// SPDX-License-Identifier: MIT /* * Copyright © 2019 Intel Corporation */ #include #include "i915_drv.h" #include "intel_engine_regs.h" #include "intel_gt_regs.h" #include "intel_sseu.h" void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices, u8 max_subslices, u8 max_eus_per_subslice) { sseu->max_slices = max_slices; sseu->max_subslices = max_subslices; sseu->max_eus_per_subslice = max_eus_per_subslice; } unsigned int intel_sseu_subslice_total(const struct sseu_dev_info *sseu) { unsigned int i, total = 0; if (sseu->has_xehp_dss) return bitmap_weight(sseu->subslice_mask.xehp, XEHP_BITMAP_BITS(sseu->subslice_mask)); for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++) total += hweight8(sseu->subslice_mask.hsw[i]); return total; } unsigned int intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice) { WARN_ON(sseu->has_xehp_dss); if (WARN_ON(slice >= sseu->max_slices)) return 0; return sseu->subslice_mask.hsw[slice]; } static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, int subslice) { if (sseu->has_xehp_dss) { WARN_ON(slice > 0); return sseu->eu_mask.xehp[subslice]; } else { return sseu->eu_mask.hsw[slice][subslice]; } } static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, u16 eu_mask) { GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice); if (sseu->has_xehp_dss) { GEM_WARN_ON(slice > 0); sseu->eu_mask.xehp[subslice] = eu_mask; } else { sseu->eu_mask.hsw[slice][subslice] = eu_mask; } } static u16 compute_eu_total(const struct sseu_dev_info *sseu) { int s, ss, total = 0; for (s = 0; s < sseu->max_slices; s++) for (ss = 0; ss < sseu->max_subslices; ss++) if (sseu->has_xehp_dss) total += hweight16(sseu->eu_mask.xehp[ss]); else total += hweight16(sseu->eu_mask.hsw[s][ss]); return total; } /** * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer * @to: Pointer to userspace buffer to copy to * @sseu: SSEU structure containing EU mask to copy * * Copies the EU mask to a userspace buffer in the format expected by * the query ioctl's topology queries. * * Returns the result of the copy_to_user() operation. */ int intel_sseu_copy_eumask_to_user(void __user *to, const struct sseu_dev_info *sseu) { u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {}; int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); int len = sseu->max_slices * sseu->max_subslices * eu_stride; int s, ss, i; for (s = 0; s < sseu->max_slices; s++) { for (ss = 0; ss < sseu->max_subslices; ss++) { int uapi_offset = s * sseu->max_subslices * eu_stride + ss * eu_stride; u16 mask = sseu_get_eus(sseu, s, ss); for (i = 0; i < eu_stride; i++) eu_mask[uapi_offset + i] = (mask >> (BITS_PER_BYTE * i)) & 0xff; } } return copy_to_user(to, eu_mask, len); } /** * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer * @to: Pointer to userspace buffer to copy to * @sseu: SSEU structure containing subslice mask to copy * * Copies the subslice mask to a userspace buffer in the format expected by * the query ioctl's topology queries. * * Returns the result of the copy_to_user() operation. */ int intel_sseu_copy_ssmask_to_user(void __user *to, const struct sseu_dev_info *sseu) { u8 ss_mask[GEN_SS_MASK_SIZE] = {}; int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices); int len = sseu->max_slices * ss_stride; int s, ss, i; for (s = 0; s < sseu->max_slices; s++) { for (ss = 0; ss < sseu->max_subslices; ss++) { i = s * ss_stride * BITS_PER_BYTE + ss; if (!intel_sseu_has_subslice(sseu, s, ss)) continue; ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); } } return copy_to_user(to, ss_mask, len); } static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, u32 ss_en, u16 eu_en) { u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0); int ss; sseu->slice_mask |= BIT(0); sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask; for (ss = 0; ss < sseu->max_subslices; ss++) if (intel_sseu_has_subslice(sseu, 0, ss)) sseu_set_eus(sseu, 0, ss, eu_en); sseu->eu_per_subslice = hweight16(eu_en); sseu->eu_total = compute_eu_total(sseu); } static void xehp_compute_sseu_info(struct sseu_dev_info *sseu, u16 eu_en) { int ss; sseu->slice_mask |= BIT(0); bitmap_or(sseu->subslice_mask.xehp, sseu->compute_subslice_mask.xehp, sseu->geometry_subslice_mask.xehp, XEHP_BITMAP_BITS(sseu->subslice_mask)); for (ss = 0; ss < sseu->max_subslices; ss++) if (intel_sseu_has_subslice(sseu, 0, ss)) sseu_set_eus(sseu, 0, ss, eu_en); sseu->eu_per_subslice = hweight16(eu_en); sseu->eu_total = compute_eu_total(sseu); } static void xehp_load_dss_mask(struct intel_uncore *uncore, intel_sseu_ss_mask_t *ssmask, int numregs, ...) { va_list argp; u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {}; int i; if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS)) numregs = I915_MAX_SS_FUSE_REGS; va_start(argp, numregs); for (i = 0; i < numregs; i++) fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t)); va_end(argp); bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32); } static void xehp_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; u16 eu_en = 0; u8 eu_en_fuse; int num_compute_regs, num_geometry_regs; int eu; if (IS_PONTEVECCHIO(gt->i915)) { num_geometry_regs = 0; num_compute_regs = 2; } else { num_geometry_regs = 1; num_compute_regs = 1; } /* * The concept of slice has been removed in Xe_HP. To be compatible * with prior generations, assume a single slice across the entire * device. Then calculate out the DSS for each workload type within * that software slice. */ intel_sseu_set_info(sseu, 1, 32 * max(num_geometry_regs, num_compute_regs), HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16); sseu->has_xehp_dss = 1; xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask, num_geometry_regs, GEN12_GT_GEOMETRY_DSS_ENABLE); xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask, num_compute_regs, GEN12_GT_COMPUTE_DSS_ENABLE, XEHPC_GT_COMPUTE_DSS_ENABLE_EXT); eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK; if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915)) eu_en = eu_en_fuse; else for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) if (eu_en_fuse & BIT(eu)) eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); xehp_compute_sseu_info(sseu, eu_en); } static void gen12_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; u32 g_dss_en; u16 eu_en = 0; u8 eu_en_fuse; u8 s_en; int eu; /* * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS. * Instead of splitting these, provide userspace with an array * of DSS to more closely represent the hardware resource. */ intel_sseu_set_info(sseu, 1, 6, 16); /* * Although gen12 architecture supported multiple slices, TGL, RKL, * DG1, and ADL only had a single slice. */ s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; drm_WARN_ON(>->i915->drm, s_en != 0x1); g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE); /* one bit per pair of EUs */ eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) if (eu_en_fuse & BIT(eu)) eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); gen11_compute_sseu_info(sseu, g_dss_en, eu_en); /* TGL only supports slice-level power gating */ sseu->has_slice_pg = 1; } static void gen11_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; u32 ss_en; u8 eu_en; u8 s_en; if (IS_JSL_EHL(gt->i915)) intel_sseu_set_info(sseu, 1, 4, 8); else intel_sseu_set_info(sseu, 1, 8, 8); /* * Although gen11 architecture supported multiple slices, ICL and * EHL/JSL only had a single slice in practice. */ s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; drm_WARN_ON(>->i915->drm, s_en != 0x1); ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE); eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); gen11_compute_sseu_info(sseu, ss_en, eu_en); /* ICL has no power gating restrictions. */ sseu->has_slice_pg = 1; sseu->has_subslice_pg = 1; sseu->has_eu_pg = 1; } static void cherryview_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; u32 fuse; fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT); sseu->slice_mask = BIT(0); intel_sseu_set_info(sseu, 1, 2, 8); if (!(fuse & CHV_FGT_DISABLE_SS0)) { u8 disabled_mask = ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> CHV_FGT_EU_DIS_SS0_R0_SHIFT) | (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); sseu->subslice_mask.hsw[0] |= BIT(0); sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF); } if (!(fuse & CHV_FGT_DISABLE_SS1)) { u8 disabled_mask = ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> CHV_FGT_EU_DIS_SS1_R0_SHIFT) | (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); sseu->subslice_mask.hsw[0] |= BIT(1); sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF); } sseu->eu_total = compute_eu_total(sseu); /* * CHV expected to always have a uniform distribution of EU * across subslices. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? sseu->eu_total / intel_sseu_subslice_total(sseu) : 0; /* * CHV supports subslice power gating on devices with more than * one subslice, and supports EU power gating on devices with * more than one EU pair per subslice. */ sseu->has_slice_pg = 0; sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; sseu->has_eu_pg = (sseu->eu_per_subslice > 2); } static void gen9_sseu_info_init(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct intel_device_info *info = mkwrite_device_info(i915); struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; u32 fuse2, eu_disable, subslice_mask; const u8 eu_mask = 0xff; int s, ss; fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; /* BXT has a single slice and at most 3 subslices. */ intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3, IS_GEN9_LP(i915) ? 3 : 4, 8); /* * The subslice disable field is global, i.e. it applies * to each of the enabled slices. */ subslice_mask = (1 << sseu->max_subslices) - 1; subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> GEN9_F2_SS_DIS_SHIFT); /* * Iterate through enabled slices and subslices to * count the total enabled EU. */ for (s = 0; s < sseu->max_slices; s++) { if (!(sseu->slice_mask & BIT(s))) /* skip disabled slice */ continue; sseu->subslice_mask.hsw[s] = subslice_mask; eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s)); for (ss = 0; ss < sseu->max_subslices; ss++) { int eu_per_ss; u8 eu_disabled_mask; if (!intel_sseu_has_subslice(sseu, s, ss)) /* skip disabled subslice */ continue; eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask); eu_per_ss = sseu->max_eus_per_subslice - hweight8(eu_disabled_mask); /* * Record which subslice(s) has(have) 7 EUs. we * can tune the hash used to spread work among * subslices if they are unbalanced. */ if (eu_per_ss == 7) sseu->subslice_7eu[s] |= BIT(ss); } } sseu->eu_total = compute_eu_total(sseu); /* * SKL is expected to always have a uniform distribution * of EU across subslices with the exception that any one * EU in any one subslice may be fused off for die * recovery. BXT is expected to be perfectly uniform in EU * distribution. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 0; /* * SKL+ supports slice power gating on devices with more than * one slice, and supports EU power gating on devices with * more than one EU pair per subslice. BXT+ supports subslice * power gating on devices with more than one subslice, and * supports EU power gating on devices with more than one EU * pair per subslice. */ sseu->has_slice_pg = !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1; sseu->has_subslice_pg = IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1; sseu->has_eu_pg = sseu->eu_per_subslice > 2; if (IS_GEN9_LP(i915)) { #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss))) info->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3; sseu->min_eu_in_pool = 0; if (info->has_pooled_eu) { if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) sseu->min_eu_in_pool = 3; else if (IS_SS_DISABLED(1)) sseu->min_eu_in_pool = 6; else sseu->min_eu_in_pool = 9; } #undef IS_SS_DISABLED } } static void bdw_sseu_info_init(struct intel_gt *gt) { struct sseu_dev_info *sseu = >->info.sseu; struct intel_uncore *uncore = gt->uncore; int s, ss; u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ u32 eu_disable0, eu_disable1, eu_disable2; fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; intel_sseu_set_info(sseu, 3, 3, 8); /* * The subslice disable field is global, i.e. it applies * to each of the enabled slices. */ subslice_mask = GENMASK(sseu->max_subslices - 1, 0); subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> GEN8_F2_SS_DIS_SHIFT); eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0); eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1); eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2); eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK; eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) | ((eu_disable1 & GEN8_EU_DIS1_S1_MASK) << (32 - GEN8_EU_DIS0_S1_SHIFT)); eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) | ((eu_disable2 & GEN8_EU_DIS2_S2_MASK) << (32 - GEN8_EU_DIS1_S2_SHIFT)); /* * Iterate through enabled slices and subslices to * count the total enabled EU. */ for (s = 0; s < sseu->max_slices; s++) { if (!(sseu->slice_mask & BIT(s))) /* skip disabled slice */ continue; sseu->subslice_mask.hsw[s] = subslice_mask; for (ss = 0; ss < sseu->max_subslices; ss++) { u8 eu_disabled_mask; u32 n_disabled; if (!intel_sseu_has_subslice(sseu, s, ss)) /* skip disabled subslice */ continue; eu_disabled_mask = eu_disable[s] >> (ss * sseu->max_eus_per_subslice); sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF); n_disabled = hweight8(eu_disabled_mask); /* * Record which subslices have 7 EUs. */ if (sseu->max_eus_per_subslice - n_disabled == 7) sseu->subslice_7eu[s] |= 1 << ss; } } sseu->eu_total = compute_eu_total(sseu); /* * BDW is expected to always have a uniform distribution of EU across * subslices with the exception that any one EU in any one subslice may * be fused off for die recovery. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 0; /* * BDW supports slice power gating on devices with more than * one slice. */ sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; sseu->has_subslice_pg = 0; sseu->has_eu_pg = 0; } static void hsw_sseu_info_init(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; struct sseu_dev_info *sseu = >->info.sseu; u32 fuse1; u8 subslice_mask = 0; int s, ss; /* * There isn't a register to tell us how many slices/subslices. We * work off the PCI-ids here. */ switch (INTEL_INFO(i915)->gt) { default: MISSING_CASE(INTEL_INFO(i915)->gt); fallthrough; case 1: sseu->slice_mask = BIT(0); subslice_mask = BIT(0); break; case 2: sseu->slice_mask = BIT(0); subslice_mask = BIT(0) | BIT(1); break; case 3: sseu->slice_mask = BIT(0) | BIT(1); subslice_mask = BIT(0) | BIT(1); break; } fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) { default: MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)); fallthrough; case HSW_F1_EU_DIS_10EUS: sseu->eu_per_subslice = 10; break; case HSW_F1_EU_DIS_8EUS: sseu->eu_per_subslice = 8; break; case HSW_F1_EU_DIS_6EUS: sseu->eu_per_subslice = 6; break; } intel_sseu_set_info(sseu, hweight8(sseu->slice_mask), hweight8(subslice_mask), sseu->eu_per_subslice); for (s = 0; s < sseu->max_slices; s++) { sseu->subslice_mask.hsw[s] = subslice_mask; for (ss = 0; ss < sseu->max_subslices; ss++) { sseu_set_eus(sseu, s, ss, (1UL << sseu->eu_per_subslice) - 1); } } sseu->eu_total = compute_eu_total(sseu); /* No powergating for you. */ sseu->has_slice_pg = 0; sseu->has_subslice_pg = 0; sseu->has_eu_pg = 0; } void intel_sseu_info_init(struct intel_gt *gt) { struct drm_i915_private *i915 = gt->i915; if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) xehp_sseu_info_init(gt); else if (GRAPHICS_VER(i915) >= 12) gen12_sseu_info_init(gt); else if (GRAPHICS_VER(i915) >= 11) gen11_sseu_info_init(gt); else if (GRAPHICS_VER(i915) >= 9) gen9_sseu_info_init(gt); else if (IS_BROADWELL(i915)) bdw_sseu_info_init(gt); else if (IS_CHERRYVIEW(i915)) cherryview_sseu_info_init(gt); else if (IS_HASWELL(i915)) hsw_sseu_info_init(gt); } u32 intel_sseu_make_rpcs(struct intel_gt *gt, const struct intel_sseu *req_sseu) { struct drm_i915_private *i915 = gt->i915; const struct sseu_dev_info *sseu = >->info.sseu; bool subslice_pg = sseu->has_subslice_pg; u8 slices, subslices; u32 rpcs = 0; /* * No explicit RPCS request is needed to ensure full * slice/subslice/EU enablement prior to Gen9. */ if (GRAPHICS_VER(i915) < 9) return 0; /* * If i915/perf is active, we want a stable powergating configuration * on the system. Use the configuration pinned by i915/perf. */ if (i915->perf.exclusive_stream) req_sseu = &i915->perf.sseu; slices = hweight8(req_sseu->slice_mask); subslices = hweight8(req_sseu->subslice_mask); /* * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits * wide and Icelake has up to eight subslices, specfial programming is * needed in order to correctly enable all subslices. * * According to documentation software must consider the configuration * as 2x4x8 and hardware will translate this to 1x8x8. * * Furthemore, even though SScount is three bits, maximum documented * value for it is four. From this some rules/restrictions follow: * * 1. * If enabled subslice count is greater than four, two whole slices must * be enabled instead. * * 2. * When more than one slice is enabled, hardware ignores the subslice * count altogether. * * From these restrictions it follows that it is not possible to enable * a count of subslices between the SScount maximum of four restriction, * and the maximum available number on a particular SKU. Either all * subslices are enabled, or a count between one and four on the first * slice. */ if (GRAPHICS_VER(i915) == 11 && slices == 1 && subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) { GEM_BUG_ON(subslices & 1); subslice_pg = false; slices *= 2; } /* * Starting in Gen9, render power gating can leave * slice/subslice/EU in a partially enabled state. We * must make an explicit request through RPCS for full * enablement. */ if (sseu->has_slice_pg) { u32 mask, val = slices; if (GRAPHICS_VER(i915) >= 11) { mask = GEN11_RPCS_S_CNT_MASK; val <<= GEN11_RPCS_S_CNT_SHIFT; } else { mask = GEN8_RPCS_S_CNT_MASK; val <<= GEN8_RPCS_S_CNT_SHIFT; } GEM_BUG_ON(val & ~mask); val &= mask; rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val; } if (subslice_pg) { u32 val = subslices; val <<= GEN8_RPCS_SS_CNT_SHIFT; GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK); val &= GEN8_RPCS_SS_CNT_MASK; rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val; } if (sseu->has_eu_pg) { u32 val; val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT; GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK); val &= GEN8_RPCS_EU_MIN_MASK; rpcs |= val; val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT; GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK); val &= GEN8_RPCS_EU_MAX_MASK; rpcs |= val; rpcs |= GEN8_RPCS_ENABLE; } return rpcs; } void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) { int s; if (sseu->has_xehp_dss) { drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); drm_printf(p, "geometry dss mask=%*pb\n", XEHP_BITMAP_BITS(sseu->geometry_subslice_mask), sseu->geometry_subslice_mask.xehp); drm_printf(p, "compute dss mask=%*pb\n", XEHP_BITMAP_BITS(sseu->compute_subslice_mask), sseu->compute_subslice_mask.xehp); } else { drm_printf(p, "slice total: %u, mask=%04x\n", hweight8(sseu->slice_mask), sseu->slice_mask); drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); for (s = 0; s < sseu->max_slices; s++) { u8 ss_mask = sseu->subslice_mask.hsw[s]; drm_printf(p, "slice%d: %u subslices, mask=%08x\n", s, hweight8(ss_mask), ss_mask); } } drm_printf(p, "EU total: %u\n", sseu->eu_total); drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); drm_printf(p, "has slice power gating: %s\n", str_yes_no(sseu->has_slice_pg)); drm_printf(p, "has subslice power gating: %s\n", str_yes_no(sseu->has_subslice_pg)); drm_printf(p, "has EU power gating: %s\n", str_yes_no(sseu->has_eu_pg)); } static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu, struct drm_printer *p) { int s, ss; for (s = 0; s < sseu->max_slices; s++) { u8 ss_mask = sseu->subslice_mask.hsw[s]; drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n", s, hweight8(ss_mask), ss_mask); for (ss = 0; ss < sseu->max_subslices; ss++) { u16 enabled_eus = sseu_get_eus(sseu, s, ss); drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", ss, hweight16(enabled_eus), enabled_eus); } } } static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu, struct drm_printer *p) { int dss; for (dss = 0; dss < sseu->max_subslices; dss++) { u16 enabled_eus = sseu_get_eus(sseu, 0, dss); drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss, str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)), str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)), hweight16(enabled_eus), enabled_eus); } } void intel_sseu_print_topology(struct drm_i915_private *i915, const struct sseu_dev_info *sseu, struct drm_printer *p) { if (sseu->max_slices == 0) { drm_printf(p, "Unavailable\n"); } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { sseu_print_xehp_topology(sseu, p); } else { sseu_print_hsw_topology(sseu, p); } } void intel_sseu_print_ss_info(const char *type, const struct sseu_dev_info *sseu, struct seq_file *m) { int s; if (sseu->has_xehp_dss) { seq_printf(m, " %s Geometry DSS: %u\n", type, bitmap_weight(sseu->geometry_subslice_mask.xehp, XEHP_BITMAP_BITS(sseu->geometry_subslice_mask))); seq_printf(m, " %s Compute DSS: %u\n", type, bitmap_weight(sseu->compute_subslice_mask.xehp, XEHP_BITMAP_BITS(sseu->compute_subslice_mask))); } else { for (s = 0; s < fls(sseu->slice_mask); s++) seq_printf(m, " %s Slice%i subslices: %u\n", type, s, hweight8(sseu->subslice_mask.hsw[s])); } } u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask, int dss_per_slice) { intel_sseu_ss_mask_t per_slice_mask = {}; unsigned long slice_mask = 0; int i; WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) > 8 * sizeof(slice_mask)); bitmap_fill(per_slice_mask.xehp, dss_per_slice); for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) { if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice)) slice_mask |= BIT(i); bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice, XEHP_BITMAP_BITS(dss_mask)); } return slice_mask; }