/* * Driver for the Octeon bootbus compact flash. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2005 - 2012 Cavium Inc. * Copyright (C) 2008 Wind River Systems */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The Octeon bootbus compact flash interface is connected in at least * 3 different configurations on various evaluation boards: * * -- 8 bits no irq, no DMA * -- 16 bits no irq, no DMA * -- 16 bits True IDE mode with DMA, but no irq. * * In the last case the DMA engine can generate an interrupt when the * transfer is complete. For the first two cases only PIO is supported. * */ #define DRV_NAME "pata_octeon_cf" #define DRV_VERSION "2.2" /* Poll interval in nS. */ #define OCTEON_CF_BUSY_POLL_INTERVAL 500000 #define DMA_CFG 0 #define DMA_TIM 0x20 #define DMA_INT 0x38 #define DMA_INT_EN 0x50 struct octeon_cf_port { struct hrtimer delayed_finish; struct ata_port *ap; int dma_finished; void *c0; unsigned int cs0; unsigned int cs1; bool is_true_ide; u64 dma_base; }; static struct scsi_host_template octeon_cf_sht = { ATA_PIO_SHT(DRV_NAME), }; static int enable_dma; module_param(enable_dma, int, 0444); MODULE_PARM_DESC(enable_dma, "Enable use of DMA on interfaces that support it (0=no dma [default], 1=use dma)"); /** * Convert nanosecond based time to setting used in the * boot bus timing register, based on timing multiple */ static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs) { /* * Compute # of eclock periods to get desired duration in * nanoseconds. */ return DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000), 1000 * tim_mult); } static void octeon_cf_set_boot_reg_cfg(int cs, unsigned int multiplier) { union cvmx_mio_boot_reg_cfgx reg_cfg; unsigned int tim_mult; switch (multiplier) { case 8: tim_mult = 3; break; case 4: tim_mult = 0; break; case 2: tim_mult = 2; break; default: tim_mult = 1; break; } reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs)); reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */ reg_cfg.s.tim_mult = tim_mult; /* Timing mutiplier */ reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */ reg_cfg.s.sam = 0; /* Don't combine write and output enable */ reg_cfg.s.we_ext = 0; /* No write enable extension */ reg_cfg.s.oe_ext = 0; /* No read enable extension */ reg_cfg.s.en = 1; /* Enable this region */ reg_cfg.s.orbit = 0; /* Don't combine with previous region */ reg_cfg.s.ale = 0; /* Don't do address multiplexing */ cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64); } /** * Called after libata determines the needed PIO mode. This * function programs the Octeon bootbus regions to support the * timing requirements of the PIO mode. * * @ap: ATA port information * @dev: ATA device */ static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev) { struct octeon_cf_port *cf_port = ap->private_data; union cvmx_mio_boot_reg_timx reg_tim; int T; struct ata_timing timing; unsigned int div; int use_iordy; int trh; int pause; /* These names are timing parameters from the ATA spec */ int t2; /* * A divisor value of four will overflow the timing fields at * clock rates greater than 800MHz */ if (octeon_get_io_clock_rate() <= 800000000) div = 4; else div = 8; T = (int)((1000000000000LL * div) / octeon_get_io_clock_rate()); BUG_ON(ata_timing_compute(dev, dev->pio_mode, &timing, T, T)); t2 = timing.active; if (t2) t2--; trh = ns_to_tim_reg(div, 20); if (trh) trh--; pause = (int)timing.cycle - (int)timing.active - (int)timing.setup - trh; if (pause < 0) pause = 0; if (pause) pause--; octeon_cf_set_boot_reg_cfg(cf_port->cs0, div); if (cf_port->is_true_ide) /* True IDE mode, program both chip selects. */ octeon_cf_set_boot_reg_cfg(cf_port->cs1, div); use_iordy = ata_pio_need_iordy(dev); reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0)); /* Disable page mode */ reg_tim.s.pagem = 0; /* Enable dynamic timing */ reg_tim.s.waitm = use_iordy; /* Pages are disabled */ reg_tim.s.pages = 0; /* We don't use multiplexed address mode */ reg_tim.s.ale = 0; /* Not used */ reg_tim.s.page = 0; /* Time after IORDY to coninue to assert the data */ reg_tim.s.wait = 0; /* Time to wait to complete the cycle. */ reg_tim.s.pause = pause; /* How long to hold after a write to de-assert CE. */ reg_tim.s.wr_hld = trh; /* How long to wait after a read to de-assert CE. */ reg_tim.s.rd_hld = trh; /* How long write enable is asserted */ reg_tim.s.we = t2; /* How long read enable is asserted */ reg_tim.s.oe = t2; /* Time after CE that read/write starts */ reg_tim.s.ce = ns_to_tim_reg(div, 5); /* Time before CE that address is valid */ reg_tim.s.adr = 0; /* Program the bootbus region timing for the data port chip select. */ cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs0), reg_tim.u64); if (cf_port->is_true_ide) /* True IDE mode, program both chip selects. */ cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cf_port->cs1), reg_tim.u64); } static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev) { struct octeon_cf_port *cf_port = ap->private_data; union cvmx_mio_boot_pin_defs pin_defs; union cvmx_mio_boot_dma_timx dma_tim; unsigned int oe_a; unsigned int oe_n; unsigned int dma_ackh; unsigned int dma_arq; unsigned int pause; unsigned int T0, Tkr, Td; unsigned int tim_mult; int c; const struct ata_timing *timing; timing = ata_timing_find_mode(dev->dma_mode); T0 = timing->cycle; Td = timing->active; Tkr = timing->recover; dma_ackh = timing->dmack_hold; dma_tim.u64 = 0; /* dma_tim.s.tim_mult = 0 --> 4x */ tim_mult = 4; /* not spec'ed, value in eclocks, not affected by tim_mult */ dma_arq = 8; pause = 25 - dma_arq * 1000 / (octeon_get_io_clock_rate() / 1000000); /* Tz */ oe_a = Td; /* Tkr from cf spec, lengthened to meet T0 */ oe_n = max(T0 - oe_a, Tkr); pin_defs.u64 = cvmx_read_csr(CVMX_MIO_BOOT_PIN_DEFS); /* DMA channel number. */ c = (cf_port->dma_base & 8) >> 3; /* Invert the polarity if the default is 0*/ dma_tim.s.dmack_pi = (pin_defs.u64 & (1ull << (11 + c))) ? 0 : 1; dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n); dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a); /* * This is tI, C.F. spec. says 0, but Sony CF card requires * more, we use 20 nS. */ dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20); dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh); dma_tim.s.dmarq = dma_arq; dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause); dma_tim.s.rd_dly = 0; /* Sample right on edge */ /* writes only */ dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n); dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a); ata_dev_dbg(dev, "ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60, ns_to_tim_reg(tim_mult, 60)); ata_dev_dbg(dev, "oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: %d, dmarq: %d, pause: %d\n", dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s, dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause); cvmx_write_csr(cf_port->dma_base + DMA_TIM, dma_tim.u64); } /** * Handle an 8 bit I/O request. * * @qc: Queued command * @buffer: Data buffer * @buflen: Length of the buffer. * @rw: True to write. */ static unsigned int octeon_cf_data_xfer8(struct ata_queued_cmd *qc, unsigned char *buffer, unsigned int buflen, int rw) { struct ata_port *ap = qc->dev->link->ap; void __iomem *data_addr = ap->ioaddr.data_addr; unsigned long words; int count; words = buflen; if (rw) { count = 16; while (words--) { iowrite8(*buffer, data_addr); buffer++; /* * Every 16 writes do a read so the bootbus * FIFO doesn't fill up. */ if (--count == 0) { ioread8(ap->ioaddr.altstatus_addr); count = 16; } } } else { ioread8_rep(data_addr, buffer, words); } return buflen; } /** * Handle a 16 bit I/O request. * * @qc: Queued command * @buffer: Data buffer * @buflen: Length of the buffer. * @rw: True to write. */ static unsigned int octeon_cf_data_xfer16(struct ata_queued_cmd *qc, unsigned char *buffer, unsigned int buflen, int rw) { struct ata_port *ap = qc->dev->link->ap; void __iomem *data_addr = ap->ioaddr.data_addr; unsigned long words; int count; words = buflen / 2; if (rw) { count = 16; while (words--) { iowrite16(*(uint16_t *)buffer, data_addr); buffer += sizeof(uint16_t); /* * Every 16 writes do a read so the bootbus * FIFO doesn't fill up. */ if (--count == 0) { ioread8(ap->ioaddr.altstatus_addr); count = 16; } } } else { while (words--) { *(uint16_t *)buffer = ioread16(data_addr); buffer += sizeof(uint16_t); } } /* Transfer trailing 1 byte, if any. */ if (unlikely(buflen & 0x01)) { __le16 align_buf[1] = { 0 }; if (rw == READ) { align_buf[0] = cpu_to_le16(ioread16(data_addr)); memcpy(buffer, align_buf, 1); } else { memcpy(align_buf, buffer, 1); iowrite16(le16_to_cpu(align_buf[0]), data_addr); } words++; } return buflen; } /** * Read the taskfile for 16bit non-True IDE only. */ static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf) { u16 blob; /* The base of the registers is at ioaddr.data_addr. */ void __iomem *base = ap->ioaddr.data_addr; blob = __raw_readw(base + 0xc); tf->feature = blob >> 8; blob = __raw_readw(base + 2); tf->nsect = blob & 0xff; tf->lbal = blob >> 8; blob = __raw_readw(base + 4); tf->lbam = blob & 0xff; tf->lbah = blob >> 8; blob = __raw_readw(base + 6); tf->device = blob & 0xff; tf->command = blob >> 8; if (tf->flags & ATA_TFLAG_LBA48) { if (likely(ap->ioaddr.ctl_addr)) { iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr); blob = __raw_readw(base + 0xc); tf->hob_feature = blob >> 8; blob = __raw_readw(base + 2); tf->hob_nsect = blob & 0xff; tf->hob_lbal = blob >> 8; blob = __raw_readw(base + 4); tf->hob_lbam = blob & 0xff; tf->hob_lbah = blob >> 8; iowrite8(tf->ctl, ap->ioaddr.ctl_addr); ap->last_ctl = tf->ctl; } else { WARN_ON(1); } } } static u8 octeon_cf_check_status16(struct ata_port *ap) { u16 blob; void __iomem *base = ap->ioaddr.data_addr; blob = __raw_readw(base + 6); return blob >> 8; } static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes, unsigned long deadline) { struct ata_port *ap = link->ap; void __iomem *base = ap->ioaddr.data_addr; int rc; u8 err; __raw_writew(ap->ctl, base + 0xe); udelay(20); __raw_writew(ap->ctl | ATA_SRST, base + 0xe); udelay(20); __raw_writew(ap->ctl, base + 0xe); rc = ata_sff_wait_after_reset(link, 1, deadline); if (rc) { ata_link_err(link, "SRST failed (errno=%d)\n", rc); return rc; } /* determine by signature whether we have ATA or ATAPI devices */ classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err); return 0; } /** * Load the taskfile for 16bit non-True IDE only. The device_addr is * not loaded, we do this as part of octeon_cf_exec_command16. */ static void octeon_cf_tf_load16(struct ata_port *ap, const struct ata_taskfile *tf) { unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; /* The base of the registers is at ioaddr.data_addr. */ void __iomem *base = ap->ioaddr.data_addr; if (tf->ctl != ap->last_ctl) { iowrite8(tf->ctl, ap->ioaddr.ctl_addr); ap->last_ctl = tf->ctl; ata_wait_idle(ap); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { __raw_writew(tf->hob_feature << 8, base + 0xc); __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2); __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4); } if (is_addr) { __raw_writew(tf->feature << 8, base + 0xc); __raw_writew(tf->nsect | tf->lbal << 8, base + 2); __raw_writew(tf->lbam | tf->lbah << 8, base + 4); } ata_wait_idle(ap); } static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device) { /* There is only one device, do nothing. */ return; } /* * Issue ATA command to host controller. The device_addr is also sent * as it must be written in a combined write with the command. */ static void octeon_cf_exec_command16(struct ata_port *ap, const struct ata_taskfile *tf) { /* The base of the registers is at ioaddr.data_addr. */ void __iomem *base = ap->ioaddr.data_addr; u16 blob = 0; if (tf->flags & ATA_TFLAG_DEVICE) blob = tf->device; blob |= (tf->command << 8); __raw_writew(blob, base + 6); ata_wait_idle(ap); } static void octeon_cf_ata_port_noaction(struct ata_port *ap) { } static void octeon_cf_dma_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct octeon_cf_port *cf_port; cf_port = ap->private_data; /* issue r/w command */ qc->cursg = qc->sg; cf_port->dma_finished = 0; ap->ops->sff_exec_command(ap, &qc->tf); } /** * Start a DMA transfer that was already setup * * @qc: Information about the DMA */ static void octeon_cf_dma_start(struct ata_queued_cmd *qc) { struct octeon_cf_port *cf_port = qc->ap->private_data; union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg; union cvmx_mio_boot_dma_intx mio_boot_dma_int; struct scatterlist *sg; /* Get the scatter list entry we need to DMA into */ sg = qc->cursg; BUG_ON(!sg); /* * Clear the DMA complete status. */ mio_boot_dma_int.u64 = 0; mio_boot_dma_int.s.done = 1; cvmx_write_csr(cf_port->dma_base + DMA_INT, mio_boot_dma_int.u64); /* Enable the interrupt. */ cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, mio_boot_dma_int.u64); /* Set the direction of the DMA */ mio_boot_dma_cfg.u64 = 0; #ifdef __LITTLE_ENDIAN mio_boot_dma_cfg.s.endian = 1; #endif mio_boot_dma_cfg.s.en = 1; mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0); /* * Don't stop the DMA if the device deasserts DMARQ. Many * compact flashes deassert DMARQ for a short time between * sectors. Instead of stopping and restarting the DMA, we'll * let the hardware do it. If the DMA is really stopped early * due to an error condition, a later timeout will force us to * stop. */ mio_boot_dma_cfg.s.clr = 0; /* Size is specified in 16bit words and minus one notation */ mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1; /* We need to swap the high and low bytes of every 16 bits */ mio_boot_dma_cfg.s.swap8 = 1; mio_boot_dma_cfg.s.adr = sg_dma_address(sg); cvmx_write_csr(cf_port->dma_base + DMA_CFG, mio_boot_dma_cfg.u64); } /** * * LOCKING: * spin_lock_irqsave(host lock) * */ static unsigned int octeon_cf_dma_finished(struct ata_port *ap, struct ata_queued_cmd *qc) { struct ata_eh_info *ehi = &ap->link.eh_info; struct octeon_cf_port *cf_port = ap->private_data; union cvmx_mio_boot_dma_cfgx dma_cfg; union cvmx_mio_boot_dma_intx dma_int; u8 status; trace_ata_bmdma_stop(qc, &qc->tf, qc->tag); if (ap->hsm_task_state != HSM_ST_LAST) return 0; dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); if (dma_cfg.s.size != 0xfffff) { /* Error, the transfer was not complete. */ qc->err_mask |= AC_ERR_HOST_BUS; ap->hsm_task_state = HSM_ST_ERR; } /* Stop and clear the dma engine. */ dma_cfg.u64 = 0; dma_cfg.s.size = -1; cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); /* Disable the interrupt. */ dma_int.u64 = 0; cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); /* Clear the DMA complete status */ dma_int.s.done = 1; cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); status = ap->ops->sff_check_status(ap); ata_sff_hsm_move(ap, qc, status, 0); if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA)) ata_ehi_push_desc(ehi, "DMA stat 0x%x", status); return 1; } /* * Check if any queued commands have more DMAs, if so start the next * transfer, else do end of transfer handling. */ static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance) { struct ata_host *host = dev_instance; struct octeon_cf_port *cf_port; int i; unsigned int handled = 0; unsigned long flags; spin_lock_irqsave(&host->lock, flags); for (i = 0; i < host->n_ports; i++) { u8 status; struct ata_port *ap; struct ata_queued_cmd *qc; union cvmx_mio_boot_dma_intx dma_int; union cvmx_mio_boot_dma_cfgx dma_cfg; ap = host->ports[i]; cf_port = ap->private_data; dma_int.u64 = cvmx_read_csr(cf_port->dma_base + DMA_INT); dma_cfg.u64 = cvmx_read_csr(cf_port->dma_base + DMA_CFG); qc = ata_qc_from_tag(ap, ap->link.active_tag); if (!qc || (qc->tf.flags & ATA_TFLAG_POLLING)) continue; if (dma_int.s.done && !dma_cfg.s.en) { if (!sg_is_last(qc->cursg)) { qc->cursg = sg_next(qc->cursg); handled = 1; trace_ata_bmdma_start(ap, &qc->tf, qc->tag); octeon_cf_dma_start(qc); continue; } else { cf_port->dma_finished = 1; } } if (!cf_port->dma_finished) continue; status = ioread8(ap->ioaddr.altstatus_addr); if (status & (ATA_BUSY | ATA_DRQ)) { /* * We are busy, try to handle it later. This * is the DMA finished interrupt, and it could * take a little while for the card to be * ready for more commands. */ /* Clear DMA irq. */ dma_int.u64 = 0; dma_int.s.done = 1; cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); hrtimer_start_range_ns(&cf_port->delayed_finish, ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL), OCTEON_CF_BUSY_POLL_INTERVAL / 5, HRTIMER_MODE_REL); handled = 1; } else { handled |= octeon_cf_dma_finished(ap, qc); } } spin_unlock_irqrestore(&host->lock, flags); return IRQ_RETVAL(handled); } static enum hrtimer_restart octeon_cf_delayed_finish(struct hrtimer *hrt) { struct octeon_cf_port *cf_port = container_of(hrt, struct octeon_cf_port, delayed_finish); struct ata_port *ap = cf_port->ap; struct ata_host *host = ap->host; struct ata_queued_cmd *qc; unsigned long flags; u8 status; enum hrtimer_restart rv = HRTIMER_NORESTART; spin_lock_irqsave(&host->lock, flags); /* * If the port is not waiting for completion, it must have * handled it previously. The hsm_task_state is * protected by host->lock. */ if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished) goto out; status = ioread8(ap->ioaddr.altstatus_addr); if (status & (ATA_BUSY | ATA_DRQ)) { /* Still busy, try again. */ hrtimer_forward_now(hrt, ns_to_ktime(OCTEON_CF_BUSY_POLL_INTERVAL)); rv = HRTIMER_RESTART; goto out; } qc = ata_qc_from_tag(ap, ap->link.active_tag); if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) octeon_cf_dma_finished(ap, qc); out: spin_unlock_irqrestore(&host->lock, flags); return rv; } static void octeon_cf_dev_config(struct ata_device *dev) { /* * A maximum of 2^20 - 1 16 bit transfers are possible with * the bootbus DMA. So we need to throttle max_sectors to * (2^12 - 1 == 4095) to assure that this can never happen. */ dev->max_sectors = min(dev->max_sectors, 4095U); } /* * We don't do ATAPI DMA so return 0. */ static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc) { return 0; } static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; switch (qc->tf.protocol) { case ATA_PROT_DMA: WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING); trace_ata_tf_load(ap, &qc->tf); ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ trace_ata_bmdma_setup(ap, &qc->tf, qc->tag); octeon_cf_dma_setup(qc); /* set up dma */ trace_ata_bmdma_start(ap, &qc->tf, qc->tag); octeon_cf_dma_start(qc); /* initiate dma */ ap->hsm_task_state = HSM_ST_LAST; break; case ATAPI_PROT_DMA: dev_err(ap->dev, "Error, ATAPI not supported\n"); BUG(); default: return ata_sff_qc_issue(qc); } return 0; } static struct ata_port_operations octeon_cf_ops = { .inherits = &ata_sff_port_ops, .check_atapi_dma = octeon_cf_check_atapi_dma, .qc_prep = ata_noop_qc_prep, .qc_issue = octeon_cf_qc_issue, .sff_dev_select = octeon_cf_dev_select, .sff_irq_on = octeon_cf_ata_port_noaction, .sff_irq_clear = octeon_cf_ata_port_noaction, .cable_detect = ata_cable_40wire, .set_piomode = octeon_cf_set_piomode, .set_dmamode = octeon_cf_set_dmamode, .dev_config = octeon_cf_dev_config, }; static int octeon_cf_probe(struct platform_device *pdev) { struct resource *res_cs0, *res_cs1; bool is_16bit; const __be32 *cs_num; struct property *reg_prop; int n_addr, n_size, reg_len; struct device_node *node; void __iomem *cs0; void __iomem *cs1 = NULL; struct ata_host *host; struct ata_port *ap; int irq = 0; irq_handler_t irq_handler = NULL; void __iomem *base; struct octeon_cf_port *cf_port; int rv = -ENOMEM; u32 bus_width; node = pdev->dev.of_node; if (node == NULL) return -EINVAL; cf_port = devm_kzalloc(&pdev->dev, sizeof(*cf_port), GFP_KERNEL); if (!cf_port) return -ENOMEM; cf_port->is_true_ide = of_property_read_bool(node, "cavium,true-ide"); if (of_property_read_u32(node, "cavium,bus-width", &bus_width) == 0) is_16bit = (bus_width == 16); else is_16bit = false; n_addr = of_n_addr_cells(node); n_size = of_n_size_cells(node); reg_prop = of_find_property(node, "reg", ®_len); if (!reg_prop || reg_len < sizeof(__be32)) return -EINVAL; cs_num = reg_prop->value; cf_port->cs0 = be32_to_cpup(cs_num); if (cf_port->is_true_ide) { struct device_node *dma_node; dma_node = of_parse_phandle(node, "cavium,dma-engine-handle", 0); if (dma_node) { struct platform_device *dma_dev; dma_dev = of_find_device_by_node(dma_node); if (dma_dev) { struct resource *res_dma; int i; res_dma = platform_get_resource(dma_dev, IORESOURCE_MEM, 0); if (!res_dma) { of_node_put(dma_node); return -EINVAL; } cf_port->dma_base = (u64)devm_ioremap(&pdev->dev, res_dma->start, resource_size(res_dma)); if (!cf_port->dma_base) { of_node_put(dma_node); return -EINVAL; } i = platform_get_irq(dma_dev, 0); if (i > 0) { irq = i; irq_handler = octeon_cf_interrupt; } } of_node_put(dma_node); } res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res_cs1) return -EINVAL; cs1 = devm_ioremap(&pdev->dev, res_cs1->start, resource_size(res_cs1)); if (!cs1) return rv; if (reg_len < (n_addr + n_size + 1) * sizeof(__be32)) return -EINVAL; cs_num += n_addr + n_size; cf_port->cs1 = be32_to_cpup(cs_num); } res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res_cs0) return -EINVAL; cs0 = devm_ioremap(&pdev->dev, res_cs0->start, resource_size(res_cs0)); if (!cs0) return rv; /* allocate host */ host = ata_host_alloc(&pdev->dev, 1); if (!host) return rv; ap = host->ports[0]; ap->private_data = cf_port; pdev->dev.platform_data = cf_port; cf_port->ap = ap; ap->ops = &octeon_cf_ops; ap->pio_mask = ATA_PIO6; ap->flags |= ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING; if (!is_16bit) { base = cs0 + 0x800; ap->ioaddr.cmd_addr = base; ata_sff_std_ports(&ap->ioaddr); ap->ioaddr.altstatus_addr = base + 0xe; ap->ioaddr.ctl_addr = base + 0xe; octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8; } else if (cf_port->is_true_ide) { base = cs0; ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1; ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1); ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1; ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1; ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1; ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1; ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1; ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1; ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1; ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1; ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1; ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1; ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1; octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; ap->mwdma_mask = enable_dma ? ATA_MWDMA4 : 0; /* True IDE mode needs a timer to poll for not-busy. */ hrtimer_init(&cf_port->delayed_finish, CLOCK_MONOTONIC, HRTIMER_MODE_REL); cf_port->delayed_finish.function = octeon_cf_delayed_finish; } else { /* 16 bit but not True IDE */ base = cs0 + 0x800; octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16; octeon_cf_ops.softreset = octeon_cf_softreset16; octeon_cf_ops.sff_check_status = octeon_cf_check_status16; octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16; octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16; octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16; ap->ioaddr.data_addr = base + ATA_REG_DATA; ap->ioaddr.nsect_addr = base + ATA_REG_NSECT; ap->ioaddr.lbal_addr = base + ATA_REG_LBAL; ap->ioaddr.ctl_addr = base + 0xe; ap->ioaddr.altstatus_addr = base + 0xe; } cf_port->c0 = ap->ioaddr.ctl_addr; rv = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (rv) return rv; ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr); dev_info(&pdev->dev, "version " DRV_VERSION" %d bit%s.\n", is_16bit ? 16 : 8, cf_port->is_true_ide ? ", True IDE" : ""); return ata_host_activate(host, irq, irq_handler, IRQF_SHARED, &octeon_cf_sht); } static void octeon_cf_shutdown(struct device *dev) { union cvmx_mio_boot_dma_cfgx dma_cfg; union cvmx_mio_boot_dma_intx dma_int; struct octeon_cf_port *cf_port = dev_get_platdata(dev); if (cf_port->dma_base) { /* Stop and clear the dma engine. */ dma_cfg.u64 = 0; dma_cfg.s.size = -1; cvmx_write_csr(cf_port->dma_base + DMA_CFG, dma_cfg.u64); /* Disable the interrupt. */ dma_int.u64 = 0; cvmx_write_csr(cf_port->dma_base + DMA_INT_EN, dma_int.u64); /* Clear the DMA complete status */ dma_int.s.done = 1; cvmx_write_csr(cf_port->dma_base + DMA_INT, dma_int.u64); __raw_writeb(0, cf_port->c0); udelay(20); __raw_writeb(ATA_SRST, cf_port->c0); udelay(20); __raw_writeb(0, cf_port->c0); mdelay(100); } } static const struct of_device_id octeon_cf_match[] = { { .compatible = "cavium,ebt3000-compact-flash", }, {}, }; MODULE_DEVICE_TABLE(of, octeon_cf_match); static struct platform_driver octeon_cf_driver = { .probe = octeon_cf_probe, .driver = { .name = DRV_NAME, .of_match_table = octeon_cf_match, .shutdown = octeon_cf_shutdown }, }; static int __init octeon_cf_init(void) { return platform_driver_register(&octeon_cf_driver); } MODULE_AUTHOR("David Daney "); MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); MODULE_ALIAS("platform:" DRV_NAME); module_init(octeon_cf_init);