/* * linux/drivers/clocksource/arm_arch_timer.c * * Copyright (C) 2011 ARM Ltd. * All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CNTTIDR 0x08 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) #define CNTVCT_LO 0x08 #define CNTVCT_HI 0x0c #define CNTFRQ 0x10 #define CNTP_TVAL 0x28 #define CNTP_CTL 0x2c #define CNTV_TVAL 0x38 #define CNTV_CTL 0x3c #define ARCH_CP15_TIMER BIT(0) #define ARCH_MEM_TIMER BIT(1) static unsigned arch_timers_present __initdata; static void __iomem *arch_counter_base; struct arch_timer { void __iomem *base; struct clock_event_device evt; }; #define to_arch_timer(e) container_of(e, struct arch_timer, evt) static u32 arch_timer_rate; enum ppi_nr { PHYS_SECURE_PPI, PHYS_NONSECURE_PPI, VIRT_PPI, HYP_PPI, MAX_TIMER_PPI }; static int arch_timer_ppi[MAX_TIMER_PPI]; static struct clock_event_device __percpu *arch_timer_evt; static bool arch_timer_use_virtual = true; static bool arch_timer_c3stop; static bool arch_timer_mem_use_virtual; /* * Architected system timer support. */ static __always_inline void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val, struct clock_event_device *clk) { if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: writel_relaxed(val, timer->base + CNTP_CTL); break; case ARCH_TIMER_REG_TVAL: writel_relaxed(val, timer->base + CNTP_TVAL); break; } } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: writel_relaxed(val, timer->base + CNTV_CTL); break; case ARCH_TIMER_REG_TVAL: writel_relaxed(val, timer->base + CNTV_TVAL); break; } } else { arch_timer_reg_write_cp15(access, reg, val); } } static __always_inline u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, struct clock_event_device *clk) { u32 val; if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: val = readl_relaxed(timer->base + CNTP_CTL); break; case ARCH_TIMER_REG_TVAL: val = readl_relaxed(timer->base + CNTP_TVAL); break; } } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: val = readl_relaxed(timer->base + CNTV_CTL); break; case ARCH_TIMER_REG_TVAL: val = readl_relaxed(timer->base + CNTV_TVAL); break; } } else { val = arch_timer_reg_read_cp15(access, reg); } return val; } static __always_inline irqreturn_t timer_handler(const int access, struct clock_event_device *evt) { unsigned long ctrl; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { ctrl |= ARCH_TIMER_CTRL_IT_MASK; arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); evt->event_handler(evt); return IRQ_HANDLED; } return IRQ_NONE; } static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); } static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); } static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); } static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); } static __always_inline void timer_set_mode(const int access, int mode, struct clock_event_device *clk) { unsigned long ctrl; switch (mode) { case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); ctrl &= ~ARCH_TIMER_CTRL_ENABLE; arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); break; default: break; } } static void arch_timer_set_mode_virt(enum clock_event_mode mode, struct clock_event_device *clk) { timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk); } static void arch_timer_set_mode_phys(enum clock_event_mode mode, struct clock_event_device *clk) { timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk); } static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode, struct clock_event_device *clk) { timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk); } static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode, struct clock_event_device *clk) { timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk); } static __always_inline void set_next_event(const int access, unsigned long evt, struct clock_event_device *clk) { unsigned long ctrl; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); } static int arch_timer_set_next_event_virt(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_phys(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_virt_mem(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_phys_mem(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); return 0; } static void __arch_timer_setup(unsigned type, struct clock_event_device *clk) { clk->features = CLOCK_EVT_FEAT_ONESHOT; if (type == ARCH_CP15_TIMER) { if (arch_timer_c3stop) clk->features |= CLOCK_EVT_FEAT_C3STOP; clk->name = "arch_sys_timer"; clk->rating = 450; clk->cpumask = cpumask_of(smp_processor_id()); if (arch_timer_use_virtual) { clk->irq = arch_timer_ppi[VIRT_PPI]; clk->set_mode = arch_timer_set_mode_virt; clk->set_next_event = arch_timer_set_next_event_virt; } else { clk->irq = arch_timer_ppi[PHYS_SECURE_PPI]; clk->set_mode = arch_timer_set_mode_phys; clk->set_next_event = arch_timer_set_next_event_phys; } } else { clk->features |= CLOCK_EVT_FEAT_DYNIRQ; clk->name = "arch_mem_timer"; clk->rating = 400; clk->cpumask = cpu_all_mask; if (arch_timer_mem_use_virtual) { clk->set_mode = arch_timer_set_mode_virt_mem; clk->set_next_event = arch_timer_set_next_event_virt_mem; } else { clk->set_mode = arch_timer_set_mode_phys_mem; clk->set_next_event = arch_timer_set_next_event_phys_mem; } } clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk); clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff); } static void arch_timer_evtstrm_enable(int divider) { u32 cntkctl = arch_timer_get_cntkctl(); cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; /* Set the divider and enable virtual event stream */ cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) | ARCH_TIMER_VIRT_EVT_EN; arch_timer_set_cntkctl(cntkctl); elf_hwcap |= HWCAP_EVTSTRM; #ifdef CONFIG_COMPAT compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM; #endif } static void arch_timer_configure_evtstream(void) { int evt_stream_div, pos; /* Find the closest power of two to the divisor */ evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ; pos = fls(evt_stream_div); if (pos > 1 && !(evt_stream_div & (1 << (pos - 2)))) pos--; /* enable event stream */ arch_timer_evtstrm_enable(min(pos, 15)); } static void arch_counter_set_user_access(void) { u32 cntkctl = arch_timer_get_cntkctl(); /* Disable user access to the timers and the physical counter */ /* Also disable virtual event stream */ cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN | ARCH_TIMER_USR_VT_ACCESS_EN | ARCH_TIMER_VIRT_EVT_EN | ARCH_TIMER_USR_PCT_ACCESS_EN); /* Enable user access to the virtual counter */ cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; arch_timer_set_cntkctl(cntkctl); } static int arch_timer_setup(struct clock_event_device *clk) { __arch_timer_setup(ARCH_CP15_TIMER, clk); if (arch_timer_use_virtual) enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0); else { enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0); if (arch_timer_ppi[PHYS_NONSECURE_PPI]) enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0); } arch_counter_set_user_access(); if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM)) arch_timer_configure_evtstream(); return 0; } static void arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np) { /* Who has more than one independent system counter? */ if (arch_timer_rate) return; /* * Try to determine the frequency from the device tree or CNTFRQ, * if ACPI is enabled, get the frequency from CNTFRQ ONLY. */ if (!acpi_disabled || of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) { if (cntbase) arch_timer_rate = readl_relaxed(cntbase + CNTFRQ); else arch_timer_rate = arch_timer_get_cntfrq(); } /* Check the timer frequency. */ if (arch_timer_rate == 0) pr_warn("Architected timer frequency not available\n"); } static void arch_timer_banner(unsigned type) { pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", type & ARCH_CP15_TIMER ? "cp15" : "", type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "", type & ARCH_MEM_TIMER ? "mmio" : "", (unsigned long)arch_timer_rate / 1000000, (unsigned long)(arch_timer_rate / 10000) % 100, type & ARCH_CP15_TIMER ? arch_timer_use_virtual ? "virt" : "phys" : "", type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "", type & ARCH_MEM_TIMER ? arch_timer_mem_use_virtual ? "virt" : "phys" : ""); } u32 arch_timer_get_rate(void) { return arch_timer_rate; } static u64 arch_counter_get_cntvct_mem(void) { u32 vct_lo, vct_hi, tmp_hi; do { vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO); tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI); } while (vct_hi != tmp_hi); return ((u64) vct_hi << 32) | vct_lo; } /* * Default to cp15 based access because arm64 uses this function for * sched_clock() before DT is probed and the cp15 method is guaranteed * to exist on arm64. arm doesn't use this before DT is probed so even * if we don't have the cp15 accessors we won't have a problem. */ u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct; static cycle_t arch_counter_read(struct clocksource *cs) { return arch_timer_read_counter(); } static cycle_t arch_counter_read_cc(const struct cyclecounter *cc) { return arch_timer_read_counter(); } static struct clocksource clocksource_counter = { .name = "arch_sys_counter", .rating = 400, .read = arch_counter_read, .mask = CLOCKSOURCE_MASK(56), .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, }; static struct cyclecounter cyclecounter = { .read = arch_counter_read_cc, .mask = CLOCKSOURCE_MASK(56), }; static struct timecounter timecounter; struct timecounter *arch_timer_get_timecounter(void) { return &timecounter; } static void __init arch_counter_register(unsigned type) { u64 start_count; /* Register the CP15 based counter if we have one */ if (type & ARCH_CP15_TIMER) { if (arch_timer_use_virtual) arch_timer_read_counter = arch_counter_get_cntvct; else arch_timer_read_counter = arch_counter_get_cntpct; } else { arch_timer_read_counter = arch_counter_get_cntvct_mem; /* If the clocksource name is "arch_sys_counter" the * VDSO will attempt to read the CP15-based counter. * Ensure this does not happen when CP15-based * counter is not available. */ clocksource_counter.name = "arch_mem_counter"; } start_count = arch_timer_read_counter(); clocksource_register_hz(&clocksource_counter, arch_timer_rate); cyclecounter.mult = clocksource_counter.mult; cyclecounter.shift = clocksource_counter.shift; timecounter_init(&timecounter, &cyclecounter, start_count); /* 56 bits minimum, so we assume worst case rollover */ sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate); } static void arch_timer_stop(struct clock_event_device *clk) { pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); if (arch_timer_use_virtual) disable_percpu_irq(arch_timer_ppi[VIRT_PPI]); else { disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]); if (arch_timer_ppi[PHYS_NONSECURE_PPI]) disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]); } clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk); } static int arch_timer_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { /* * Grab cpu pointer in each case to avoid spurious * preemptible warnings */ switch (action & ~CPU_TASKS_FROZEN) { case CPU_STARTING: arch_timer_setup(this_cpu_ptr(arch_timer_evt)); break; case CPU_DYING: arch_timer_stop(this_cpu_ptr(arch_timer_evt)); break; } return NOTIFY_OK; } static struct notifier_block arch_timer_cpu_nb = { .notifier_call = arch_timer_cpu_notify, }; #ifdef CONFIG_CPU_PM static unsigned int saved_cntkctl; static int arch_timer_cpu_pm_notify(struct notifier_block *self, unsigned long action, void *hcpu) { if (action == CPU_PM_ENTER) saved_cntkctl = arch_timer_get_cntkctl(); else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) arch_timer_set_cntkctl(saved_cntkctl); return NOTIFY_OK; } static struct notifier_block arch_timer_cpu_pm_notifier = { .notifier_call = arch_timer_cpu_pm_notify, }; static int __init arch_timer_cpu_pm_init(void) { return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); } #else static int __init arch_timer_cpu_pm_init(void) { return 0; } #endif static int __init arch_timer_register(void) { int err; int ppi; arch_timer_evt = alloc_percpu(struct clock_event_device); if (!arch_timer_evt) { err = -ENOMEM; goto out; } if (arch_timer_use_virtual) { ppi = arch_timer_ppi[VIRT_PPI]; err = request_percpu_irq(ppi, arch_timer_handler_virt, "arch_timer", arch_timer_evt); } else { ppi = arch_timer_ppi[PHYS_SECURE_PPI]; err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) { ppi = arch_timer_ppi[PHYS_NONSECURE_PPI]; err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); if (err) free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], arch_timer_evt); } } if (err) { pr_err("arch_timer: can't register interrupt %d (%d)\n", ppi, err); goto out_free; } err = register_cpu_notifier(&arch_timer_cpu_nb); if (err) goto out_free_irq; err = arch_timer_cpu_pm_init(); if (err) goto out_unreg_notify; /* Immediately configure the timer on the boot CPU */ arch_timer_setup(this_cpu_ptr(arch_timer_evt)); return 0; out_unreg_notify: unregister_cpu_notifier(&arch_timer_cpu_nb); out_free_irq: if (arch_timer_use_virtual) free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt); else { free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], arch_timer_evt); if (arch_timer_ppi[PHYS_NONSECURE_PPI]) free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], arch_timer_evt); } out_free: free_percpu(arch_timer_evt); out: return err; } static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) { int ret; irq_handler_t func; struct arch_timer *t; t = kzalloc(sizeof(*t), GFP_KERNEL); if (!t) return -ENOMEM; t->base = base; t->evt.irq = irq; __arch_timer_setup(ARCH_MEM_TIMER, &t->evt); if (arch_timer_mem_use_virtual) func = arch_timer_handler_virt_mem; else func = arch_timer_handler_phys_mem; ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt); if (ret) { pr_err("arch_timer: Failed to request mem timer irq\n"); kfree(t); } return ret; } static const struct of_device_id arch_timer_of_match[] __initconst = { { .compatible = "arm,armv7-timer", }, { .compatible = "arm,armv8-timer", }, {}, }; static const struct of_device_id arch_timer_mem_of_match[] __initconst = { { .compatible = "arm,armv7-timer-mem", }, {}, }; static bool __init arch_timer_needs_probing(int type, const struct of_device_id *matches) { struct device_node *dn; bool needs_probing = false; dn = of_find_matching_node(NULL, matches); if (dn && of_device_is_available(dn) && !(arch_timers_present & type)) needs_probing = true; of_node_put(dn); return needs_probing; } static void __init arch_timer_common_init(void) { unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER; /* Wait until both nodes are probed if we have two timers */ if ((arch_timers_present & mask) != mask) { if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match)) return; if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match)) return; } arch_timer_banner(arch_timers_present); arch_counter_register(arch_timers_present); arch_timer_arch_init(); } static void __init arch_timer_init(void) { /* * If HYP mode is available, we know that the physical timer * has been configured to be accessible from PL1. Use it, so * that a guest can use the virtual timer instead. * * If no interrupt provided for virtual timer, we'll have to * stick to the physical timer. It'd better be accessible... */ if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) { arch_timer_use_virtual = false; if (!arch_timer_ppi[PHYS_SECURE_PPI] || !arch_timer_ppi[PHYS_NONSECURE_PPI]) { pr_warn("arch_timer: No interrupt available, giving up\n"); return; } } arch_timer_register(); arch_timer_common_init(); } static void __init arch_timer_of_init(struct device_node *np) { int i; if (arch_timers_present & ARCH_CP15_TIMER) { pr_warn("arch_timer: multiple nodes in dt, skipping\n"); return; } arch_timers_present |= ARCH_CP15_TIMER; for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++) arch_timer_ppi[i] = irq_of_parse_and_map(np, i); arch_timer_detect_rate(NULL, np); arch_timer_c3stop = !of_property_read_bool(np, "always-on"); /* FIXME : * ARM recommended to use vcnt for clocksource of ARMv8. * However, On Exynos5433, it seemed that they aren't intialized * properly, each of counters' value are not synchronized. * For Exynos5433, let it uses pcnt for representive clock source. */ if (of_machine_is_compatible("samsung,exynos5433")) arch_timer_use_virtual = false; /* * If we cannot rely on firmware initializing the timer registers then * we should use the physical timers instead. */ if (IS_ENABLED(CONFIG_ARM) && of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) arch_timer_use_virtual = false; arch_timer_init(); } CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); static void __init arch_timer_mem_init(struct device_node *np) { struct device_node *frame, *best_frame = NULL; void __iomem *cntctlbase, *base; unsigned int irq; u32 cnttidr; arch_timers_present |= ARCH_MEM_TIMER; cntctlbase = of_iomap(np, 0); if (!cntctlbase) { pr_err("arch_timer: Can't find CNTCTLBase\n"); return; } cnttidr = readl_relaxed(cntctlbase + CNTTIDR); iounmap(cntctlbase); /* * Try to find a virtual capable frame. Otherwise fall back to a * physical capable frame. */ for_each_available_child_of_node(np, frame) { int n; if (of_property_read_u32(frame, "frame-number", &n)) { pr_err("arch_timer: Missing frame-number\n"); of_node_put(best_frame); of_node_put(frame); return; } if (cnttidr & CNTTIDR_VIRT(n)) { of_node_put(best_frame); best_frame = frame; arch_timer_mem_use_virtual = true; break; } of_node_put(best_frame); best_frame = of_node_get(frame); } base = arch_counter_base = of_iomap(best_frame, 0); if (!base) { pr_err("arch_timer: Can't map frame's registers\n"); of_node_put(best_frame); return; } if (arch_timer_mem_use_virtual) irq = irq_of_parse_and_map(best_frame, 1); else irq = irq_of_parse_and_map(best_frame, 0); of_node_put(best_frame); if (!irq) { pr_err("arch_timer: Frame missing %s irq", arch_timer_mem_use_virtual ? "virt" : "phys"); return; } arch_timer_detect_rate(base, np); arch_timer_mem_register(base, irq); arch_timer_common_init(); } CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", arch_timer_mem_init); #ifdef CONFIG_ACPI static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags) { int trigger, polarity; if (!interrupt) return 0; trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW : ACPI_ACTIVE_HIGH; return acpi_register_gsi(NULL, interrupt, trigger, polarity); } /* Initialize per-processor generic timer */ static int __init arch_timer_acpi_init(struct acpi_table_header *table) { struct acpi_table_gtdt *gtdt; if (arch_timers_present & ARCH_CP15_TIMER) { pr_warn("arch_timer: already initialized, skipping\n"); return -EINVAL; } gtdt = container_of(table, struct acpi_table_gtdt, header); arch_timers_present |= ARCH_CP15_TIMER; arch_timer_ppi[PHYS_SECURE_PPI] = map_generic_timer_interrupt(gtdt->secure_el1_interrupt, gtdt->secure_el1_flags); arch_timer_ppi[PHYS_NONSECURE_PPI] = map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt, gtdt->non_secure_el1_flags); arch_timer_ppi[VIRT_PPI] = map_generic_timer_interrupt(gtdt->virtual_timer_interrupt, gtdt->virtual_timer_flags); arch_timer_ppi[HYP_PPI] = map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt, gtdt->non_secure_el2_flags); /* Get the frequency from CNTFRQ */ arch_timer_detect_rate(NULL, NULL); /* Always-on capability */ arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON); arch_timer_init(); return 0; } /* Initialize all the generic timers presented in GTDT */ void __init acpi_generic_timer_init(void) { if (acpi_disabled) return; acpi_table_parse(ACPI_SIG_GTDT, arch_timer_acpi_init); } #endif