/* drbd_nl.c This file is part of DRBD by Philipp Reisner and Lars Ellenberg. Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. Copyright (C) 1999-2008, Philipp Reisner . Copyright (C) 2002-2008, Lars Ellenberg . drbd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. drbd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with drbd; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include "drbd_int.h" #include "drbd_req.h" #include "drbd_wrappers.h" #include #include #include #include #include static unsigned short *tl_add_blob(unsigned short *, enum drbd_tags, const void *, int); static unsigned short *tl_add_str(unsigned short *, enum drbd_tags, const char *); static unsigned short *tl_add_int(unsigned short *, enum drbd_tags, const void *); /* see get_sb_bdev and bd_claim */ static char *drbd_m_holder = "Hands off! this is DRBD's meta data device."; /* Generate the tag_list to struct functions */ #define NL_PACKET(name, number, fields) \ static int name ## _from_tags(struct drbd_conf *mdev, \ unsigned short *tags, struct name *arg) __attribute__ ((unused)); \ static int name ## _from_tags(struct drbd_conf *mdev, \ unsigned short *tags, struct name *arg) \ { \ int tag; \ int dlen; \ \ while ((tag = get_unaligned(tags++)) != TT_END) { \ dlen = get_unaligned(tags++); \ switch (tag_number(tag)) { \ fields \ default: \ if (tag & T_MANDATORY) { \ dev_err(DEV, "Unknown tag: %d\n", tag_number(tag)); \ return 0; \ } \ } \ tags = (unsigned short *)((char *)tags + dlen); \ } \ return 1; \ } #define NL_INTEGER(pn, pr, member) \ case pn: /* D_ASSERT( tag_type(tag) == TT_INTEGER ); */ \ arg->member = get_unaligned((int *)(tags)); \ break; #define NL_INT64(pn, pr, member) \ case pn: /* D_ASSERT( tag_type(tag) == TT_INT64 ); */ \ arg->member = get_unaligned((u64 *)(tags)); \ break; #define NL_BIT(pn, pr, member) \ case pn: /* D_ASSERT( tag_type(tag) == TT_BIT ); */ \ arg->member = *(char *)(tags) ? 1 : 0; \ break; #define NL_STRING(pn, pr, member, len) \ case pn: /* D_ASSERT( tag_type(tag) == TT_STRING ); */ \ if (dlen > len) { \ dev_err(DEV, "arg too long: %s (%u wanted, max len: %u bytes)\n", \ #member, dlen, (unsigned int)len); \ return 0; \ } \ arg->member ## _len = dlen; \ memcpy(arg->member, tags, min_t(size_t, dlen, len)); \ break; #include "linux/drbd_nl.h" /* Generate the struct to tag_list functions */ #define NL_PACKET(name, number, fields) \ static unsigned short* \ name ## _to_tags(struct drbd_conf *mdev, \ struct name *arg, unsigned short *tags) __attribute__ ((unused)); \ static unsigned short* \ name ## _to_tags(struct drbd_conf *mdev, \ struct name *arg, unsigned short *tags) \ { \ fields \ return tags; \ } #define NL_INTEGER(pn, pr, member) \ put_unaligned(pn | pr | TT_INTEGER, tags++); \ put_unaligned(sizeof(int), tags++); \ put_unaligned(arg->member, (int *)tags); \ tags = (unsigned short *)((char *)tags+sizeof(int)); #define NL_INT64(pn, pr, member) \ put_unaligned(pn | pr | TT_INT64, tags++); \ put_unaligned(sizeof(u64), tags++); \ put_unaligned(arg->member, (u64 *)tags); \ tags = (unsigned short *)((char *)tags+sizeof(u64)); #define NL_BIT(pn, pr, member) \ put_unaligned(pn | pr | TT_BIT, tags++); \ put_unaligned(sizeof(char), tags++); \ *(char *)tags = arg->member; \ tags = (unsigned short *)((char *)tags+sizeof(char)); #define NL_STRING(pn, pr, member, len) \ put_unaligned(pn | pr | TT_STRING, tags++); \ put_unaligned(arg->member ## _len, tags++); \ memcpy(tags, arg->member, arg->member ## _len); \ tags = (unsigned short *)((char *)tags + arg->member ## _len); #include "linux/drbd_nl.h" void drbd_bcast_ev_helper(struct drbd_conf *mdev, char *helper_name); void drbd_nl_send_reply(struct cn_msg *, int); int drbd_khelper(struct drbd_conf *mdev, char *cmd) { char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL, /* Will be set to address family */ NULL, /* Will be set to address */ NULL }; char mb[12], af[20], ad[60], *afs; char *argv[] = {usermode_helper, cmd, mb, NULL }; int ret; snprintf(mb, 12, "minor-%d", mdev_to_minor(mdev)); if (get_net_conf(mdev)) { switch (((struct sockaddr *)mdev->net_conf->peer_addr)->sa_family) { case AF_INET6: afs = "ipv6"; snprintf(ad, 60, "DRBD_PEER_ADDRESS=%pI6", &((struct sockaddr_in6 *)mdev->net_conf->peer_addr)->sin6_addr); break; case AF_INET: afs = "ipv4"; snprintf(ad, 60, "DRBD_PEER_ADDRESS=%pI4", &((struct sockaddr_in *)mdev->net_conf->peer_addr)->sin_addr); break; default: afs = "ssocks"; snprintf(ad, 60, "DRBD_PEER_ADDRESS=%pI4", &((struct sockaddr_in *)mdev->net_conf->peer_addr)->sin_addr); } snprintf(af, 20, "DRBD_PEER_AF=%s", afs); envp[3]=af; envp[4]=ad; put_net_conf(mdev); } /* The helper may take some time. * write out any unsynced meta data changes now */ drbd_md_sync(mdev); dev_info(DEV, "helper command: %s %s %s\n", usermode_helper, cmd, mb); drbd_bcast_ev_helper(mdev, cmd); ret = call_usermodehelper(usermode_helper, argv, envp, 1); if (ret) dev_warn(DEV, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, mb, (ret >> 8) & 0xff, ret); else dev_info(DEV, "helper command: %s %s %s exit code %u (0x%x)\n", usermode_helper, cmd, mb, (ret >> 8) & 0xff, ret); if (ret < 0) /* Ignore any ERRNOs we got. */ ret = 0; return ret; } enum drbd_disk_state drbd_try_outdate_peer(struct drbd_conf *mdev) { char *ex_to_string; int r; enum drbd_disk_state nps; enum drbd_fencing_p fp; D_ASSERT(mdev->state.pdsk == D_UNKNOWN); if (get_ldev_if_state(mdev, D_CONSISTENT)) { fp = mdev->ldev->dc.fencing; put_ldev(mdev); } else { dev_warn(DEV, "Not fencing peer, I'm not even Consistent myself.\n"); nps = mdev->state.pdsk; goto out; } r = drbd_khelper(mdev, "fence-peer"); switch ((r>>8) & 0xff) { case 3: /* peer is inconsistent */ ex_to_string = "peer is inconsistent or worse"; nps = D_INCONSISTENT; break; case 4: /* peer got outdated, or was already outdated */ ex_to_string = "peer was fenced"; nps = D_OUTDATED; break; case 5: /* peer was down */ if (mdev->state.disk == D_UP_TO_DATE) { /* we will(have) create(d) a new UUID anyways... */ ex_to_string = "peer is unreachable, assumed to be dead"; nps = D_OUTDATED; } else { ex_to_string = "peer unreachable, doing nothing since disk != UpToDate"; nps = mdev->state.pdsk; } break; case 6: /* Peer is primary, voluntarily outdate myself. * This is useful when an unconnected R_SECONDARY is asked to * become R_PRIMARY, but finds the other peer being active. */ ex_to_string = "peer is active"; dev_warn(DEV, "Peer is primary, outdating myself.\n"); nps = D_UNKNOWN; _drbd_request_state(mdev, NS(disk, D_OUTDATED), CS_WAIT_COMPLETE); break; case 7: if (fp != FP_STONITH) dev_err(DEV, "fence-peer() = 7 && fencing != Stonith !!!\n"); ex_to_string = "peer was stonithed"; nps = D_OUTDATED; break; default: /* The script is broken ... */ nps = D_UNKNOWN; dev_err(DEV, "fence-peer helper broken, returned %d\n", (r>>8)&0xff); return nps; } dev_info(DEV, "fence-peer helper returned %d (%s)\n", (r>>8) & 0xff, ex_to_string); out: if (mdev->state.susp_fen && nps >= D_UNKNOWN) { /* The handler was not successful... unfreeze here, the state engine can not unfreeze... */ _drbd_request_state(mdev, NS(susp_fen, 0), CS_VERBOSE); } return nps; } static int _try_outdate_peer_async(void *data) { struct drbd_conf *mdev = (struct drbd_conf *)data; enum drbd_disk_state nps; nps = drbd_try_outdate_peer(mdev); drbd_request_state(mdev, NS(pdsk, nps)); return 0; } void drbd_try_outdate_peer_async(struct drbd_conf *mdev) { struct task_struct *opa; opa = kthread_run(_try_outdate_peer_async, mdev, "drbd%d_a_helper", mdev_to_minor(mdev)); if (IS_ERR(opa)) dev_err(DEV, "out of mem, failed to invoke fence-peer helper\n"); } enum drbd_state_rv drbd_set_role(struct drbd_conf *mdev, enum drbd_role new_role, int force) { const int max_tries = 4; enum drbd_state_rv rv = SS_UNKNOWN_ERROR; int try = 0; int forced = 0; union drbd_state mask, val; enum drbd_disk_state nps; if (new_role == R_PRIMARY) request_ping(mdev); /* Detect a dead peer ASAP */ mutex_lock(&mdev->state_mutex); mask.i = 0; mask.role = R_MASK; val.i = 0; val.role = new_role; while (try++ < max_tries) { rv = _drbd_request_state(mdev, mask, val, CS_WAIT_COMPLETE); /* in case we first succeeded to outdate, * but now suddenly could establish a connection */ if (rv == SS_CW_FAILED_BY_PEER && mask.pdsk != 0) { val.pdsk = 0; mask.pdsk = 0; continue; } if (rv == SS_NO_UP_TO_DATE_DISK && force && (mdev->state.disk < D_UP_TO_DATE && mdev->state.disk >= D_INCONSISTENT)) { mask.disk = D_MASK; val.disk = D_UP_TO_DATE; forced = 1; continue; } if (rv == SS_NO_UP_TO_DATE_DISK && mdev->state.disk == D_CONSISTENT && mask.pdsk == 0) { D_ASSERT(mdev->state.pdsk == D_UNKNOWN); nps = drbd_try_outdate_peer(mdev); if (nps == D_OUTDATED || nps == D_INCONSISTENT) { val.disk = D_UP_TO_DATE; mask.disk = D_MASK; } val.pdsk = nps; mask.pdsk = D_MASK; continue; } if (rv == SS_NOTHING_TO_DO) goto fail; if (rv == SS_PRIMARY_NOP && mask.pdsk == 0) { nps = drbd_try_outdate_peer(mdev); if (force && nps > D_OUTDATED) { dev_warn(DEV, "Forced into split brain situation!\n"); nps = D_OUTDATED; } mask.pdsk = D_MASK; val.pdsk = nps; continue; } if (rv == SS_TWO_PRIMARIES) { /* Maybe the peer is detected as dead very soon... retry at most once more in this case. */ __set_current_state(TASK_INTERRUPTIBLE); schedule_timeout((mdev->net_conf->ping_timeo+1)*HZ/10); if (try < max_tries) try = max_tries - 1; continue; } if (rv < SS_SUCCESS) { rv = _drbd_request_state(mdev, mask, val, CS_VERBOSE + CS_WAIT_COMPLETE); if (rv < SS_SUCCESS) goto fail; } break; } if (rv < SS_SUCCESS) goto fail; if (forced) dev_warn(DEV, "Forced to consider local data as UpToDate!\n"); /* Wait until nothing is on the fly :) */ wait_event(mdev->misc_wait, atomic_read(&mdev->ap_pending_cnt) == 0); if (new_role == R_SECONDARY) { set_disk_ro(mdev->vdisk, true); if (get_ldev(mdev)) { mdev->ldev->md.uuid[UI_CURRENT] &= ~(u64)1; put_ldev(mdev); } } else { if (get_net_conf(mdev)) { mdev->net_conf->want_lose = 0; put_net_conf(mdev); } set_disk_ro(mdev->vdisk, false); if (get_ldev(mdev)) { if (((mdev->state.conn < C_CONNECTED || mdev->state.pdsk <= D_FAILED) && mdev->ldev->md.uuid[UI_BITMAP] == 0) || forced) drbd_uuid_new_current(mdev); mdev->ldev->md.uuid[UI_CURRENT] |= (u64)1; put_ldev(mdev); } } if ((new_role == R_SECONDARY) && get_ldev(mdev)) { drbd_al_to_on_disk_bm(mdev); put_ldev(mdev); } if (mdev->state.conn >= C_WF_REPORT_PARAMS) { /* if this was forced, we should consider sync */ if (forced) drbd_send_uuids(mdev); drbd_send_state(mdev); } drbd_md_sync(mdev); kobject_uevent(&disk_to_dev(mdev->vdisk)->kobj, KOBJ_CHANGE); fail: mutex_unlock(&mdev->state_mutex); return rv; } static struct drbd_conf *ensure_mdev(int minor, int create) { struct drbd_conf *mdev; if (minor >= minor_count) return NULL; mdev = minor_to_mdev(minor); if (!mdev && create) { struct gendisk *disk = NULL; mdev = drbd_new_device(minor); spin_lock_irq(&drbd_pp_lock); if (minor_table[minor] == NULL) { minor_table[minor] = mdev; disk = mdev->vdisk; mdev = NULL; } /* else: we lost the race */ spin_unlock_irq(&drbd_pp_lock); if (disk) /* we won the race above */ /* in case we ever add a drbd_delete_device(), * don't forget the del_gendisk! */ add_disk(disk); else /* we lost the race above */ drbd_free_mdev(mdev); mdev = minor_to_mdev(minor); } return mdev; } static int drbd_nl_primary(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { struct primary primary_args; memset(&primary_args, 0, sizeof(struct primary)); if (!primary_from_tags(mdev, nlp->tag_list, &primary_args)) { reply->ret_code = ERR_MANDATORY_TAG; return 0; } reply->ret_code = drbd_set_role(mdev, R_PRIMARY, primary_args.primary_force); return 0; } static int drbd_nl_secondary(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { reply->ret_code = drbd_set_role(mdev, R_SECONDARY, 0); return 0; } /* initializes the md.*_offset members, so we are able to find * the on disk meta data */ static void drbd_md_set_sector_offsets(struct drbd_conf *mdev, struct drbd_backing_dev *bdev) { sector_t md_size_sect = 0; switch (bdev->dc.meta_dev_idx) { default: /* v07 style fixed size indexed meta data */ bdev->md.md_size_sect = MD_RESERVED_SECT; bdev->md.md_offset = drbd_md_ss__(mdev, bdev); bdev->md.al_offset = MD_AL_OFFSET; bdev->md.bm_offset = MD_BM_OFFSET; break; case DRBD_MD_INDEX_FLEX_EXT: /* just occupy the full device; unit: sectors */ bdev->md.md_size_sect = drbd_get_capacity(bdev->md_bdev); bdev->md.md_offset = 0; bdev->md.al_offset = MD_AL_OFFSET; bdev->md.bm_offset = MD_BM_OFFSET; break; case DRBD_MD_INDEX_INTERNAL: case DRBD_MD_INDEX_FLEX_INT: bdev->md.md_offset = drbd_md_ss__(mdev, bdev); /* al size is still fixed */ bdev->md.al_offset = -MD_AL_MAX_SIZE; /* we need (slightly less than) ~ this much bitmap sectors: */ md_size_sect = drbd_get_capacity(bdev->backing_bdev); md_size_sect = ALIGN(md_size_sect, BM_SECT_PER_EXT); md_size_sect = BM_SECT_TO_EXT(md_size_sect); md_size_sect = ALIGN(md_size_sect, 8); /* plus the "drbd meta data super block", * and the activity log; */ md_size_sect += MD_BM_OFFSET; bdev->md.md_size_sect = md_size_sect; /* bitmap offset is adjusted by 'super' block size */ bdev->md.bm_offset = -md_size_sect + MD_AL_OFFSET; break; } } char *ppsize(char *buf, unsigned long long size) { /* Needs 9 bytes at max. */ static char units[] = { 'K', 'M', 'G', 'T', 'P', 'E' }; int base = 0; while (size >= 10000) { /* shift + round */ size = (size >> 10) + !!(size & (1<<9)); base++; } sprintf(buf, "%lu %cB", (long)size, units[base]); return buf; } /* there is still a theoretical deadlock when called from receiver * on an D_INCONSISTENT R_PRIMARY: * remote READ does inc_ap_bio, receiver would need to receive answer * packet from remote to dec_ap_bio again. * receiver receive_sizes(), comes here, * waits for ap_bio_cnt == 0. -> deadlock. * but this cannot happen, actually, because: * R_PRIMARY D_INCONSISTENT, and peer's disk is unreachable * (not connected, or bad/no disk on peer): * see drbd_fail_request_early, ap_bio_cnt is zero. * R_PRIMARY D_INCONSISTENT, and C_SYNC_TARGET: * peer may not initiate a resize. */ void drbd_suspend_io(struct drbd_conf *mdev) { set_bit(SUSPEND_IO, &mdev->flags); if (is_susp(mdev->state)) return; wait_event(mdev->misc_wait, !atomic_read(&mdev->ap_bio_cnt)); } void drbd_resume_io(struct drbd_conf *mdev) { clear_bit(SUSPEND_IO, &mdev->flags); wake_up(&mdev->misc_wait); } /** * drbd_determine_dev_size() - Sets the right device size obeying all constraints * @mdev: DRBD device. * * Returns 0 on success, negative return values indicate errors. * You should call drbd_md_sync() after calling this function. */ enum determine_dev_size drbd_determin_dev_size(struct drbd_conf *mdev, enum dds_flags flags) __must_hold(local) { sector_t prev_first_sect, prev_size; /* previous meta location */ sector_t la_size; sector_t size; char ppb[10]; int md_moved, la_size_changed; enum determine_dev_size rv = unchanged; /* race: * application request passes inc_ap_bio, * but then cannot get an AL-reference. * this function later may wait on ap_bio_cnt == 0. -> deadlock. * * to avoid that: * Suspend IO right here. * still lock the act_log to not trigger ASSERTs there. */ drbd_suspend_io(mdev); /* no wait necessary anymore, actually we could assert that */ wait_event(mdev->al_wait, lc_try_lock(mdev->act_log)); prev_first_sect = drbd_md_first_sector(mdev->ldev); prev_size = mdev->ldev->md.md_size_sect; la_size = mdev->ldev->md.la_size_sect; /* TODO: should only be some assert here, not (re)init... */ drbd_md_set_sector_offsets(mdev, mdev->ldev); size = drbd_new_dev_size(mdev, mdev->ldev, flags & DDSF_FORCED); if (drbd_get_capacity(mdev->this_bdev) != size || drbd_bm_capacity(mdev) != size) { int err; err = drbd_bm_resize(mdev, size, !(flags & DDSF_NO_RESYNC)); if (unlikely(err)) { /* currently there is only one error: ENOMEM! */ size = drbd_bm_capacity(mdev)>>1; if (size == 0) { dev_err(DEV, "OUT OF MEMORY! " "Could not allocate bitmap!\n"); } else { dev_err(DEV, "BM resizing failed. " "Leaving size unchanged at size = %lu KB\n", (unsigned long)size); } rv = dev_size_error; } /* racy, see comments above. */ drbd_set_my_capacity(mdev, size); mdev->ldev->md.la_size_sect = size; dev_info(DEV, "size = %s (%llu KB)\n", ppsize(ppb, size>>1), (unsigned long long)size>>1); } if (rv == dev_size_error) goto out; la_size_changed = (la_size != mdev->ldev->md.la_size_sect); md_moved = prev_first_sect != drbd_md_first_sector(mdev->ldev) || prev_size != mdev->ldev->md.md_size_sect; if (la_size_changed || md_moved) { drbd_al_shrink(mdev); /* All extents inactive. */ dev_info(DEV, "Writing the whole bitmap, %s\n", la_size_changed && md_moved ? "size changed and md moved" : la_size_changed ? "size changed" : "md moved"); rv = drbd_bitmap_io(mdev, &drbd_bm_write, "size changed"); /* does drbd_resume_io() ! */ drbd_md_mark_dirty(mdev); } if (size > la_size) rv = grew; if (size < la_size) rv = shrunk; out: lc_unlock(mdev->act_log); wake_up(&mdev->al_wait); drbd_resume_io(mdev); return rv; } sector_t drbd_new_dev_size(struct drbd_conf *mdev, struct drbd_backing_dev *bdev, int assume_peer_has_space) { sector_t p_size = mdev->p_size; /* partner's disk size. */ sector_t la_size = bdev->md.la_size_sect; /* last agreed size. */ sector_t m_size; /* my size */ sector_t u_size = bdev->dc.disk_size; /* size requested by user. */ sector_t size = 0; m_size = drbd_get_max_capacity(bdev); if (mdev->state.conn < C_CONNECTED && assume_peer_has_space) { dev_warn(DEV, "Resize while not connected was forced by the user!\n"); p_size = m_size; } if (p_size && m_size) { size = min_t(sector_t, p_size, m_size); } else { if (la_size) { size = la_size; if (m_size && m_size < size) size = m_size; if (p_size && p_size < size) size = p_size; } else { if (m_size) size = m_size; if (p_size) size = p_size; } } if (size == 0) dev_err(DEV, "Both nodes diskless!\n"); if (u_size) { if (u_size > size) dev_err(DEV, "Requested disk size is too big (%lu > %lu)\n", (unsigned long)u_size>>1, (unsigned long)size>>1); else size = u_size; } return size; } /** * drbd_check_al_size() - Ensures that the AL is of the right size * @mdev: DRBD device. * * Returns -EBUSY if current al lru is still used, -ENOMEM when allocation * failed, and 0 on success. You should call drbd_md_sync() after you called * this function. */ static int drbd_check_al_size(struct drbd_conf *mdev) { struct lru_cache *n, *t; struct lc_element *e; unsigned int in_use; int i; ERR_IF(mdev->sync_conf.al_extents < 7) mdev->sync_conf.al_extents = 127; if (mdev->act_log && mdev->act_log->nr_elements == mdev->sync_conf.al_extents) return 0; in_use = 0; t = mdev->act_log; n = lc_create("act_log", drbd_al_ext_cache, mdev->sync_conf.al_extents, sizeof(struct lc_element), 0); if (n == NULL) { dev_err(DEV, "Cannot allocate act_log lru!\n"); return -ENOMEM; } spin_lock_irq(&mdev->al_lock); if (t) { for (i = 0; i < t->nr_elements; i++) { e = lc_element_by_index(t, i); if (e->refcnt) dev_err(DEV, "refcnt(%d)==%d\n", e->lc_number, e->refcnt); in_use += e->refcnt; } } if (!in_use) mdev->act_log = n; spin_unlock_irq(&mdev->al_lock); if (in_use) { dev_err(DEV, "Activity log still in use!\n"); lc_destroy(n); return -EBUSY; } else { if (t) lc_destroy(t); } drbd_md_mark_dirty(mdev); /* we changed mdev->act_log->nr_elemens */ return 0; } void drbd_setup_queue_param(struct drbd_conf *mdev, unsigned int max_bio_size) __must_hold(local) { struct request_queue * const q = mdev->rq_queue; struct request_queue * const b = mdev->ldev->backing_bdev->bd_disk->queue; int max_segments = mdev->ldev->dc.max_bio_bvecs; int max_hw_sectors = min(queue_max_hw_sectors(b), max_bio_size >> 9); blk_queue_logical_block_size(q, 512); blk_queue_max_hw_sectors(q, max_hw_sectors); /* This is the workaround for "bio would need to, but cannot, be split" */ blk_queue_max_segments(q, max_segments ? max_segments : BLK_MAX_SEGMENTS); blk_queue_segment_boundary(q, PAGE_CACHE_SIZE-1); blk_queue_stack_limits(q, b); dev_info(DEV, "max BIO size = %u\n", queue_max_hw_sectors(q) << 9); if (q->backing_dev_info.ra_pages != b->backing_dev_info.ra_pages) { dev_info(DEV, "Adjusting my ra_pages to backing device's (%lu -> %lu)\n", q->backing_dev_info.ra_pages, b->backing_dev_info.ra_pages); q->backing_dev_info.ra_pages = b->backing_dev_info.ra_pages; } } /* serialize deconfig (worker exiting, doing cleanup) * and reconfig (drbdsetup disk, drbdsetup net) * * Wait for a potentially exiting worker, then restart it, * or start a new one. Flush any pending work, there may still be an * after_state_change queued. */ static void drbd_reconfig_start(struct drbd_conf *mdev) { wait_event(mdev->state_wait, !test_and_set_bit(CONFIG_PENDING, &mdev->flags)); wait_event(mdev->state_wait, !test_bit(DEVICE_DYING, &mdev->flags)); drbd_thread_start(&mdev->worker); drbd_flush_workqueue(mdev); } /* if still unconfigured, stops worker again. * if configured now, clears CONFIG_PENDING. * wakes potential waiters */ static void drbd_reconfig_done(struct drbd_conf *mdev) { spin_lock_irq(&mdev->req_lock); if (mdev->state.disk == D_DISKLESS && mdev->state.conn == C_STANDALONE && mdev->state.role == R_SECONDARY) { set_bit(DEVICE_DYING, &mdev->flags); drbd_thread_stop_nowait(&mdev->worker); } else clear_bit(CONFIG_PENDING, &mdev->flags); spin_unlock_irq(&mdev->req_lock); wake_up(&mdev->state_wait); } /* Make sure IO is suspended before calling this function(). */ static void drbd_suspend_al(struct drbd_conf *mdev) { int s = 0; if (lc_try_lock(mdev->act_log)) { drbd_al_shrink(mdev); lc_unlock(mdev->act_log); } else { dev_warn(DEV, "Failed to lock al in drbd_suspend_al()\n"); return; } spin_lock_irq(&mdev->req_lock); if (mdev->state.conn < C_CONNECTED) s = !test_and_set_bit(AL_SUSPENDED, &mdev->flags); spin_unlock_irq(&mdev->req_lock); if (s) dev_info(DEV, "Suspended AL updates\n"); } /* does always return 0; * interesting return code is in reply->ret_code */ static int drbd_nl_disk_conf(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { enum drbd_ret_code retcode; enum determine_dev_size dd; sector_t max_possible_sectors; sector_t min_md_device_sectors; struct drbd_backing_dev *nbc = NULL; /* new_backing_conf */ struct block_device *bdev; struct lru_cache *resync_lru = NULL; union drbd_state ns, os; unsigned int max_bio_size; enum drbd_state_rv rv; int cp_discovered = 0; int logical_block_size; drbd_reconfig_start(mdev); /* if you want to reconfigure, please tear down first */ if (mdev->state.disk > D_DISKLESS) { retcode = ERR_DISK_CONFIGURED; goto fail; } /* It may just now have detached because of IO error. Make sure * drbd_ldev_destroy is done already, we may end up here very fast, * e.g. if someone calls attach from the on-io-error handler, * to realize a "hot spare" feature (not that I'd recommend that) */ wait_event(mdev->misc_wait, !atomic_read(&mdev->local_cnt)); /* allocation not in the IO path, cqueue thread context */ nbc = kzalloc(sizeof(struct drbd_backing_dev), GFP_KERNEL); if (!nbc) { retcode = ERR_NOMEM; goto fail; } nbc->dc.disk_size = DRBD_DISK_SIZE_SECT_DEF; nbc->dc.on_io_error = DRBD_ON_IO_ERROR_DEF; nbc->dc.fencing = DRBD_FENCING_DEF; nbc->dc.max_bio_bvecs = DRBD_MAX_BIO_BVECS_DEF; if (!disk_conf_from_tags(mdev, nlp->tag_list, &nbc->dc)) { retcode = ERR_MANDATORY_TAG; goto fail; } if (nbc->dc.meta_dev_idx < DRBD_MD_INDEX_FLEX_INT) { retcode = ERR_MD_IDX_INVALID; goto fail; } if (get_net_conf(mdev)) { int prot = mdev->net_conf->wire_protocol; put_net_conf(mdev); if (nbc->dc.fencing == FP_STONITH && prot == DRBD_PROT_A) { retcode = ERR_STONITH_AND_PROT_A; goto fail; } } bdev = blkdev_get_by_path(nbc->dc.backing_dev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, mdev); if (IS_ERR(bdev)) { dev_err(DEV, "open(\"%s\") failed with %ld\n", nbc->dc.backing_dev, PTR_ERR(bdev)); retcode = ERR_OPEN_DISK; goto fail; } nbc->backing_bdev = bdev; /* * meta_dev_idx >= 0: external fixed size, possibly multiple * drbd sharing one meta device. TODO in that case, paranoia * check that [md_bdev, meta_dev_idx] is not yet used by some * other drbd minor! (if you use drbd.conf + drbdadm, that * should check it for you already; but if you don't, or * someone fooled it, we need to double check here) */ bdev = blkdev_get_by_path(nbc->dc.meta_dev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, (nbc->dc.meta_dev_idx < 0) ? (void *)mdev : (void *)drbd_m_holder); if (IS_ERR(bdev)) { dev_err(DEV, "open(\"%s\") failed with %ld\n", nbc->dc.meta_dev, PTR_ERR(bdev)); retcode = ERR_OPEN_MD_DISK; goto fail; } nbc->md_bdev = bdev; if ((nbc->backing_bdev == nbc->md_bdev) != (nbc->dc.meta_dev_idx == DRBD_MD_INDEX_INTERNAL || nbc->dc.meta_dev_idx == DRBD_MD_INDEX_FLEX_INT)) { retcode = ERR_MD_IDX_INVALID; goto fail; } resync_lru = lc_create("resync", drbd_bm_ext_cache, 61, sizeof(struct bm_extent), offsetof(struct bm_extent, lce)); if (!resync_lru) { retcode = ERR_NOMEM; goto fail; } /* RT - for drbd_get_max_capacity() DRBD_MD_INDEX_FLEX_INT */ drbd_md_set_sector_offsets(mdev, nbc); if (drbd_get_max_capacity(nbc) < nbc->dc.disk_size) { dev_err(DEV, "max capacity %llu smaller than disk size %llu\n", (unsigned long long) drbd_get_max_capacity(nbc), (unsigned long long) nbc->dc.disk_size); retcode = ERR_DISK_TO_SMALL; goto fail; } if (nbc->dc.meta_dev_idx < 0) { max_possible_sectors = DRBD_MAX_SECTORS_FLEX; /* at least one MB, otherwise it does not make sense */ min_md_device_sectors = (2<<10); } else { max_possible_sectors = DRBD_MAX_SECTORS; min_md_device_sectors = MD_RESERVED_SECT * (nbc->dc.meta_dev_idx + 1); } if (drbd_get_capacity(nbc->md_bdev) < min_md_device_sectors) { retcode = ERR_MD_DISK_TO_SMALL; dev_warn(DEV, "refusing attach: md-device too small, " "at least %llu sectors needed for this meta-disk type\n", (unsigned long long) min_md_device_sectors); goto fail; } /* Make sure the new disk is big enough * (we may currently be R_PRIMARY with no local disk...) */ if (drbd_get_max_capacity(nbc) < drbd_get_capacity(mdev->this_bdev)) { retcode = ERR_DISK_TO_SMALL; goto fail; } nbc->known_size = drbd_get_capacity(nbc->backing_bdev); if (nbc->known_size > max_possible_sectors) { dev_warn(DEV, "==> truncating very big lower level device " "to currently maximum possible %llu sectors <==\n", (unsigned long long) max_possible_sectors); if (nbc->dc.meta_dev_idx >= 0) dev_warn(DEV, "==>> using internal or flexible " "meta data may help <<==\n"); } drbd_suspend_io(mdev); /* also wait for the last barrier ack. */ wait_event(mdev->misc_wait, !atomic_read(&mdev->ap_pending_cnt) || is_susp(mdev->state)); /* and for any other previously queued work */ drbd_flush_workqueue(mdev); rv = _drbd_request_state(mdev, NS(disk, D_ATTACHING), CS_VERBOSE); retcode = rv; /* FIXME: Type mismatch. */ drbd_resume_io(mdev); if (rv < SS_SUCCESS) goto fail; if (!get_ldev_if_state(mdev, D_ATTACHING)) goto force_diskless; drbd_md_set_sector_offsets(mdev, nbc); /* allocate a second IO page if logical_block_size != 512 */ logical_block_size = bdev_logical_block_size(nbc->md_bdev); if (logical_block_size == 0) logical_block_size = MD_SECTOR_SIZE; if (logical_block_size != MD_SECTOR_SIZE) { if (!mdev->md_io_tmpp) { struct page *page = alloc_page(GFP_NOIO); if (!page) goto force_diskless_dec; dev_warn(DEV, "Meta data's bdev logical_block_size = %d != %d\n", logical_block_size, MD_SECTOR_SIZE); dev_warn(DEV, "Workaround engaged (has performance impact).\n"); mdev->md_io_tmpp = page; } } if (!mdev->bitmap) { if (drbd_bm_init(mdev)) { retcode = ERR_NOMEM; goto force_diskless_dec; } } retcode = drbd_md_read(mdev, nbc); if (retcode != NO_ERROR) goto force_diskless_dec; if (mdev->state.conn < C_CONNECTED && mdev->state.role == R_PRIMARY && (mdev->ed_uuid & ~((u64)1)) != (nbc->md.uuid[UI_CURRENT] & ~((u64)1))) { dev_err(DEV, "Can only attach to data with current UUID=%016llX\n", (unsigned long long)mdev->ed_uuid); retcode = ERR_DATA_NOT_CURRENT; goto force_diskless_dec; } /* Since we are diskless, fix the activity log first... */ if (drbd_check_al_size(mdev)) { retcode = ERR_NOMEM; goto force_diskless_dec; } /* Prevent shrinking of consistent devices ! */ if (drbd_md_test_flag(nbc, MDF_CONSISTENT) && drbd_new_dev_size(mdev, nbc, 0) < nbc->md.la_size_sect) { dev_warn(DEV, "refusing to truncate a consistent device\n"); retcode = ERR_DISK_TO_SMALL; goto force_diskless_dec; } if (!drbd_al_read_log(mdev, nbc)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } /* Reset the "barriers don't work" bits here, then force meta data to * be written, to ensure we determine if barriers are supported. */ if (nbc->dc.no_md_flush) set_bit(MD_NO_FUA, &mdev->flags); else clear_bit(MD_NO_FUA, &mdev->flags); /* Point of no return reached. * Devices and memory are no longer released by error cleanup below. * now mdev takes over responsibility, and the state engine should * clean it up somewhere. */ D_ASSERT(mdev->ldev == NULL); mdev->ldev = nbc; mdev->resync = resync_lru; nbc = NULL; resync_lru = NULL; mdev->write_ordering = WO_bdev_flush; drbd_bump_write_ordering(mdev, WO_bdev_flush); if (drbd_md_test_flag(mdev->ldev, MDF_CRASHED_PRIMARY)) set_bit(CRASHED_PRIMARY, &mdev->flags); else clear_bit(CRASHED_PRIMARY, &mdev->flags); if (drbd_md_test_flag(mdev->ldev, MDF_PRIMARY_IND) && !(mdev->state.role == R_PRIMARY && mdev->state.susp_nod)) { set_bit(CRASHED_PRIMARY, &mdev->flags); cp_discovered = 1; } mdev->send_cnt = 0; mdev->recv_cnt = 0; mdev->read_cnt = 0; mdev->writ_cnt = 0; max_bio_size = DRBD_MAX_BIO_SIZE; if (mdev->state.conn == C_CONNECTED) { /* We are Primary, Connected, and now attach a new local * backing store. We must not increase the user visible maximum * bio size on this device to something the peer may not be * able to handle. */ if (mdev->agreed_pro_version < 94) max_bio_size = queue_max_hw_sectors(mdev->rq_queue) << 9; else if (mdev->agreed_pro_version == 94) max_bio_size = DRBD_MAX_SIZE_H80_PACKET; /* else: drbd 8.3.9 and later, stay with default */ } drbd_setup_queue_param(mdev, max_bio_size); /* If I am currently not R_PRIMARY, * but meta data primary indicator is set, * I just now recover from a hard crash, * and have been R_PRIMARY before that crash. * * Now, if I had no connection before that crash * (have been degraded R_PRIMARY), chances are that * I won't find my peer now either. * * In that case, and _only_ in that case, * we use the degr-wfc-timeout instead of the default, * so we can automatically recover from a crash of a * degraded but active "cluster" after a certain timeout. */ clear_bit(USE_DEGR_WFC_T, &mdev->flags); if (mdev->state.role != R_PRIMARY && drbd_md_test_flag(mdev->ldev, MDF_PRIMARY_IND) && !drbd_md_test_flag(mdev->ldev, MDF_CONNECTED_IND)) set_bit(USE_DEGR_WFC_T, &mdev->flags); dd = drbd_determin_dev_size(mdev, 0); if (dd == dev_size_error) { retcode = ERR_NOMEM_BITMAP; goto force_diskless_dec; } else if (dd == grew) set_bit(RESYNC_AFTER_NEG, &mdev->flags); if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) { dev_info(DEV, "Assuming that all blocks are out of sync " "(aka FullSync)\n"); if (drbd_bitmap_io(mdev, &drbd_bmio_set_n_write, "set_n_write from attaching")) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } else { if (drbd_bitmap_io(mdev, &drbd_bm_read, "read from attaching") < 0) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } if (cp_discovered) { drbd_al_apply_to_bm(mdev); drbd_al_to_on_disk_bm(mdev); } if (_drbd_bm_total_weight(mdev) == drbd_bm_bits(mdev)) drbd_suspend_al(mdev); /* IO is still suspended here... */ spin_lock_irq(&mdev->req_lock); os = mdev->state; ns.i = os.i; /* If MDF_CONSISTENT is not set go into inconsistent state, otherwise investigate MDF_WasUpToDate... If MDF_WAS_UP_TO_DATE is not set go into D_OUTDATED disk state, otherwise into D_CONSISTENT state. */ if (drbd_md_test_flag(mdev->ldev, MDF_CONSISTENT)) { if (drbd_md_test_flag(mdev->ldev, MDF_WAS_UP_TO_DATE)) ns.disk = D_CONSISTENT; else ns.disk = D_OUTDATED; } else { ns.disk = D_INCONSISTENT; } if (drbd_md_test_flag(mdev->ldev, MDF_PEER_OUT_DATED)) ns.pdsk = D_OUTDATED; if ( ns.disk == D_CONSISTENT && (ns.pdsk == D_OUTDATED || mdev->ldev->dc.fencing == FP_DONT_CARE)) ns.disk = D_UP_TO_DATE; /* All tests on MDF_PRIMARY_IND, MDF_CONNECTED_IND, MDF_CONSISTENT and MDF_WAS_UP_TO_DATE must happen before this point, because drbd_request_state() modifies these flags. */ /* In case we are C_CONNECTED postpone any decision on the new disk state after the negotiation phase. */ if (mdev->state.conn == C_CONNECTED) { mdev->new_state_tmp.i = ns.i; ns.i = os.i; ns.disk = D_NEGOTIATING; /* We expect to receive up-to-date UUIDs soon. To avoid a race in receive_state, free p_uuid while holding req_lock. I.e. atomic with the state change */ kfree(mdev->p_uuid); mdev->p_uuid = NULL; } rv = _drbd_set_state(mdev, ns, CS_VERBOSE, NULL); ns = mdev->state; spin_unlock_irq(&mdev->req_lock); if (rv < SS_SUCCESS) goto force_diskless_dec; if (mdev->state.role == R_PRIMARY) mdev->ldev->md.uuid[UI_CURRENT] |= (u64)1; else mdev->ldev->md.uuid[UI_CURRENT] &= ~(u64)1; drbd_md_mark_dirty(mdev); drbd_md_sync(mdev); kobject_uevent(&disk_to_dev(mdev->vdisk)->kobj, KOBJ_CHANGE); put_ldev(mdev); reply->ret_code = retcode; drbd_reconfig_done(mdev); return 0; force_diskless_dec: put_ldev(mdev); force_diskless: drbd_force_state(mdev, NS(disk, D_FAILED)); drbd_md_sync(mdev); fail: if (nbc) { if (nbc->backing_bdev) blkdev_put(nbc->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); if (nbc->md_bdev) blkdev_put(nbc->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); kfree(nbc); } lc_destroy(resync_lru); reply->ret_code = retcode; drbd_reconfig_done(mdev); return 0; } /* Detaching the disk is a process in multiple stages. First we need to lock * out application IO, in-flight IO, IO stuck in drbd_al_begin_io. * Then we transition to D_DISKLESS, and wait for put_ldev() to return all * internal references as well. * Only then we have finally detached. */ static int drbd_nl_detach(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { drbd_suspend_io(mdev); /* so no-one is stuck in drbd_al_begin_io */ reply->ret_code = drbd_request_state(mdev, NS(disk, D_DISKLESS)); if (mdev->state.disk == D_DISKLESS) wait_event(mdev->misc_wait, !atomic_read(&mdev->local_cnt)); drbd_resume_io(mdev); return 0; } static int drbd_nl_net_conf(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { int i, ns; enum drbd_ret_code retcode; struct net_conf *new_conf = NULL; struct crypto_hash *tfm = NULL; struct crypto_hash *integrity_w_tfm = NULL; struct crypto_hash *integrity_r_tfm = NULL; struct hlist_head *new_tl_hash = NULL; struct hlist_head *new_ee_hash = NULL; struct drbd_conf *odev; char hmac_name[CRYPTO_MAX_ALG_NAME]; void *int_dig_out = NULL; void *int_dig_in = NULL; void *int_dig_vv = NULL; struct sockaddr *new_my_addr, *new_peer_addr, *taken_addr; drbd_reconfig_start(mdev); if (mdev->state.conn > C_STANDALONE) { retcode = ERR_NET_CONFIGURED; goto fail; } /* allocation not in the IO path, cqueue thread context */ new_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); if (!new_conf) { retcode = ERR_NOMEM; goto fail; } new_conf->timeout = DRBD_TIMEOUT_DEF; new_conf->try_connect_int = DRBD_CONNECT_INT_DEF; new_conf->ping_int = DRBD_PING_INT_DEF; new_conf->max_epoch_size = DRBD_MAX_EPOCH_SIZE_DEF; new_conf->max_buffers = DRBD_MAX_BUFFERS_DEF; new_conf->unplug_watermark = DRBD_UNPLUG_WATERMARK_DEF; new_conf->sndbuf_size = DRBD_SNDBUF_SIZE_DEF; new_conf->rcvbuf_size = DRBD_RCVBUF_SIZE_DEF; new_conf->ko_count = DRBD_KO_COUNT_DEF; new_conf->after_sb_0p = DRBD_AFTER_SB_0P_DEF; new_conf->after_sb_1p = DRBD_AFTER_SB_1P_DEF; new_conf->after_sb_2p = DRBD_AFTER_SB_2P_DEF; new_conf->want_lose = 0; new_conf->two_primaries = 0; new_conf->wire_protocol = DRBD_PROT_C; new_conf->ping_timeo = DRBD_PING_TIMEO_DEF; new_conf->rr_conflict = DRBD_RR_CONFLICT_DEF; new_conf->on_congestion = DRBD_ON_CONGESTION_DEF; new_conf->cong_extents = DRBD_CONG_EXTENTS_DEF; if (!net_conf_from_tags(mdev, nlp->tag_list, new_conf)) { retcode = ERR_MANDATORY_TAG; goto fail; } if (new_conf->two_primaries && (new_conf->wire_protocol != DRBD_PROT_C)) { retcode = ERR_NOT_PROTO_C; goto fail; } if (get_ldev(mdev)) { enum drbd_fencing_p fp = mdev->ldev->dc.fencing; put_ldev(mdev); if (new_conf->wire_protocol == DRBD_PROT_A && fp == FP_STONITH) { retcode = ERR_STONITH_AND_PROT_A; goto fail; } } if (new_conf->on_congestion != OC_BLOCK && new_conf->wire_protocol != DRBD_PROT_A) { retcode = ERR_CONG_NOT_PROTO_A; goto fail; } if (mdev->state.role == R_PRIMARY && new_conf->want_lose) { retcode = ERR_DISCARD; goto fail; } retcode = NO_ERROR; new_my_addr = (struct sockaddr *)&new_conf->my_addr; new_peer_addr = (struct sockaddr *)&new_conf->peer_addr; for (i = 0; i < minor_count; i++) { odev = minor_to_mdev(i); if (!odev || odev == mdev) continue; if (get_net_conf(odev)) { taken_addr = (struct sockaddr *)&odev->net_conf->my_addr; if (new_conf->my_addr_len == odev->net_conf->my_addr_len && !memcmp(new_my_addr, taken_addr, new_conf->my_addr_len)) retcode = ERR_LOCAL_ADDR; taken_addr = (struct sockaddr *)&odev->net_conf->peer_addr; if (new_conf->peer_addr_len == odev->net_conf->peer_addr_len && !memcmp(new_peer_addr, taken_addr, new_conf->peer_addr_len)) retcode = ERR_PEER_ADDR; put_net_conf(odev); if (retcode != NO_ERROR) goto fail; } } if (new_conf->cram_hmac_alg[0] != 0) { snprintf(hmac_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", new_conf->cram_hmac_alg); tfm = crypto_alloc_hash(hmac_name, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { tfm = NULL; retcode = ERR_AUTH_ALG; goto fail; } if (!drbd_crypto_is_hash(crypto_hash_tfm(tfm))) { retcode = ERR_AUTH_ALG_ND; goto fail; } } if (new_conf->integrity_alg[0]) { integrity_w_tfm = crypto_alloc_hash(new_conf->integrity_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(integrity_w_tfm)) { integrity_w_tfm = NULL; retcode=ERR_INTEGRITY_ALG; goto fail; } if (!drbd_crypto_is_hash(crypto_hash_tfm(integrity_w_tfm))) { retcode=ERR_INTEGRITY_ALG_ND; goto fail; } integrity_r_tfm = crypto_alloc_hash(new_conf->integrity_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(integrity_r_tfm)) { integrity_r_tfm = NULL; retcode=ERR_INTEGRITY_ALG; goto fail; } } ns = new_conf->max_epoch_size/8; if (mdev->tl_hash_s != ns) { new_tl_hash = kzalloc(ns*sizeof(void *), GFP_KERNEL); if (!new_tl_hash) { retcode = ERR_NOMEM; goto fail; } } ns = new_conf->max_buffers/8; if (new_conf->two_primaries && (mdev->ee_hash_s != ns)) { new_ee_hash = kzalloc(ns*sizeof(void *), GFP_KERNEL); if (!new_ee_hash) { retcode = ERR_NOMEM; goto fail; } } ((char *)new_conf->shared_secret)[SHARED_SECRET_MAX-1] = 0; if (integrity_w_tfm) { i = crypto_hash_digestsize(integrity_w_tfm); int_dig_out = kmalloc(i, GFP_KERNEL); if (!int_dig_out) { retcode = ERR_NOMEM; goto fail; } int_dig_in = kmalloc(i, GFP_KERNEL); if (!int_dig_in) { retcode = ERR_NOMEM; goto fail; } int_dig_vv = kmalloc(i, GFP_KERNEL); if (!int_dig_vv) { retcode = ERR_NOMEM; goto fail; } } if (!mdev->bitmap) { if(drbd_bm_init(mdev)) { retcode = ERR_NOMEM; goto fail; } } drbd_flush_workqueue(mdev); spin_lock_irq(&mdev->req_lock); if (mdev->net_conf != NULL) { retcode = ERR_NET_CONFIGURED; spin_unlock_irq(&mdev->req_lock); goto fail; } mdev->net_conf = new_conf; mdev->send_cnt = 0; mdev->recv_cnt = 0; if (new_tl_hash) { kfree(mdev->tl_hash); mdev->tl_hash_s = mdev->net_conf->max_epoch_size/8; mdev->tl_hash = new_tl_hash; } if (new_ee_hash) { kfree(mdev->ee_hash); mdev->ee_hash_s = mdev->net_conf->max_buffers/8; mdev->ee_hash = new_ee_hash; } crypto_free_hash(mdev->cram_hmac_tfm); mdev->cram_hmac_tfm = tfm; crypto_free_hash(mdev->integrity_w_tfm); mdev->integrity_w_tfm = integrity_w_tfm; crypto_free_hash(mdev->integrity_r_tfm); mdev->integrity_r_tfm = integrity_r_tfm; kfree(mdev->int_dig_out); kfree(mdev->int_dig_in); kfree(mdev->int_dig_vv); mdev->int_dig_out=int_dig_out; mdev->int_dig_in=int_dig_in; mdev->int_dig_vv=int_dig_vv; retcode = _drbd_set_state(_NS(mdev, conn, C_UNCONNECTED), CS_VERBOSE, NULL); spin_unlock_irq(&mdev->req_lock); kobject_uevent(&disk_to_dev(mdev->vdisk)->kobj, KOBJ_CHANGE); reply->ret_code = retcode; drbd_reconfig_done(mdev); return 0; fail: kfree(int_dig_out); kfree(int_dig_in); kfree(int_dig_vv); crypto_free_hash(tfm); crypto_free_hash(integrity_w_tfm); crypto_free_hash(integrity_r_tfm); kfree(new_tl_hash); kfree(new_ee_hash); kfree(new_conf); reply->ret_code = retcode; drbd_reconfig_done(mdev); return 0; } static int drbd_nl_disconnect(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { int retcode; struct disconnect dc; memset(&dc, 0, sizeof(struct disconnect)); if (!disconnect_from_tags(mdev, nlp->tag_list, &dc)) { retcode = ERR_MANDATORY_TAG; goto fail; } if (dc.force) { spin_lock_irq(&mdev->req_lock); if (mdev->state.conn >= C_WF_CONNECTION) _drbd_set_state(_NS(mdev, conn, C_DISCONNECTING), CS_HARD, NULL); spin_unlock_irq(&mdev->req_lock); goto done; } retcode = _drbd_request_state(mdev, NS(conn, C_DISCONNECTING), CS_ORDERED); if (retcode == SS_NOTHING_TO_DO) goto done; else if (retcode == SS_ALREADY_STANDALONE) goto done; else if (retcode == SS_PRIMARY_NOP) { /* Our statche checking code wants to see the peer outdated. */ retcode = drbd_request_state(mdev, NS2(conn, C_DISCONNECTING, pdsk, D_OUTDATED)); } else if (retcode == SS_CW_FAILED_BY_PEER) { /* The peer probably wants to see us outdated. */ retcode = _drbd_request_state(mdev, NS2(conn, C_DISCONNECTING, disk, D_OUTDATED), CS_ORDERED); if (retcode == SS_IS_DISKLESS || retcode == SS_LOWER_THAN_OUTDATED) { drbd_force_state(mdev, NS(conn, C_DISCONNECTING)); retcode = SS_SUCCESS; } } if (retcode < SS_SUCCESS) goto fail; if (wait_event_interruptible(mdev->state_wait, mdev->state.conn != C_DISCONNECTING)) { /* Do not test for mdev->state.conn == C_STANDALONE, since someone else might connect us in the mean time! */ retcode = ERR_INTR; goto fail; } done: retcode = NO_ERROR; fail: drbd_md_sync(mdev); reply->ret_code = retcode; return 0; } void resync_after_online_grow(struct drbd_conf *mdev) { int iass; /* I am sync source */ dev_info(DEV, "Resync of new storage after online grow\n"); if (mdev->state.role != mdev->state.peer) iass = (mdev->state.role == R_PRIMARY); else iass = test_bit(DISCARD_CONCURRENT, &mdev->flags); if (iass) drbd_start_resync(mdev, C_SYNC_SOURCE); else _drbd_request_state(mdev, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE + CS_SERIALIZE); } static int drbd_nl_resize(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { struct resize rs; int retcode = NO_ERROR; enum determine_dev_size dd; enum dds_flags ddsf; memset(&rs, 0, sizeof(struct resize)); if (!resize_from_tags(mdev, nlp->tag_list, &rs)) { retcode = ERR_MANDATORY_TAG; goto fail; } if (mdev->state.conn > C_CONNECTED) { retcode = ERR_RESIZE_RESYNC; goto fail; } if (mdev->state.role == R_SECONDARY && mdev->state.peer == R_SECONDARY) { retcode = ERR_NO_PRIMARY; goto fail; } if (!get_ldev(mdev)) { retcode = ERR_NO_DISK; goto fail; } if (rs.no_resync && mdev->agreed_pro_version < 93) { retcode = ERR_NEED_APV_93; goto fail; } if (mdev->ldev->known_size != drbd_get_capacity(mdev->ldev->backing_bdev)) mdev->ldev->known_size = drbd_get_capacity(mdev->ldev->backing_bdev); mdev->ldev->dc.disk_size = (sector_t)rs.resize_size; ddsf = (rs.resize_force ? DDSF_FORCED : 0) | (rs.no_resync ? DDSF_NO_RESYNC : 0); dd = drbd_determin_dev_size(mdev, ddsf); drbd_md_sync(mdev); put_ldev(mdev); if (dd == dev_size_error) { retcode = ERR_NOMEM_BITMAP; goto fail; } if (mdev->state.conn == C_CONNECTED) { if (dd == grew) set_bit(RESIZE_PENDING, &mdev->flags); drbd_send_uuids(mdev); drbd_send_sizes(mdev, 1, ddsf); } fail: reply->ret_code = retcode; return 0; } static int drbd_nl_syncer_conf(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { int retcode = NO_ERROR; int err; int ovr; /* online verify running */ int rsr; /* re-sync running */ struct crypto_hash *verify_tfm = NULL; struct crypto_hash *csums_tfm = NULL; struct syncer_conf sc; cpumask_var_t new_cpu_mask; int *rs_plan_s = NULL; int fifo_size; if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) { retcode = ERR_NOMEM; goto fail; } if (nlp->flags & DRBD_NL_SET_DEFAULTS) { memset(&sc, 0, sizeof(struct syncer_conf)); sc.rate = DRBD_RATE_DEF; sc.after = DRBD_AFTER_DEF; sc.al_extents = DRBD_AL_EXTENTS_DEF; sc.on_no_data = DRBD_ON_NO_DATA_DEF; sc.c_plan_ahead = DRBD_C_PLAN_AHEAD_DEF; sc.c_delay_target = DRBD_C_DELAY_TARGET_DEF; sc.c_fill_target = DRBD_C_FILL_TARGET_DEF; sc.c_max_rate = DRBD_C_MAX_RATE_DEF; sc.c_min_rate = DRBD_C_MIN_RATE_DEF; } else memcpy(&sc, &mdev->sync_conf, sizeof(struct syncer_conf)); if (!syncer_conf_from_tags(mdev, nlp->tag_list, &sc)) { retcode = ERR_MANDATORY_TAG; goto fail; } /* re-sync running */ rsr = ( mdev->state.conn == C_SYNC_SOURCE || mdev->state.conn == C_SYNC_TARGET || mdev->state.conn == C_PAUSED_SYNC_S || mdev->state.conn == C_PAUSED_SYNC_T ); if (rsr && strcmp(sc.csums_alg, mdev->sync_conf.csums_alg)) { retcode = ERR_CSUMS_RESYNC_RUNNING; goto fail; } if (!rsr && sc.csums_alg[0]) { csums_tfm = crypto_alloc_hash(sc.csums_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(csums_tfm)) { csums_tfm = NULL; retcode = ERR_CSUMS_ALG; goto fail; } if (!drbd_crypto_is_hash(crypto_hash_tfm(csums_tfm))) { retcode = ERR_CSUMS_ALG_ND; goto fail; } } /* online verify running */ ovr = (mdev->state.conn == C_VERIFY_S || mdev->state.conn == C_VERIFY_T); if (ovr) { if (strcmp(sc.verify_alg, mdev->sync_conf.verify_alg)) { retcode = ERR_VERIFY_RUNNING; goto fail; } } if (!ovr && sc.verify_alg[0]) { verify_tfm = crypto_alloc_hash(sc.verify_alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(verify_tfm)) { verify_tfm = NULL; retcode = ERR_VERIFY_ALG; goto fail; } if (!drbd_crypto_is_hash(crypto_hash_tfm(verify_tfm))) { retcode = ERR_VERIFY_ALG_ND; goto fail; } } /* silently ignore cpu mask on UP kernel */ if (nr_cpu_ids > 1 && sc.cpu_mask[0] != 0) { err = __bitmap_parse(sc.cpu_mask, 32, 0, cpumask_bits(new_cpu_mask), nr_cpu_ids); if (err) { dev_warn(DEV, "__bitmap_parse() failed with %d\n", err); retcode = ERR_CPU_MASK_PARSE; goto fail; } } ERR_IF (sc.rate < 1) sc.rate = 1; ERR_IF (sc.al_extents < 7) sc.al_extents = 127; /* arbitrary minimum */ #define AL_MAX ((MD_AL_MAX_SIZE-1) * AL_EXTENTS_PT) if (sc.al_extents > AL_MAX) { dev_err(DEV, "sc.al_extents > %d\n", AL_MAX); sc.al_extents = AL_MAX; } #undef AL_MAX /* to avoid spurious errors when configuring minors before configuring * the minors they depend on: if necessary, first create the minor we * depend on */ if (sc.after >= 0) ensure_mdev(sc.after, 1); /* most sanity checks done, try to assign the new sync-after * dependency. need to hold the global lock in there, * to avoid a race in the dependency loop check. */ retcode = drbd_alter_sa(mdev, sc.after); if (retcode != NO_ERROR) goto fail; fifo_size = (sc.c_plan_ahead * 10 * SLEEP_TIME) / HZ; if (fifo_size != mdev->rs_plan_s.size && fifo_size > 0) { rs_plan_s = kzalloc(sizeof(int) * fifo_size, GFP_KERNEL); if (!rs_plan_s) { dev_err(DEV, "kmalloc of fifo_buffer failed"); retcode = ERR_NOMEM; goto fail; } } /* ok, assign the rest of it as well. * lock against receive_SyncParam() */ spin_lock(&mdev->peer_seq_lock); mdev->sync_conf = sc; if (!rsr) { crypto_free_hash(mdev->csums_tfm); mdev->csums_tfm = csums_tfm; csums_tfm = NULL; } if (!ovr) { crypto_free_hash(mdev->verify_tfm); mdev->verify_tfm = verify_tfm; verify_tfm = NULL; } if (fifo_size != mdev->rs_plan_s.size) { kfree(mdev->rs_plan_s.values); mdev->rs_plan_s.values = rs_plan_s; mdev->rs_plan_s.size = fifo_size; mdev->rs_planed = 0; rs_plan_s = NULL; } spin_unlock(&mdev->peer_seq_lock); if (get_ldev(mdev)) { wait_event(mdev->al_wait, lc_try_lock(mdev->act_log)); drbd_al_shrink(mdev); err = drbd_check_al_size(mdev); lc_unlock(mdev->act_log); wake_up(&mdev->al_wait); put_ldev(mdev); drbd_md_sync(mdev); if (err) { retcode = ERR_NOMEM; goto fail; } } if (mdev->state.conn >= C_CONNECTED) drbd_send_sync_param(mdev, &sc); if (!cpumask_equal(mdev->cpu_mask, new_cpu_mask)) { cpumask_copy(mdev->cpu_mask, new_cpu_mask); drbd_calc_cpu_mask(mdev); mdev->receiver.reset_cpu_mask = 1; mdev->asender.reset_cpu_mask = 1; mdev->worker.reset_cpu_mask = 1; } kobject_uevent(&disk_to_dev(mdev->vdisk)->kobj, KOBJ_CHANGE); fail: kfree(rs_plan_s); free_cpumask_var(new_cpu_mask); crypto_free_hash(csums_tfm); crypto_free_hash(verify_tfm); reply->ret_code = retcode; return 0; } static int drbd_nl_invalidate(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { int retcode; retcode = _drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T), CS_ORDERED); if (retcode < SS_SUCCESS && retcode != SS_NEED_CONNECTION) retcode = drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T)); while (retcode == SS_NEED_CONNECTION) { spin_lock_irq(&mdev->req_lock); if (mdev->state.conn < C_CONNECTED) retcode = _drbd_set_state(_NS(mdev, disk, D_INCONSISTENT), CS_VERBOSE, NULL); spin_unlock_irq(&mdev->req_lock); if (retcode != SS_NEED_CONNECTION) break; retcode = drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_T)); } reply->ret_code = retcode; return 0; } static int drbd_bmio_set_susp_al(struct drbd_conf *mdev) { int rv; rv = drbd_bmio_set_n_write(mdev); drbd_suspend_al(mdev); return rv; } static int drbd_nl_invalidate_peer(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { int retcode; retcode = _drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_S), CS_ORDERED); if (retcode < SS_SUCCESS) { if (retcode == SS_NEED_CONNECTION && mdev->state.role == R_PRIMARY) { /* The peer will get a resync upon connect anyways. Just make that into a full resync. */ retcode = drbd_request_state(mdev, NS(pdsk, D_INCONSISTENT)); if (retcode >= SS_SUCCESS) { /* open coded drbd_bitmap_io() */ if (drbd_bitmap_io(mdev, &drbd_bmio_set_susp_al, "set_n_write from invalidate_peer")) retcode = ERR_IO_MD_DISK; } } else retcode = drbd_request_state(mdev, NS(conn, C_STARTING_SYNC_S)); } reply->ret_code = retcode; return 0; } static int drbd_nl_pause_sync(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { int retcode = NO_ERROR; if (drbd_request_state(mdev, NS(user_isp, 1)) == SS_NOTHING_TO_DO) retcode = ERR_PAUSE_IS_SET; reply->ret_code = retcode; return 0; } static int drbd_nl_resume_sync(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { int retcode = NO_ERROR; if (drbd_request_state(mdev, NS(user_isp, 0)) == SS_NOTHING_TO_DO) retcode = ERR_PAUSE_IS_CLEAR; reply->ret_code = retcode; return 0; } static int drbd_nl_suspend_io(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { reply->ret_code = drbd_request_state(mdev, NS(susp, 1)); return 0; } static int drbd_nl_resume_io(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { if (test_bit(NEW_CUR_UUID, &mdev->flags)) { drbd_uuid_new_current(mdev); clear_bit(NEW_CUR_UUID, &mdev->flags); } drbd_suspend_io(mdev); reply->ret_code = drbd_request_state(mdev, NS3(susp, 0, susp_nod, 0, susp_fen, 0)); if (reply->ret_code == SS_SUCCESS) { if (mdev->state.conn < C_CONNECTED) tl_clear(mdev); if (mdev->state.disk == D_DISKLESS || mdev->state.disk == D_FAILED) tl_restart(mdev, fail_frozen_disk_io); } drbd_resume_io(mdev); return 0; } static int drbd_nl_outdate(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { reply->ret_code = drbd_request_state(mdev, NS(disk, D_OUTDATED)); return 0; } static int drbd_nl_get_config(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { unsigned short *tl; tl = reply->tag_list; if (get_ldev(mdev)) { tl = disk_conf_to_tags(mdev, &mdev->ldev->dc, tl); put_ldev(mdev); } if (get_net_conf(mdev)) { tl = net_conf_to_tags(mdev, mdev->net_conf, tl); put_net_conf(mdev); } tl = syncer_conf_to_tags(mdev, &mdev->sync_conf, tl); put_unaligned(TT_END, tl++); /* Close the tag list */ return (int)((char *)tl - (char *)reply->tag_list); } static int drbd_nl_get_state(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { unsigned short *tl = reply->tag_list; union drbd_state s = mdev->state; unsigned long rs_left; unsigned int res; tl = get_state_to_tags(mdev, (struct get_state *)&s, tl); /* no local ref, no bitmap, no syncer progress. */ if (s.conn >= C_SYNC_SOURCE && s.conn <= C_PAUSED_SYNC_T) { if (get_ldev(mdev)) { drbd_get_syncer_progress(mdev, &rs_left, &res); tl = tl_add_int(tl, T_sync_progress, &res); put_ldev(mdev); } } put_unaligned(TT_END, tl++); /* Close the tag list */ return (int)((char *)tl - (char *)reply->tag_list); } static int drbd_nl_get_uuids(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { unsigned short *tl; tl = reply->tag_list; if (get_ldev(mdev)) { tl = tl_add_blob(tl, T_uuids, mdev->ldev->md.uuid, UI_SIZE*sizeof(u64)); tl = tl_add_int(tl, T_uuids_flags, &mdev->ldev->md.flags); put_ldev(mdev); } put_unaligned(TT_END, tl++); /* Close the tag list */ return (int)((char *)tl - (char *)reply->tag_list); } /** * drbd_nl_get_timeout_flag() - Used by drbdsetup to find out which timeout value to use * @mdev: DRBD device. * @nlp: Netlink/connector packet from drbdsetup * @reply: Reply packet for drbdsetup */ static int drbd_nl_get_timeout_flag(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { unsigned short *tl; char rv; tl = reply->tag_list; rv = mdev->state.pdsk == D_OUTDATED ? UT_PEER_OUTDATED : test_bit(USE_DEGR_WFC_T, &mdev->flags) ? UT_DEGRADED : UT_DEFAULT; tl = tl_add_blob(tl, T_use_degraded, &rv, sizeof(rv)); put_unaligned(TT_END, tl++); /* Close the tag list */ return (int)((char *)tl - (char *)reply->tag_list); } static int drbd_nl_start_ov(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { /* default to resume from last known position, if possible */ struct start_ov args = { .start_sector = mdev->ov_start_sector }; if (!start_ov_from_tags(mdev, nlp->tag_list, &args)) { reply->ret_code = ERR_MANDATORY_TAG; return 0; } /* w_make_ov_request expects position to be aligned */ mdev->ov_start_sector = args.start_sector & ~BM_SECT_PER_BIT; reply->ret_code = drbd_request_state(mdev,NS(conn,C_VERIFY_S)); return 0; } static int drbd_nl_new_c_uuid(struct drbd_conf *mdev, struct drbd_nl_cfg_req *nlp, struct drbd_nl_cfg_reply *reply) { int retcode = NO_ERROR; int skip_initial_sync = 0; int err; struct new_c_uuid args; memset(&args, 0, sizeof(struct new_c_uuid)); if (!new_c_uuid_from_tags(mdev, nlp->tag_list, &args)) { reply->ret_code = ERR_MANDATORY_TAG; return 0; } mutex_lock(&mdev->state_mutex); /* Protects us against serialized state changes. */ if (!get_ldev(mdev)) { retcode = ERR_NO_DISK; goto out; } /* this is "skip initial sync", assume to be clean */ if (mdev->state.conn == C_CONNECTED && mdev->agreed_pro_version >= 90 && mdev->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && args.clear_bm) { dev_info(DEV, "Preparing to skip initial sync\n"); skip_initial_sync = 1; } else if (mdev->state.conn != C_STANDALONE) { retcode = ERR_CONNECTED; goto out_dec; } drbd_uuid_set(mdev, UI_BITMAP, 0); /* Rotate UI_BITMAP to History 1, etc... */ drbd_uuid_new_current(mdev); /* New current, previous to UI_BITMAP */ if (args.clear_bm) { err = drbd_bitmap_io(mdev, &drbd_bmio_clear_n_write, "clear_n_write from new_c_uuid"); if (err) { dev_err(DEV, "Writing bitmap failed with %d\n",err); retcode = ERR_IO_MD_DISK; } if (skip_initial_sync) { drbd_send_uuids_skip_initial_sync(mdev); _drbd_uuid_set(mdev, UI_BITMAP, 0); spin_lock_irq(&mdev->req_lock); _drbd_set_state(_NS2(mdev, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), CS_VERBOSE, NULL); spin_unlock_irq(&mdev->req_lock); } } drbd_md_sync(mdev); out_dec: put_ldev(mdev); out: mutex_unlock(&mdev->state_mutex); reply->ret_code = retcode; return 0; } struct cn_handler_struct { int (*function)(struct drbd_conf *, struct drbd_nl_cfg_req *, struct drbd_nl_cfg_reply *); int reply_body_size; }; static struct cn_handler_struct cnd_table[] = { [ P_primary ] = { &drbd_nl_primary, 0 }, [ P_secondary ] = { &drbd_nl_secondary, 0 }, [ P_disk_conf ] = { &drbd_nl_disk_conf, 0 }, [ P_detach ] = { &drbd_nl_detach, 0 }, [ P_net_conf ] = { &drbd_nl_net_conf, 0 }, [ P_disconnect ] = { &drbd_nl_disconnect, 0 }, [ P_resize ] = { &drbd_nl_resize, 0 }, [ P_syncer_conf ] = { &drbd_nl_syncer_conf, 0 }, [ P_invalidate ] = { &drbd_nl_invalidate, 0 }, [ P_invalidate_peer ] = { &drbd_nl_invalidate_peer, 0 }, [ P_pause_sync ] = { &drbd_nl_pause_sync, 0 }, [ P_resume_sync ] = { &drbd_nl_resume_sync, 0 }, [ P_suspend_io ] = { &drbd_nl_suspend_io, 0 }, [ P_resume_io ] = { &drbd_nl_resume_io, 0 }, [ P_outdate ] = { &drbd_nl_outdate, 0 }, [ P_get_config ] = { &drbd_nl_get_config, sizeof(struct syncer_conf_tag_len_struct) + sizeof(struct disk_conf_tag_len_struct) + sizeof(struct net_conf_tag_len_struct) }, [ P_get_state ] = { &drbd_nl_get_state, sizeof(struct get_state_tag_len_struct) + sizeof(struct sync_progress_tag_len_struct) }, [ P_get_uuids ] = { &drbd_nl_get_uuids, sizeof(struct get_uuids_tag_len_struct) }, [ P_get_timeout_flag ] = { &drbd_nl_get_timeout_flag, sizeof(struct get_timeout_flag_tag_len_struct)}, [ P_start_ov ] = { &drbd_nl_start_ov, 0 }, [ P_new_c_uuid ] = { &drbd_nl_new_c_uuid, 0 }, }; static void drbd_connector_callback(struct cn_msg *req, struct netlink_skb_parms *nsp) { struct drbd_nl_cfg_req *nlp = (struct drbd_nl_cfg_req *)req->data; struct cn_handler_struct *cm; struct cn_msg *cn_reply; struct drbd_nl_cfg_reply *reply; struct drbd_conf *mdev; int retcode, rr; int reply_size = sizeof(struct cn_msg) + sizeof(struct drbd_nl_cfg_reply) + sizeof(short int); if (!try_module_get(THIS_MODULE)) { printk(KERN_ERR "drbd: try_module_get() failed!\n"); return; } if (!cap_raised(nsp->eff_cap, CAP_SYS_ADMIN)) { retcode = ERR_PERM; goto fail; } mdev = ensure_mdev(nlp->drbd_minor, (nlp->flags & DRBD_NL_CREATE_DEVICE)); if (!mdev) { retcode = ERR_MINOR_INVALID; goto fail; } if (nlp->packet_type >= P_nl_after_last_packet || nlp->packet_type == P_return_code_only) { retcode = ERR_PACKET_NR; goto fail; } cm = cnd_table + nlp->packet_type; /* This may happen if packet number is 0: */ if (cm->function == NULL) { retcode = ERR_PACKET_NR; goto fail; } reply_size += cm->reply_body_size; /* allocation not in the IO path, cqueue thread context */ cn_reply = kzalloc(reply_size, GFP_KERNEL); if (!cn_reply) { retcode = ERR_NOMEM; goto fail; } reply = (struct drbd_nl_cfg_reply *) cn_reply->data; reply->packet_type = cm->reply_body_size ? nlp->packet_type : P_return_code_only; reply->minor = nlp->drbd_minor; reply->ret_code = NO_ERROR; /* Might by modified by cm->function. */ /* reply->tag_list; might be modified by cm->function. */ rr = cm->function(mdev, nlp, reply); cn_reply->id = req->id; cn_reply->seq = req->seq; cn_reply->ack = req->ack + 1; cn_reply->len = sizeof(struct drbd_nl_cfg_reply) + rr; cn_reply->flags = 0; rr = cn_netlink_send(cn_reply, CN_IDX_DRBD, GFP_KERNEL); if (rr && rr != -ESRCH) printk(KERN_INFO "drbd: cn_netlink_send()=%d\n", rr); kfree(cn_reply); module_put(THIS_MODULE); return; fail: drbd_nl_send_reply(req, retcode); module_put(THIS_MODULE); } static atomic_t drbd_nl_seq = ATOMIC_INIT(2); /* two. */ static unsigned short * __tl_add_blob(unsigned short *tl, enum drbd_tags tag, const void *data, unsigned short len, int nul_terminated) { unsigned short l = tag_descriptions[tag_number(tag)].max_len; len = (len < l) ? len : l; put_unaligned(tag, tl++); put_unaligned(len, tl++); memcpy(tl, data, len); tl = (unsigned short*)((char*)tl + len); if (nul_terminated) *((char*)tl - 1) = 0; return tl; } static unsigned short * tl_add_blob(unsigned short *tl, enum drbd_tags tag, const void *data, int len) { return __tl_add_blob(tl, tag, data, len, 0); } static unsigned short * tl_add_str(unsigned short *tl, enum drbd_tags tag, const char *str) { return __tl_add_blob(tl, tag, str, strlen(str)+1, 0); } static unsigned short * tl_add_int(unsigned short *tl, enum drbd_tags tag, const void *val) { put_unaligned(tag, tl++); switch(tag_type(tag)) { case TT_INTEGER: put_unaligned(sizeof(int), tl++); put_unaligned(*(int *)val, (int *)tl); tl = (unsigned short*)((char*)tl+sizeof(int)); break; case TT_INT64: put_unaligned(sizeof(u64), tl++); put_unaligned(*(u64 *)val, (u64 *)tl); tl = (unsigned short*)((char*)tl+sizeof(u64)); break; default: /* someone did something stupid. */ ; } return tl; } void drbd_bcast_state(struct drbd_conf *mdev, union drbd_state state) { char buffer[sizeof(struct cn_msg)+ sizeof(struct drbd_nl_cfg_reply)+ sizeof(struct get_state_tag_len_struct)+ sizeof(short int)]; struct cn_msg *cn_reply = (struct cn_msg *) buffer; struct drbd_nl_cfg_reply *reply = (struct drbd_nl_cfg_reply *)cn_reply->data; unsigned short *tl = reply->tag_list; /* dev_warn(DEV, "drbd_bcast_state() got called\n"); */ tl = get_state_to_tags(mdev, (struct get_state *)&state, tl); put_unaligned(TT_END, tl++); /* Close the tag list */ cn_reply->id.idx = CN_IDX_DRBD; cn_reply->id.val = CN_VAL_DRBD; cn_reply->seq = atomic_add_return(1, &drbd_nl_seq); cn_reply->ack = 0; /* not used here. */ cn_reply->len = sizeof(struct drbd_nl_cfg_reply) + (int)((char *)tl - (char *)reply->tag_list); cn_reply->flags = 0; reply->packet_type = P_get_state; reply->minor = mdev_to_minor(mdev); reply->ret_code = NO_ERROR; cn_netlink_send(cn_reply, CN_IDX_DRBD, GFP_NOIO); } void drbd_bcast_ev_helper(struct drbd_conf *mdev, char *helper_name) { char buffer[sizeof(struct cn_msg)+ sizeof(struct drbd_nl_cfg_reply)+ sizeof(struct call_helper_tag_len_struct)+ sizeof(short int)]; struct cn_msg *cn_reply = (struct cn_msg *) buffer; struct drbd_nl_cfg_reply *reply = (struct drbd_nl_cfg_reply *)cn_reply->data; unsigned short *tl = reply->tag_list; /* dev_warn(DEV, "drbd_bcast_state() got called\n"); */ tl = tl_add_str(tl, T_helper, helper_name); put_unaligned(TT_END, tl++); /* Close the tag list */ cn_reply->id.idx = CN_IDX_DRBD; cn_reply->id.val = CN_VAL_DRBD; cn_reply->seq = atomic_add_return(1, &drbd_nl_seq); cn_reply->ack = 0; /* not used here. */ cn_reply->len = sizeof(struct drbd_nl_cfg_reply) + (int)((char *)tl - (char *)reply->tag_list); cn_reply->flags = 0; reply->packet_type = P_call_helper; reply->minor = mdev_to_minor(mdev); reply->ret_code = NO_ERROR; cn_netlink_send(cn_reply, CN_IDX_DRBD, GFP_NOIO); } void drbd_bcast_ee(struct drbd_conf *mdev, const char *reason, const int dgs, const char* seen_hash, const char* calc_hash, const struct drbd_epoch_entry* e) { struct cn_msg *cn_reply; struct drbd_nl_cfg_reply *reply; unsigned short *tl; struct page *page; unsigned len; if (!e) return; if (!reason || !reason[0]) return; /* apparently we have to memcpy twice, first to prepare the data for the * struct cn_msg, then within cn_netlink_send from the cn_msg to the * netlink skb. */ /* receiver thread context, which is not in the writeout path (of this node), * but may be in the writeout path of the _other_ node. * GFP_NOIO to avoid potential "distributed deadlock". */ cn_reply = kzalloc( sizeof(struct cn_msg)+ sizeof(struct drbd_nl_cfg_reply)+ sizeof(struct dump_ee_tag_len_struct)+ sizeof(short int), GFP_NOIO); if (!cn_reply) { dev_err(DEV, "could not kmalloc buffer for drbd_bcast_ee, sector %llu, size %u\n", (unsigned long long)e->sector, e->size); return; } reply = (struct drbd_nl_cfg_reply*)cn_reply->data; tl = reply->tag_list; tl = tl_add_str(tl, T_dump_ee_reason, reason); tl = tl_add_blob(tl, T_seen_digest, seen_hash, dgs); tl = tl_add_blob(tl, T_calc_digest, calc_hash, dgs); tl = tl_add_int(tl, T_ee_sector, &e->sector); tl = tl_add_int(tl, T_ee_block_id, &e->block_id); /* dump the first 32k */ len = min_t(unsigned, e->size, 32 << 10); put_unaligned(T_ee_data, tl++); put_unaligned(len, tl++); page = e->pages; page_chain_for_each(page) { void *d = kmap_atomic(page, KM_USER0); unsigned l = min_t(unsigned, len, PAGE_SIZE); memcpy(tl, d, l); kunmap_atomic(d, KM_USER0); tl = (unsigned short*)((char*)tl + l); len -= l; if (len == 0) break; } put_unaligned(TT_END, tl++); /* Close the tag list */ cn_reply->id.idx = CN_IDX_DRBD; cn_reply->id.val = CN_VAL_DRBD; cn_reply->seq = atomic_add_return(1,&drbd_nl_seq); cn_reply->ack = 0; // not used here. cn_reply->len = sizeof(struct drbd_nl_cfg_reply) + (int)((char*)tl - (char*)reply->tag_list); cn_reply->flags = 0; reply->packet_type = P_dump_ee; reply->minor = mdev_to_minor(mdev); reply->ret_code = NO_ERROR; cn_netlink_send(cn_reply, CN_IDX_DRBD, GFP_NOIO); kfree(cn_reply); } void drbd_bcast_sync_progress(struct drbd_conf *mdev) { char buffer[sizeof(struct cn_msg)+ sizeof(struct drbd_nl_cfg_reply)+ sizeof(struct sync_progress_tag_len_struct)+ sizeof(short int)]; struct cn_msg *cn_reply = (struct cn_msg *) buffer; struct drbd_nl_cfg_reply *reply = (struct drbd_nl_cfg_reply *)cn_reply->data; unsigned short *tl = reply->tag_list; unsigned long rs_left; unsigned int res; /* no local ref, no bitmap, no syncer progress, no broadcast. */ if (!get_ldev(mdev)) return; drbd_get_syncer_progress(mdev, &rs_left, &res); put_ldev(mdev); tl = tl_add_int(tl, T_sync_progress, &res); put_unaligned(TT_END, tl++); /* Close the tag list */ cn_reply->id.idx = CN_IDX_DRBD; cn_reply->id.val = CN_VAL_DRBD; cn_reply->seq = atomic_add_return(1, &drbd_nl_seq); cn_reply->ack = 0; /* not used here. */ cn_reply->len = sizeof(struct drbd_nl_cfg_reply) + (int)((char *)tl - (char *)reply->tag_list); cn_reply->flags = 0; reply->packet_type = P_sync_progress; reply->minor = mdev_to_minor(mdev); reply->ret_code = NO_ERROR; cn_netlink_send(cn_reply, CN_IDX_DRBD, GFP_NOIO); } int __init drbd_nl_init(void) { static struct cb_id cn_id_drbd; int err, try=10; cn_id_drbd.val = CN_VAL_DRBD; do { cn_id_drbd.idx = cn_idx; err = cn_add_callback(&cn_id_drbd, "cn_drbd", &drbd_connector_callback); if (!err) break; cn_idx = (cn_idx + CN_IDX_STEP); } while (try--); if (err) { printk(KERN_ERR "drbd: cn_drbd failed to register\n"); return err; } return 0; } void drbd_nl_cleanup(void) { static struct cb_id cn_id_drbd; cn_id_drbd.idx = cn_idx; cn_id_drbd.val = CN_VAL_DRBD; cn_del_callback(&cn_id_drbd); } void drbd_nl_send_reply(struct cn_msg *req, int ret_code) { char buffer[sizeof(struct cn_msg)+sizeof(struct drbd_nl_cfg_reply)]; struct cn_msg *cn_reply = (struct cn_msg *) buffer; struct drbd_nl_cfg_reply *reply = (struct drbd_nl_cfg_reply *)cn_reply->data; int rr; memset(buffer, 0, sizeof(buffer)); cn_reply->id = req->id; cn_reply->seq = req->seq; cn_reply->ack = req->ack + 1; cn_reply->len = sizeof(struct drbd_nl_cfg_reply); cn_reply->flags = 0; reply->packet_type = P_return_code_only; reply->minor = ((struct drbd_nl_cfg_req *)req->data)->drbd_minor; reply->ret_code = ret_code; rr = cn_netlink_send(cn_reply, CN_IDX_DRBD, GFP_NOIO); if (rr && rr != -ESRCH) printk(KERN_INFO "drbd: cn_netlink_send()=%d\n", rr); }