/* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */ /* * Copyright(c) 2018 Intel Corporation. * */ #ifndef HFI1_TID_RDMA_H #define HFI1_TID_RDMA_H #include #include "common.h" /* Add a convenience helper */ #define CIRC_ADD(val, add, size) (((val) + (add)) & ((size) - 1)) #define CIRC_NEXT(val, size) CIRC_ADD(val, 1, size) #define CIRC_PREV(val, size) CIRC_ADD(val, -1, size) #define TID_RDMA_MIN_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */ #define TID_RDMA_MAX_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */ #define TID_RDMA_MAX_PAGES (BIT(18) >> PAGE_SHIFT) /* * Bit definitions for priv->s_flags. * These bit flags overload the bit flags defined for the QP's s_flags. * Due to the fact that these bit fields are used only for the QP priv * s_flags, there are no collisions. * * HFI1_S_TID_WAIT_INTERLCK - QP is waiting for requester interlock */ #define HFI1_S_TID_BUSY_SET BIT(0) /* BIT(1) reserved for RVT_S_BUSY. */ #define HFI1_R_TID_RSC_TIMER BIT(2) /* BIT(3) reserved for RVT_S_RESP_PENDING. */ /* BIT(4) reserved for RVT_S_ACK_PENDING. */ #define HFI1_S_TID_WAIT_INTERLCK BIT(5) /* BIT(7) - BIT(15) reserved for RVT_S_WAIT_*. */ #define HFI1_S_TID_RETRY_TIMER BIT(17) #define HFI1_R_TID_SW_PSN BIT(19) /* * Unlike regular IB RDMA VERBS, which do not require an entry * in the s_ack_queue, TID RDMA WRITE requests do because they * generate responses. * Therefore, the s_ack_queue needs to be extended by a certain * amount. The key point is that the queue needs to be extended * without letting the "user" know so they user doesn't end up * using these extra entries. */ #define HFI1_TID_RDMA_WRITE_CNT 8 struct tid_rdma_params { struct rcu_head rcu_head; u32 qp; u32 max_len; u16 jkey; u8 max_read; u8 max_write; u8 timeout; u8 urg; u8 version; }; struct tid_rdma_qp_params { struct work_struct trigger_work; struct tid_rdma_params local; struct tid_rdma_params __rcu *remote; }; /* Track state for each hardware flow */ struct tid_flow_state { u32 generation; u32 psn; u32 r_next_psn; /* next PSN to be received (in TID space) */ u8 index; u8 last_index; u8 flags; }; enum tid_rdma_req_state { TID_REQUEST_INACTIVE = 0, TID_REQUEST_INIT, TID_REQUEST_INIT_RESEND, TID_REQUEST_ACTIVE, TID_REQUEST_RESEND, TID_REQUEST_RESEND_ACTIVE, TID_REQUEST_QUEUED, TID_REQUEST_SYNC, TID_REQUEST_RNR_NAK, TID_REQUEST_COMPLETE, }; struct tid_rdma_request { struct rvt_qp *qp; struct hfi1_ctxtdata *rcd; union { struct rvt_swqe *swqe; struct rvt_ack_entry *ack; } e; struct tid_rdma_flow *flows; /* array of tid flows */ struct rvt_sge_state ss; /* SGE state for TID RDMA requests */ u16 n_flows; /* size of the flow buffer window */ u16 setup_head; /* flow index we are setting up */ u16 clear_tail; /* flow index we are clearing */ u16 flow_idx; /* flow index most recently set up */ u16 acked_tail; u32 seg_len; u32 total_len; u32 r_ack_psn; /* next expected ack PSN */ u32 r_flow_psn; /* IB PSN of next segment start */ u32 r_last_acked; /* IB PSN of last ACK'ed packet */ u32 s_next_psn; /* IB PSN of next segment start for read */ u32 total_segs; /* segments required to complete a request */ u32 cur_seg; /* index of current segment */ u32 comp_seg; /* index of last completed segment */ u32 ack_seg; /* index of last ack'ed segment */ u32 alloc_seg; /* index of next segment to be allocated */ u32 isge; /* index of "current" sge */ u32 ack_pending; /* num acks pending for this request */ enum tid_rdma_req_state state; }; /* * When header suppression is used, PSNs associated with a "flow" are * relevant (and not the PSNs maintained by verbs). Track per-flow * PSNs here for a TID RDMA segment. * */ struct flow_state { u32 flags; u32 resp_ib_psn; /* The IB PSN of the response for this flow */ u32 generation; /* generation of flow */ u32 spsn; /* starting PSN in TID space */ u32 lpsn; /* last PSN in TID space */ u32 r_next_psn; /* next PSN to be received (in TID space) */ /* For tid rdma read */ u32 ib_spsn; /* starting PSN in Verbs space */ u32 ib_lpsn; /* last PSn in Verbs space */ }; struct tid_rdma_pageset { dma_addr_t addr : 48; /* Only needed for the first page */ u8 idx: 8; u8 count : 7; u8 mapped: 1; }; /** * kern_tid_node - used for managing TID's in TID groups * * @grp_idx: rcd relative index to tid_group * @map: grp->map captured prior to programming this TID group in HW * @cnt: Only @cnt of available group entries are actually programmed */ struct kern_tid_node { struct tid_group *grp; u8 map; u8 cnt; }; /* Overall info for a TID RDMA segment */ struct tid_rdma_flow { /* * While a TID RDMA segment is being transferred, it uses a QP number * from the "KDETH section of QP numbers" (which is different from the * QP number that originated the request). Bits 11-15 of these QP * numbers identify the "TID flow" for the segment. */ struct flow_state flow_state; struct tid_rdma_request *req; u32 tid_qpn; u32 tid_offset; u32 length; u32 sent; u8 tnode_cnt; u8 tidcnt; u8 tid_idx; u8 idx; u8 npagesets; u8 npkts; u8 pkt; u8 resync_npkts; struct kern_tid_node tnode[TID_RDMA_MAX_PAGES]; struct tid_rdma_pageset pagesets[TID_RDMA_MAX_PAGES]; u32 tid_entry[TID_RDMA_MAX_PAGES]; }; enum tid_rnr_nak_state { TID_RNR_NAK_INIT = 0, TID_RNR_NAK_SEND, TID_RNR_NAK_SENT, }; bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data); bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data); bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data); void tid_rdma_conn_error(struct rvt_qp *qp); void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p); int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit); int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req, struct rvt_sge_state *ss, bool *last); int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req); void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req); void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe); /** * trdma_clean_swqe - clean flows for swqe if large send queue * @qp: the qp * @wqe: the send wqe */ static inline void trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe) { if (!wqe->priv) return; __trdma_clean_swqe(qp, wqe); } void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp); int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp, struct ib_qp_init_attr *init_attr); void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp); void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp); int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp); void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp); void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd); struct cntr_entry; u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry, void *context, int vl, int mode, u64 data); u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe, struct ib_other_headers *ohdr, u32 *bth1, u32 *bth2, u32 *len); u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe, struct ib_other_headers *ohdr, u32 *bth1, u32 *bth2, u32 *len); void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet); u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e, struct ib_other_headers *ohdr, u32 *bth0, u32 *bth1, u32 *bth2, u32 *len, bool *last); void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet); bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, struct hfi1_packet *packet); void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe, u32 *bth2); void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp); bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe); void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe); static inline void hfi1_setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe) { if (wqe->priv && wqe->wr.opcode == IB_WR_RDMA_READ && wqe->length >= TID_RDMA_MIN_SEGMENT_SIZE) setup_tid_rdma_wqe(qp, wqe); } u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe, struct ib_other_headers *ohdr, u32 *bth1, u32 *bth2, u32 *len); void hfi1_compute_tid_rdma_flow_wt(void); void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet); u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e, struct ib_other_headers *ohdr, u32 *bth1, u32 bth2, u32 *len, struct rvt_sge_state **ss); void hfi1_del_tid_reap_timer(struct rvt_qp *qp); void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet); bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe, struct ib_other_headers *ohdr, u32 *bth1, u32 *bth2, u32 *len); void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet); u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e, struct ib_other_headers *ohdr, u16 iflow, u32 *bth1, u32 *bth2); void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet); void hfi1_add_tid_retry_timer(struct rvt_qp *qp); void hfi1_del_tid_retry_timer(struct rvt_qp *qp); u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe, struct ib_other_headers *ohdr, u32 *bth1, u32 *bth2, u16 fidx); void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet); struct hfi1_pkt_state; int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps); #endif /* HFI1_TID_RDMA_H */