arm/mach-ixp4xx/common.c * * Generic code shared across all IXP4XX platforms * * Maintainer: Deepak Saxena <dsaxena@plexity.net> * * Copyright 2002 (c) Intel Corporation * Copyright 2003-2004 (c) MontaVista, Software, Inc. * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <linux/kernel.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/serial.h> #include <linux/tty.h> #include <linux/platform_device.h> #include <linux/serial_core.h> #include <linux/interrupt.h> #include <linux/bitops.h> #include <linux/time.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/io.h> #include <linux/export.h> #include <linux/gpio/driver.h> #include <linux/cpu.h> #include <linux/pci.h> #include <linux/sched_clock.h> #include <mach/udc.h> #include <mach/hardware.h> #include <mach/io.h> #include <asm/uaccess.h> #include <asm/pgtable.h> #include <asm/page.h> #include <asm/irq.h> #include <asm/system_misc.h> #include <asm/mach/map.h> #include <asm/mach/irq.h> #include <asm/mach/time.h> #define IXP4XX_TIMER_FREQ 66666000 /* * The timer register doesn't allow to specify the two least significant bits of * the timeout value and assumes them being zero. So make sure IXP4XX_LATCH is * the best value with the two least significant bits unset. */ #define IXP4XX_LATCH DIV_ROUND_CLOSEST(IXP4XX_TIMER_FREQ, \ (IXP4XX_OST_RELOAD_MASK + 1) * HZ) * \ (IXP4XX_OST_RELOAD_MASK + 1) static void __init ixp4xx_clocksource_init(void); static void __init ixp4xx_clockevent_init(void); static struct clock_event_device clockevent_ixp4xx; /************************************************************************* * IXP4xx chipset I/O mapping *************************************************************************/ static struct map_desc ixp4xx_io_desc[] __initdata = { { /* UART, Interrupt ctrl, GPIO, timers, NPEs, MACs, USB .... */ .virtual = (unsigned long)IXP4XX_PERIPHERAL_BASE_VIRT, .pfn = __phys_to_pfn(IXP4XX_PERIPHERAL_BASE_PHYS), .length = IXP4XX_PERIPHERAL_REGION_SIZE, .type = MT_DEVICE }, { /* Expansion Bus Config Registers */ .virtual = (unsigned long)IXP4XX_EXP_CFG_BASE_VIRT, .pfn = __phys_to_pfn(IXP4XX_EXP_CFG_BASE_PHYS), .length = IXP4XX_EXP_CFG_REGION_SIZE, .type = MT_DEVICE }, { /* PCI Registers */ .virtual = (unsigned long)IXP4XX_PCI_CFG_BASE_VIRT, .pfn = __phys_to_pfn(IXP4XX_PCI_CFG_BASE_PHYS), .length = IXP4XX_PCI_CFG_REGION_SIZE, .type = MT_DEVICE }, { /* Queue Manager */ .virtual = (unsigned long)IXP4XX_QMGR_BASE_VIRT, .pfn = __phys_to_pfn(IXP4XX_QMGR_BASE_PHYS), .length = IXP4XX_QMGR_REGION_SIZE, .type = MT_DEVICE }, }; void __init ixp4xx_map_io(void) { iotable_init(ixp4xx_io_desc, ARRAY_SIZE(ixp4xx_io_desc)); } /* * GPIO-functions */ /* * The following converted to the real HW bits the gpio_line_config */ /* GPIO pin types */ #define IXP4XX_GPIO_OUT 0x1 #define IXP4XX_GPIO_IN 0x2 /* GPIO signal types */ #define IXP4XX_GPIO_LOW 0 #define IXP4XX_GPIO_HIGH 1 /* GPIO Clocks */ #define IXP4XX_GPIO_CLK_0 14 #define IXP4XX_GPIO_CLK_1 15 static void gpio_line_config(u8 line, u32 direction) { if (direction == IXP4XX_GPIO_IN) *IXP4XX_GPIO_GPOER |= (1 << line); else *IXP4XX_GPIO_GPOER &= ~(1 << line); } static void gpio_line_get(u8 line, int *value) { *value = (*IXP4XX_GPIO_GPINR >> line) & 0x1; } static void gpio_line_set(u8 line, int value) { if (value == IXP4XX_GPIO_HIGH) *IXP4XX_GPIO_GPOUTR |= (1 << line); else if (value == IXP4XX_GPIO_LOW) *IXP4XX_GPIO_GPOUTR &= ~(1 << line); } /************************************************************************* * IXP4xx chipset IRQ handling * * TODO: GPIO IRQs should be marked invalid until the user of the IRQ * (be it PCI or something else) configures that GPIO line * as an IRQ. **************************************************************************/ enum ixp4xx_irq_type { IXP4XX_IRQ_LEVEL, IXP4XX_IRQ_EDGE }; /* Each bit represents an IRQ: 1: edge-triggered, 0: level triggered */ static unsigned long long ixp4xx_irq_edge = 0; /* * IRQ -> GPIO mapping table */ static signed char irq2gpio[32] = { -1, -1, -1, -1, -1, -1, 0, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, -1, -1, }; static int ixp4xx_gpio_to_irq(struct gpio_chip *chip, unsigned gpio) { int irq; for (irq = 0; irq < 32; irq++) { if (irq2gpio[irq] == gpio) return irq; } return -EINVAL; } static int ixp4xx_set_irq_type(struct irq_data *d, unsigned int type) { int line = irq2gpio[d->irq]; u32 int_style; enum ixp4xx_irq_type irq_type; volatile u32 *int_reg; /* * Only for GPIO IRQs */ if (line < 0) return -EINVAL; switch (type){ case IRQ_TYPE_EDGE_BOTH: int_style = IXP4XX_GPIO_STYLE_TRANSITIONAL; irq_type = IXP4XX_IRQ_EDGE; break; case IRQ_TYPE_EDGE_RISING: int_style = IXP4XX_GPIO_STYLE_RISING_EDGE; irq_type = IXP4XX_IRQ_EDGE; break; case IRQ_TYPE_EDGE_FALLING: int_style = IXP4XX_GPIO_STYLE_FALLING_EDGE; irq_type = IXP4XX_IRQ_EDGE; break; case IRQ_TYPE_LEVEL_HIGH: int_style = IXP4XX_GPIO_STYLE_ACTIVE_HIGH; irq_type = IXP4XX_IRQ_LEVEL; break; case IRQ_TYPE_LEVEL_LOW: int_style = IXP4XX_GPIO_STYLE_ACTIVE_LOW; irq_type = IXP4XX_IRQ_LEVEL; break; default: return -EINVAL; } if (irq_type == IXP4XX_IRQ_EDGE) ixp4xx_irq_edge |= (1 << d->irq); else ixp4xx_irq_edge &= ~(1 << d->irq); if (line >= 8) { /* pins 8-15 */ line -= 8; int_reg = IXP4XX_GPIO_GPIT2R; } else { /* pins 0-7 */ int_reg = IXP4XX_GPIO_GPIT1R; } /* Clear the style for the appropriate pin */ *int_reg &= ~(IXP4XX_GPIO_STYLE_CLEAR << (line * IXP4XX_GPIO_STYLE_SIZE)); *IXP4XX_GPIO_GPISR = (1 << line); /* Set the new style */ *int_reg |= (int_style << (line * IXP4XX_GPIO_STYLE_SIZE)); /* Configure the line as an input */ gpio_line_config(irq2gpio[d->irq], IXP4XX_GPIO_IN); return 0; } static void ixp4xx_irq_mask(struct irq_data *d) { if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->irq >= 32) *IXP4XX_ICMR2 &= ~(1 << (d->irq - 32)); else *IXP4XX_ICMR &= ~(1 << d->irq); } static void ixp4xx_irq_ack(struct irq_data *d) { int line = (d->irq < 32) ? irq2gpio[d->irq] : -1; if (line >= 0) *IXP4XX_GPIO_GPISR = (1 << line); } /* * Level triggered interrupts on GPIO lines can only be cleared when the * interrupt condition disappears. */ static void ixp4xx_irq_unmask(struct irq_data *d) { if (!(ixp4xx_irq_edge & (1 << d->irq))) ixp4xx_irq_ack(d); if ((cpu_is_ixp46x() || cpu_is_ixp43x()) && d->irq >= 32) *IXP4XX_ICMR2 |= (1 << (d->irq - 32)); else *IXP4XX_ICMR |= (1 << d->irq); } static struct irq_chip ixp4xx_irq_chip = { .name = "IXP4xx", .irq_ack = ixp4xx_irq_ack, .irq_mask = ixp4xx_irq_mask, .irq_unmask = ixp4xx_irq_unmask, .irq_set_type = ixp4xx_set_irq_type, }; void __init ixp4xx_init_irq(void) { int i = 0; /* * ixp4xx does not implement the XScale PWRMODE register * so it must not call cpu_do_idle(). */ cpu_idle_poll_ctrl(true); /* Route all sources to IRQ instead of FIQ */ *IXP4XX_ICLR = 0x0; /* Disable all interrupt */ *IXP4XX_ICMR = 0x0; if (cpu_is_ixp46x() || cpu_is_ixp43x()) { /* Route upper 32 sources to IRQ instead of FIQ */ *IXP4XX_ICLR2 = 0x00; /* Disable upper 32 interrupts */ *IXP4XX_ICMR2 = 0x00; } /* Default to all level triggered */ for(i = 0; i < NR_IRQS; i++) { irq_set_chip_and_handler(i, &ixp4xx_irq_chip, handle_level_irq); irq_clear_status_flags(i, IRQ_NOREQUEST); } } /************************************************************************* * IXP4xx timer tick * We use OS timer1 on the CPU for the timer tick and the timestamp * counter as a source of real clock ticks to account for missed jiffies. *************************************************************************/ static irqreturn_t ixp4xx_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; /* Clear Pending Interrupt by writing '1' to it */ *IXP4XX_OSST = IXP4XX_OSST_TIMER_1_PEND; evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction ixp4xx_timer_irq = { .name = "timer1", .flags = IRQF_TIMER | IRQF_IRQPOLL, .handler = ixp4xx_timer_interrupt, .dev_id = &clockevent_ixp4xx, }; void __init ixp4xx_timer_init(void) { /* Reset/disable counter */ *IXP4XX_OSRT1 = 0; /* Clear Pending Interrupt by writing '1' to it */ *IXP4XX_OSST = IXP4XX_OSST_TIMER_1_PEND; /* Reset time-stamp counter */ *IXP4XX_OSTS = 0; /* Connect the interrupt handler and enable the interrupt */ setup_irq(IRQ_IXP4XX_TIMER1, &ixp4xx_timer_irq); ixp4xx_clocksource_init(); ixp4xx_clockevent_init(); } static struct pxa2xx_udc_mach_info ixp4xx_udc_info; void __init ixp4xx_set_udc_info(struct pxa2xx_udc_mach_info *info) { memcpy(&ixp4xx_udc_info, info, sizeof *info); } static struct resource ixp4xx_udc_resources[] = { [0] = { .start = 0xc800b000, .end = 0xc800bfff, .flags = IORESOURCE_MEM, }, [1] = { .start = IRQ_IXP4XX_USB, .end = IRQ_IXP4XX_USB, .flags = IORESOURCE_IRQ, }, }; /* * USB device controller. The IXP4xx uses the same controller as PXA25X, * so we just use the same device. */ static struct platform_device ixp4xx_udc_device = { .name = "pxa25x-udc", .id = -1, .num_resources = 2, .resource = ixp4xx_udc_resources, .dev = { .platform_data = &ixp4xx_udc_info, }, }; static struct platform_device *ixp4xx_devices[] __initdata = { &ixp4xx_udc_device, }; static struct resource ixp46x_i2c_resources[] = { [0] = { .start = 0xc8011000, .end = 0xc801101c, .flags = IORESOURCE_MEM, }, [1] = { .start = IRQ_IXP4XX_I2C, .end = IRQ_IXP4XX_I2C, .flags = IORESOURCE_IRQ } }; /* * I2C controller. The IXP46x uses the same block as the IOP3xx, so * we just use the same device name. */ static struct platform_device ixp46x_i2c_controller = { .name = "IOP3xx-I2C", .id = 0, .num_resources = 2, .resource = ixp46x_i2c_resources }; static struct platform_device *ixp46x_devices[] __initdata = { &ixp46x_i2c_controller }; unsigned long ixp4xx_exp_bus_size; EXPORT_SYMBOL(ixp4xx_exp_bus_size); static int ixp4xx_gpio_direction_input(struct gpio_chip *chip, unsigned gpio) { gpio_line_config(gpio, IXP4XX_GPIO_IN); return 0; } static int ixp4xx_gpio_direction_output(struct gpio_chip *chip, unsigned gpio, int level) { gpio_line_set(gpio, level); gpio_line_config(gpio, IXP4XX_GPIO_OUT); return 0; } static int ixp4xx_gpio_get_value(struct gpio_chip *chip, unsigned gpio) { int value; gpio_line_get(gpio, &value); return value; } static void ixp4xx_gpio_set_value(struct gpio_chip *chip, unsigned gpio, int value) { gpio_line_set(gpio, value); } static struct gpio_chip ixp4xx_gpio_chip = { .label = "IXP4XX_GPIO_CHIP", .direction_input = ixp4xx_gpio_direction_input, .direction_output = ixp4xx_gpio_direction_output, .get = ixp4xx_gpio_get_value, .set = ixp4xx_gpio_set_value, .to_irq = ixp4xx_gpio_to_irq, .base = 0, .ngpio = 16, }; void __init ixp4xx_sys_init(void) { ixp4xx_exp_bus_size = SZ_16M; platform_add_devices(ixp4xx_devices, ARRAY_SIZE(ixp4xx_devices)); gpiochip_add_data(&ixp4xx_gpio_chip, NULL); if (cpu_is_ixp46x()) { int region; platform_add_devices(ixp46x_devices, ARRAY_SIZE(ixp46x_devices)); for (region = 0; region < 7; region++) { if((*(IXP4XX_EXP_REG(0x4 * region)) & 0x200)) { ixp4xx_exp_bus_size = SZ_32M; break; } } } printk("IXP4xx: Using %luMiB expansion bus window size\n", ixp4xx_exp_bus_size >> 20); } /* * sched_clock() */ static u64 notrace ixp4xx_read_sched_clock(void) { return *IXP4XX_OSTS; } /* * clocksource */ static cycle_t ixp4xx_clocksource_read(struct clocksource *c) { return *IXP4XX_OSTS; } unsigned long ixp4xx_timer_freq = IXP4XX_TIMER_FREQ; EXPORT_SYMBOL(ixp4xx_timer_freq); static void __init ixp4xx_clocksource_init(void) { sched_clock_register(ixp4xx_read_sched_clock, 32, ixp4xx_timer_freq); clocksource_mmio_init(NULL, "OSTS", ixp4xx_timer_freq, 200, 32, ixp4xx_clocksource_read); } /* * clockevents */ static int ixp4xx_set_next_event(unsigned long evt, struct clock_event_device *unused) { unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK; *IXP4XX_OSRT1 = (evt & ~IXP4XX_OST_RELOAD_MASK) | opts; return 0; } static int ixp4xx_shutdown(struct clock_event_device *evt) { unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK; unsigned long osrt = *IXP4XX_OSRT1 & ~IXP4XX_OST_RELOAD_MASK; opts &= ~IXP4XX_OST_ENABLE; *IXP4XX_OSRT1 = osrt | opts; return 0; } static int ixp4xx_set_oneshot(struct clock_event_device *evt) { unsigned long opts = IXP4XX_OST_ENABLE | IXP4XX_OST_ONE_SHOT; unsigned long osrt = 0; /* period set by 'set next_event' */ *IXP4XX_OSRT1 = osrt | opts; return 0; } static int ixp4xx_set_periodic(struct clock_event_device *evt) { unsigned long opts = IXP4XX_OST_ENABLE; unsigned long osrt = IXP4XX_LATCH & ~IXP4XX_OST_RELOAD_MASK; *IXP4XX_OSRT1 = osrt | opts; return 0; } static int ixp4xx_resume(struct clock_event_device *evt) { unsigned long opts = *IXP4XX_OSRT1 & IXP4XX_OST_RELOAD_MASK; unsigned long osrt = *IXP4XX_OSRT1 & ~IXP4XX_OST_RELOAD_MASK; opts |= IXP4XX_OST_ENABLE; *IXP4XX_OSRT1 = osrt | opts; return 0; } static struct clock_event_device clockevent_ixp4xx = { .name = "ixp4xx timer1", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_state_shutdown = ixp4xx_shutdown, .set_state_periodic = ixp4xx_set_periodic, .set_state_oneshot = ixp4xx_set_oneshot, .tick_resume = ixp4xx_resume, .set_next_event = ixp4xx_set_next_event, }; static void __init ixp4xx_clockevent_init(void) { clockevent_ixp4xx.cpumask = cpumask_of(0); clockevents_config_and_register(&clockevent_ixp4xx, IXP4XX_TIMER_FREQ, 0xf, 0xfffffffe); } void ixp4xx_restart(enum reboot_mode mode, const char *cmd) { if (mode == REBOOT_SOFT) { /* Jump into ROM at address 0 */ soft_restart(0); } else { /* Use on-chip reset capability */ /* set the "key" register to enable access to * "timer" and "enable" registers */ *IXP4XX_OSWK = IXP4XX_WDT_KEY; /* write 0 to the timer register for an immediate reset */ *IXP4XX_OSWT = 0; *IXP4XX_OSWE = IXP4XX_WDT_RESET_ENABLE | IXP4XX_WDT_COUNT_ENABLE; } } #ifdef CONFIG_PCI static int ixp4xx_needs_bounce(struct device *dev, dma_addr_t dma_addr, size_t size) { return (dma_addr + size) > SZ_64M; } static int ixp4xx_platform_notify_remove(struct device *dev) { if (dev_is_pci(dev)) dmabounce_unregister_dev(dev); return 0; } #endif /* * Setup DMA mask to 64MB on PCI devices and 4 GB on all other things. */ static int ixp4xx_platform_notify(struct device *dev) { dev->dma_mask = &dev->coherent_dma_mask; #ifdef CONFIG_PCI if (dev_is_pci(dev)) { dev->coherent_dma_mask = DMA_BIT_MASK(28); /* 64 MB */ dmabounce_register_dev(dev, 2048, 4096, ixp4xx_needs_bounce); return 0; } #endif dev->coherent_dma_mask = DMA_BIT_MASK(32); return 0; } int dma_set_coherent_mask(struct device *dev, u64 mask) { if (dev_is_pci(dev)) mask &= DMA_BIT_MASK(28); /* 64 MB */ if ((mask & DMA_BIT_MASK(28)) == DMA_BIT_MASK(28)) { dev->coherent_dma_mask = mask; return 0; } return -EIO; /* device wanted sub-64MB mask */ } EXPORT_SYMBOL(dma_set_coherent_mask); #ifdef CONFIG_IXP4XX_INDIRECT_PCI /* * In the case of using indirect PCI, we simply return the actual PCI * address and our read/write implementation use that to drive the * access registers. If something outside of PCI is ioremap'd, we * fallback to the default. */ static void __iomem *ixp4xx_ioremap_caller(phys_addr_t addr, size_t size, unsigned int mtype, void *caller) { if (!is_pci_memory(addr)) return __arm_ioremap_caller(addr, size, mtype, caller); return (void __iomem *)addr; } static void ixp4xx_iounmap(volatile void __iomem *addr) { if (!is_pci_memory((__force u32)addr)) __iounmap(addr); } #endif void __init ixp4xx_init_early(void) { platform_notify = ixp4xx_platform_notify; #ifdef CONFIG_PCI platform_notify_remove = ixp4xx_platform_notify_remove; #endif #ifdef CONFIG_IXP4XX_INDIRECT_PCI arch_ioremap_caller = ixp4xx_ioremap_caller; arch_iounmap = ixp4xx_iounmap; #endif }