/* * drivers/s390/cio/css.c * driver for channel subsystem * * Copyright (C) 2002 IBM Deutschland Entwicklung GmbH, * IBM Corporation * Author(s): Arnd Bergmann (arndb@de.ibm.com) * Cornelia Huck (cornelia.huck@de.ibm.com) */ #include <linux/module.h> #include <linux/init.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/list.h> #include "css.h" #include "cio.h" #include "cio_debug.h" #include "ioasm.h" #include "chsc.h" #include "device.h" int need_rescan = 0; int css_init_done = 0; static int need_reprobe = 0; static int max_ssid = 0; struct channel_subsystem *css[__MAX_CSSID + 1]; int css_characteristics_avail = 0; inline int for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data) { struct subchannel_id schid; int ret; init_subchannel_id(&schid); ret = -ENODEV; do { do { ret = fn(schid, data); if (ret) break; } while (schid.sch_no++ < __MAX_SUBCHANNEL); schid.sch_no = 0; } while (schid.ssid++ < max_ssid); return ret; } static struct subchannel * css_alloc_subchannel(struct subchannel_id schid) { struct subchannel *sch; int ret; sch = kmalloc (sizeof (*sch), GFP_KERNEL | GFP_DMA); if (sch == NULL) return ERR_PTR(-ENOMEM); ret = cio_validate_subchannel (sch, schid); if (ret < 0) { kfree(sch); return ERR_PTR(ret); } if (sch->st != SUBCHANNEL_TYPE_IO) { /* For now we ignore all non-io subchannels. */ kfree(sch); return ERR_PTR(-EINVAL); } /* * Set intparm to subchannel address. * This is fine even on 64bit since the subchannel is always located * under 2G. */ sch->schib.pmcw.intparm = (__u32)(unsigned long)sch; ret = cio_modify(sch); if (ret) { kfree(sch); return ERR_PTR(ret); } return sch; } static void css_free_subchannel(struct subchannel *sch) { if (sch) { /* Reset intparm to zeroes. */ sch->schib.pmcw.intparm = 0; cio_modify(sch); kfree(sch->lock); kfree(sch); } } static void css_subchannel_release(struct device *dev) { struct subchannel *sch; sch = to_subchannel(dev); if (!cio_is_console(sch->schid)) { kfree(sch->lock); kfree(sch); } } extern int css_get_ssd_info(struct subchannel *sch); int css_sch_device_register(struct subchannel *sch) { int ret; mutex_lock(&sch->reg_mutex); ret = device_register(&sch->dev); mutex_unlock(&sch->reg_mutex); return ret; } void css_sch_device_unregister(struct subchannel *sch) { mutex_lock(&sch->reg_mutex); device_unregister(&sch->dev); mutex_unlock(&sch->reg_mutex); } static int css_register_subchannel(struct subchannel *sch) { int ret; /* Initialize the subchannel structure */ sch->dev.parent = &css[0]->device; sch->dev.bus = &css_bus_type; sch->dev.release = &css_subchannel_release; sch->dev.groups = subch_attr_groups; css_get_ssd_info(sch); /* make it known to the system */ ret = css_sch_device_register(sch); if (ret) { printk (KERN_WARNING "%s: could not register %s\n", __func__, sch->dev.bus_id); return ret; } return ret; } int css_probe_device(struct subchannel_id schid) { int ret; struct subchannel *sch; sch = css_alloc_subchannel(schid); if (IS_ERR(sch)) return PTR_ERR(sch); ret = css_register_subchannel(sch); if (ret) css_free_subchannel(sch); return ret; } static int check_subchannel(struct device * dev, void * data) { struct subchannel *sch; struct subchannel_id *schid = data; sch = to_subchannel(dev); return schid_equal(&sch->schid, schid); } struct subchannel * get_subchannel_by_schid(struct subchannel_id schid) { struct device *dev; dev = bus_find_device(&css_bus_type, NULL, &schid, check_subchannel); return dev ? to_subchannel(dev) : NULL; } static inline int css_get_subchannel_status(struct subchannel *sch) { struct schib schib; if (stsch(sch->schid, &schib) || !schib.pmcw.dnv) return CIO_GONE; if (sch->schib.pmcw.dnv && (schib.pmcw.dev != sch->schib.pmcw.dev)) return CIO_REVALIDATE; if (!sch->lpm) return CIO_NO_PATH; return CIO_OPER; } static int css_evaluate_known_subchannel(struct subchannel *sch, int slow) { int event, ret, disc; unsigned long flags; enum { NONE, UNREGISTER, UNREGISTER_PROBE, REPROBE } action; spin_lock_irqsave(sch->lock, flags); disc = device_is_disconnected(sch); if (disc && slow) { /* Disconnected devices are evaluated directly only.*/ spin_unlock_irqrestore(sch->lock, flags); return 0; } /* No interrupt after machine check - kill pending timers. */ device_kill_pending_timer(sch); if (!disc && !slow) { /* Non-disconnected devices are evaluated on the slow path. */ spin_unlock_irqrestore(sch->lock, flags); return -EAGAIN; } event = css_get_subchannel_status(sch); CIO_MSG_EVENT(4, "Evaluating schid 0.%x.%04x, event %d, %s, %s path.\n", sch->schid.ssid, sch->schid.sch_no, event, disc ? "disconnected" : "normal", slow ? "slow" : "fast"); /* Analyze subchannel status. */ action = NONE; switch (event) { case CIO_NO_PATH: if (disc) { /* Check if paths have become available. */ action = REPROBE; break; } /* fall through */ case CIO_GONE: /* Prevent unwanted effects when opening lock. */ cio_disable_subchannel(sch); device_set_disconnected(sch); /* Ask driver what to do with device. */ action = UNREGISTER; if (sch->driver && sch->driver->notify) { spin_unlock_irqrestore(sch->lock, flags); ret = sch->driver->notify(&sch->dev, event); spin_lock_irqsave(sch->lock, flags); if (ret) action = NONE; } break; case CIO_REVALIDATE: /* Device will be removed, so no notify necessary. */ if (disc) /* Reprobe because immediate unregister might block. */ action = REPROBE; else action = UNREGISTER_PROBE; break; case CIO_OPER: if (disc) /* Get device operational again. */ action = REPROBE; break; } /* Perform action. */ ret = 0; switch (action) { case UNREGISTER: case UNREGISTER_PROBE: /* Unregister device (will use subchannel lock). */ spin_unlock_irqrestore(sch->lock, flags); css_sch_device_unregister(sch); spin_lock_irqsave(sch->lock, flags); /* Reset intparm to zeroes. */ sch->schib.pmcw.intparm = 0; cio_modify(sch); break; case REPROBE: device_trigger_reprobe(sch); break; default: break; } spin_unlock_irqrestore(sch->lock, flags); /* Probe if necessary. */ if (action == UNREGISTER_PROBE) ret = css_probe_device(sch->schid); return ret; } static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow) { struct schib schib; if (!slow) { /* Will be done on the slow path. */ return -EAGAIN; } if (stsch(schid, &schib) || !schib.pmcw.dnv) { /* Unusable - ignore. */ return 0; } CIO_MSG_EVENT(4, "Evaluating schid 0.%x.%04x, event %d, unknown, " "slow path.\n", schid.ssid, schid.sch_no, CIO_OPER); return css_probe_device(schid); } static int css_evaluate_subchannel(struct subchannel_id schid, int slow) { struct subchannel *sch; int ret; sch = get_subchannel_by_schid(schid); if (sch) { ret = css_evaluate_known_subchannel(sch, slow); put_device(&sch->dev); } else ret = css_evaluate_new_subchannel(schid, slow); return ret; } static int css_rescan_devices(struct subchannel_id schid, void *data) { return css_evaluate_subchannel(schid, 1); } struct slow_subchannel { struct list_head slow_list; struct subchannel_id schid; }; static LIST_HEAD(slow_subchannels_head); static DEFINE_SPINLOCK(slow_subchannel_lock); static void css_trigger_slow_path(struct work_struct *unused) { CIO_TRACE_EVENT(4, "slowpath"); if (need_rescan) { need_rescan = 0; for_each_subchannel(css_rescan_devices, NULL); return; } spin_lock_irq(&slow_subchannel_lock); while (!list_empty(&slow_subchannels_head)) { struct slow_subchannel *slow_sch = list_entry(slow_subchannels_head.next, struct slow_subchannel, slow_list); list_del_init(slow_subchannels_head.next); spin_unlock_irq(&slow_subchannel_lock); css_evaluate_subchannel(slow_sch->schid, 1); spin_lock_irq(&slow_subchannel_lock); kfree(slow_sch); } spin_unlock_irq(&slow_subchannel_lock); } DECLARE_WORK(slow_path_work, css_trigger_slow_path); struct workqueue_struct *slow_path_wq; /* Reprobe subchannel if unregistered. */ static int reprobe_subchannel(struct subchannel_id schid, void *data) { struct subchannel *sch; int ret; CIO_DEBUG(KERN_INFO, 6, "cio: reprobe 0.%x.%04x\n", schid.ssid, schid.sch_no); if (need_reprobe) return -EAGAIN; sch = get_subchannel_by_schid(schid); if (sch) { /* Already known. */ put_device(&sch->dev); return 0; } ret = css_probe_device(schid); switch (ret) { case 0: break; case -ENXIO: case -ENOMEM: /* These should abort looping */ break; default: ret = 0; } return ret; } /* Work function used to reprobe all unregistered subchannels. */ static void reprobe_all(struct work_struct *unused) { int ret; CIO_MSG_EVENT(2, "reprobe start\n"); need_reprobe = 0; /* Make sure initial subchannel scan is done. */ wait_event(ccw_device_init_wq, atomic_read(&ccw_device_init_count) == 0); ret = for_each_subchannel(reprobe_subchannel, NULL); CIO_MSG_EVENT(2, "reprobe done (rc=%d, need_reprobe=%d)\n", ret, need_reprobe); } DECLARE_WORK(css_reprobe_work, reprobe_all); /* Schedule reprobing of all unregistered subchannels. */ void css_schedule_reprobe(void) { need_reprobe = 1; queue_work(ccw_device_work, &css_reprobe_work); } EXPORT_SYMBOL_GPL(css_schedule_reprobe); /* * Rescan for new devices. FIXME: This is slow. * This function is called when we have lost CRWs due to overflows and we have * to do subchannel housekeeping. */ void css_reiterate_subchannels(void) { css_clear_subchannel_slow_list(); need_rescan = 1; } /* * Called from the machine check handler for subchannel report words. */ int css_process_crw(int rsid1, int rsid2) { int ret; struct subchannel_id mchk_schid; CIO_CRW_EVENT(2, "source is subchannel %04X, subsystem id %x\n", rsid1, rsid2); if (need_rescan) /* We need to iterate all subchannels anyway. */ return -EAGAIN; init_subchannel_id(&mchk_schid); mchk_schid.sch_no = rsid1; if (rsid2 != 0) mchk_schid.ssid = (rsid2 >> 8) & 3; /* * Since we are always presented with IPI in the CRW, we have to * use stsch() to find out if the subchannel in question has come * or gone. */ ret = css_evaluate_subchannel(mchk_schid, 0); if (ret == -EAGAIN) { if (css_enqueue_subchannel_slow(mchk_schid)) { css_clear_subchannel_slow_list(); need_rescan = 1; } } return ret; } static int __init __init_channel_subsystem(struct subchannel_id schid, void *data) { struct subchannel *sch; int ret; if (cio_is_console(schid)) sch = cio_get_console_subchannel(); else { sch = css_alloc_subchannel(schid); if (IS_ERR(sch)) ret = PTR_ERR(sch); else ret = 0; switch (ret) { case 0: break; case -ENOMEM: panic("Out of memory in init_channel_subsystem\n"); /* -ENXIO: no more subchannels. */ case -ENXIO: return ret; /* -EIO: this subchannel set not supported. */ case -EIO: return ret; default: return 0; } } /* * We register ALL valid subchannels in ioinfo, even those * that have been present before init_channel_subsystem. * These subchannels can't have been registered yet (kmalloc * not working) so we do it now. This is true e.g. for the * console subchannel. */ css_register_subchannel(sch); return 0; } static void __init css_generate_pgid(struct channel_subsystem *css, u32 tod_high) { if (css_characteristics_avail && css_general_characteristics.mcss) { css->global_pgid.pgid_high.ext_cssid.version = 0x80; css->global_pgid.pgid_high.ext_cssid.cssid = css->cssid; } else { #ifdef CONFIG_SMP css->global_pgid.pgid_high.cpu_addr = hard_smp_processor_id(); #else css->global_pgid.pgid_high.cpu_addr = 0; #endif } css->global_pgid.cpu_id = ((cpuid_t *) __LC_CPUID)->ident; css->global_pgid.cpu_model = ((cpuid_t *) __LC_CPUID)->machine; css->global_pgid.tod_high = tod_high; } static void channel_subsystem_release(struct device *dev) { struct channel_subsystem *css; css = to_css(dev); mutex_destroy(&css->mutex); kfree(css); } static ssize_t css_cm_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_subsystem *css = to_css(dev); if (!css) return 0; return sprintf(buf, "%x\n", css->cm_enabled); } static ssize_t css_cm_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct channel_subsystem *css = to_css(dev); int ret; switch (buf[0]) { case '0': ret = css->cm_enabled ? chsc_secm(css, 0) : 0; break; case '1': ret = css->cm_enabled ? 0 : chsc_secm(css, 1); break; default: ret = -EINVAL; } return ret < 0 ? ret : count; } static DEVICE_ATTR(cm_enable, 0644, css_cm_enable_show, css_cm_enable_store); static inline int __init setup_css(int nr) { u32 tod_high; int ret; memset(css[nr], 0, sizeof(struct channel_subsystem)); css[nr]->pseudo_subchannel = kzalloc(sizeof(*css[nr]->pseudo_subchannel), GFP_KERNEL); if (!css[nr]->pseudo_subchannel) return -ENOMEM; css[nr]->pseudo_subchannel->dev.parent = &css[nr]->device; css[nr]->pseudo_subchannel->dev.release = css_subchannel_release; sprintf(css[nr]->pseudo_subchannel->dev.bus_id, "defunct"); ret = cio_create_sch_lock(css[nr]->pseudo_subchannel); if (ret) { kfree(css[nr]->pseudo_subchannel); return ret; } mutex_init(&css[nr]->mutex); css[nr]->valid = 1; css[nr]->cssid = nr; sprintf(css[nr]->device.bus_id, "css%x", nr); css[nr]->device.release = channel_subsystem_release; tod_high = (u32) (get_clock() >> 32); css_generate_pgid(css[nr], tod_high); return 0; } /* * Now that the driver core is running, we can setup our channel subsystem. * The struct subchannel's are created during probing (except for the * static console subchannel). */ static int __init init_channel_subsystem (void) { int ret, i; if (chsc_determine_css_characteristics() == 0) css_characteristics_avail = 1; if ((ret = bus_register(&css_bus_type))) goto out; /* Try to enable MSS. */ ret = chsc_enable_facility(CHSC_SDA_OC_MSS); switch (ret) { case 0: /* Success. */ max_ssid = __MAX_SSID; break; case -ENOMEM: goto out_bus; default: max_ssid = 0; } /* Setup css structure. */ for (i = 0; i <= __MAX_CSSID; i++) { css[i] = kmalloc(sizeof(struct channel_subsystem), GFP_KERNEL); if (!css[i]) { ret = -ENOMEM; goto out_unregister; } ret = setup_css(i); if (ret) goto out_free; ret = device_register(&css[i]->device); if (ret) goto out_free_all; if (css_characteristics_avail && css_chsc_characteristics.secm) { ret = device_create_file(&css[i]->device, &dev_attr_cm_enable); if (ret) goto out_device; } ret = device_register(&css[i]->pseudo_subchannel->dev); if (ret) goto out_file; } css_init_done = 1; ctl_set_bit(6, 28); for_each_subchannel(__init_channel_subsystem, NULL); return 0; out_file: device_remove_file(&css[i]->device, &dev_attr_cm_enable); out_device: device_unregister(&css[i]->device); out_free_all: kfree(css[i]->pseudo_subchannel->lock); kfree(css[i]->pseudo_subchannel); out_free: kfree(css[i]); out_unregister: while (i > 0) { i--; device_unregister(&css[i]->pseudo_subchannel->dev); if (css_characteristics_avail && css_chsc_characteristics.secm) device_remove_file(&css[i]->device, &dev_attr_cm_enable); device_unregister(&css[i]->device); } out_bus: bus_unregister(&css_bus_type); out: return ret; } int sch_is_pseudo_sch(struct subchannel *sch) { return sch == to_css(sch->dev.parent)->pseudo_subchannel; } /* * find a driver for a subchannel. They identify by the subchannel * type with the exception that the console subchannel driver has its own * subchannel type although the device is an i/o subchannel */ static int css_bus_match (struct device *dev, struct device_driver *drv) { struct subchannel *sch = container_of (dev, struct subchannel, dev); struct css_driver *driver = container_of (drv, struct css_driver, drv); if (sch->st == driver->subchannel_type) return 1; return 0; } static int css_probe (struct device *dev) { struct subchannel *sch; sch = to_subchannel(dev); sch->driver = container_of (dev->driver, struct css_driver, drv); return (sch->driver->probe ? sch->driver->probe(sch) : 0); } static int css_remove (struct device *dev) { struct subchannel *sch; sch = to_subchannel(dev); return (sch->driver->remove ? sch->driver->remove(sch) : 0); } static void css_shutdown (struct device *dev) { struct subchannel *sch; sch = to_subchannel(dev); if (sch->driver->shutdown) sch->driver->shutdown(sch); } struct bus_type css_bus_type = { .name = "css", .match = css_bus_match, .probe = css_probe, .remove = css_remove, .shutdown = css_shutdown, }; subsys_initcall(init_channel_subsystem); int css_enqueue_subchannel_slow(struct subchannel_id schid) { struct slow_subchannel *new_slow_sch; unsigned long flags; new_slow_sch = kzalloc(sizeof(struct slow_subchannel), GFP_ATOMIC); if (!new_slow_sch) return -ENOMEM; new_slow_sch->schid = schid; spin_lock_irqsave(&slow_subchannel_lock, flags); list_add_tail(&new_slow_sch->slow_list, &slow_subchannels_head); spin_unlock_irqrestore(&slow_subchannel_lock, flags); return 0; } void css_clear_subchannel_slow_list(void) { unsigned long flags; spin_lock_irqsave(&slow_subchannel_lock, flags); while (!list_empty(&slow_subchannels_head)) { struct slow_subchannel *slow_sch = list_entry(slow_subchannels_head.next, struct slow_subchannel, slow_list); list_del_init(slow_subchannels_head.next); kfree(slow_sch); } spin_unlock_irqrestore(&slow_subchannel_lock, flags); } int css_slow_subchannels_exist(void) { return (!list_empty(&slow_subchannels_head)); } MODULE_LICENSE("GPL"); EXPORT_SYMBOL(css_bus_type); EXPORT_SYMBOL_GPL(css_characteristics_avail);