/******************************************************************************* * Filename: target_core_rd.c * * This file contains the Storage Engine <-> Ramdisk transport * specific functions. * * Copyright (c) 2003, 2004, 2005 PyX Technologies, Inc. * Copyright (c) 2005, 2006, 2007 SBE, Inc. * Copyright (c) 2007-2010 Rising Tide Systems * Copyright (c) 2008-2010 Linux-iSCSI.org * * Nicholas A. Bellinger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include "target_core_rd.h" static struct se_subsystem_api rd_mcp_template; /* rd_attach_hba(): (Part of se_subsystem_api_t template) * * */ static int rd_attach_hba(struct se_hba *hba, u32 host_id) { struct rd_host *rd_host; rd_host = kzalloc(sizeof(struct rd_host), GFP_KERNEL); if (!rd_host) { pr_err("Unable to allocate memory for struct rd_host\n"); return -ENOMEM; } rd_host->rd_host_id = host_id; hba->hba_ptr = rd_host; pr_debug("CORE_HBA[%d] - TCM Ramdisk HBA Driver %s on" " Generic Target Core Stack %s\n", hba->hba_id, RD_HBA_VERSION, TARGET_CORE_MOD_VERSION); pr_debug("CORE_HBA[%d] - Attached Ramdisk HBA: %u to Generic" " MaxSectors: %u\n", hba->hba_id, rd_host->rd_host_id, RD_MAX_SECTORS); return 0; } static void rd_detach_hba(struct se_hba *hba) { struct rd_host *rd_host = hba->hba_ptr; pr_debug("CORE_HBA[%d] - Detached Ramdisk HBA: %u from" " Generic Target Core\n", hba->hba_id, rd_host->rd_host_id); kfree(rd_host); hba->hba_ptr = NULL; } /* rd_release_device_space(): * * */ static void rd_release_device_space(struct rd_dev *rd_dev) { u32 i, j, page_count = 0, sg_per_table; struct rd_dev_sg_table *sg_table; struct page *pg; struct scatterlist *sg; if (!rd_dev->sg_table_array || !rd_dev->sg_table_count) return; sg_table = rd_dev->sg_table_array; for (i = 0; i < rd_dev->sg_table_count; i++) { sg = sg_table[i].sg_table; sg_per_table = sg_table[i].rd_sg_count; for (j = 0; j < sg_per_table; j++) { pg = sg_page(&sg[j]); if (pg) { __free_page(pg); page_count++; } } kfree(sg); } pr_debug("CORE_RD[%u] - Released device space for Ramdisk" " Device ID: %u, pages %u in %u tables total bytes %lu\n", rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, page_count, rd_dev->sg_table_count, (unsigned long)page_count * PAGE_SIZE); kfree(sg_table); rd_dev->sg_table_array = NULL; rd_dev->sg_table_count = 0; } /* rd_build_device_space(): * * */ static int rd_build_device_space(struct rd_dev *rd_dev) { u32 i = 0, j, page_offset = 0, sg_per_table, sg_tables, total_sg_needed; u32 max_sg_per_table = (RD_MAX_ALLOCATION_SIZE / sizeof(struct scatterlist)); struct rd_dev_sg_table *sg_table; struct page *pg; struct scatterlist *sg; if (rd_dev->rd_page_count <= 0) { pr_err("Illegal page count: %u for Ramdisk device\n", rd_dev->rd_page_count); return -EINVAL; } total_sg_needed = rd_dev->rd_page_count; sg_tables = (total_sg_needed / max_sg_per_table) + 1; sg_table = kzalloc(sg_tables * sizeof(struct rd_dev_sg_table), GFP_KERNEL); if (!sg_table) { pr_err("Unable to allocate memory for Ramdisk" " scatterlist tables\n"); return -ENOMEM; } rd_dev->sg_table_array = sg_table; rd_dev->sg_table_count = sg_tables; while (total_sg_needed) { sg_per_table = (total_sg_needed > max_sg_per_table) ? max_sg_per_table : total_sg_needed; sg = kzalloc(sg_per_table * sizeof(struct scatterlist), GFP_KERNEL); if (!sg) { pr_err("Unable to allocate scatterlist array" " for struct rd_dev\n"); return -ENOMEM; } sg_init_table(sg, sg_per_table); sg_table[i].sg_table = sg; sg_table[i].rd_sg_count = sg_per_table; sg_table[i].page_start_offset = page_offset; sg_table[i++].page_end_offset = (page_offset + sg_per_table) - 1; for (j = 0; j < sg_per_table; j++) { pg = alloc_pages(GFP_KERNEL, 0); if (!pg) { pr_err("Unable to allocate scatterlist" " pages for struct rd_dev_sg_table\n"); return -ENOMEM; } sg_assign_page(&sg[j], pg); sg[j].length = PAGE_SIZE; } page_offset += sg_per_table; total_sg_needed -= sg_per_table; } pr_debug("CORE_RD[%u] - Built Ramdisk Device ID: %u space of" " %u pages in %u tables\n", rd_dev->rd_host->rd_host_id, rd_dev->rd_dev_id, rd_dev->rd_page_count, rd_dev->sg_table_count); return 0; } static void *rd_allocate_virtdevice( struct se_hba *hba, const char *name, int rd_direct) { struct rd_dev *rd_dev; struct rd_host *rd_host = hba->hba_ptr; rd_dev = kzalloc(sizeof(struct rd_dev), GFP_KERNEL); if (!rd_dev) { pr_err("Unable to allocate memory for struct rd_dev\n"); return NULL; } rd_dev->rd_host = rd_host; rd_dev->rd_direct = rd_direct; return rd_dev; } static void *rd_MEMCPY_allocate_virtdevice(struct se_hba *hba, const char *name) { return rd_allocate_virtdevice(hba, name, 0); } /* rd_create_virtdevice(): * * */ static struct se_device *rd_create_virtdevice( struct se_hba *hba, struct se_subsystem_dev *se_dev, void *p, int rd_direct) { struct se_device *dev; struct se_dev_limits dev_limits; struct rd_dev *rd_dev = p; struct rd_host *rd_host = hba->hba_ptr; int dev_flags = 0, ret; char prod[16], rev[4]; memset(&dev_limits, 0, sizeof(struct se_dev_limits)); ret = rd_build_device_space(rd_dev); if (ret < 0) goto fail; snprintf(prod, 16, "RAMDISK-%s", (rd_dev->rd_direct) ? "DR" : "MCP"); snprintf(rev, 4, "%s", (rd_dev->rd_direct) ? RD_DR_VERSION : RD_MCP_VERSION); dev_limits.limits.logical_block_size = RD_BLOCKSIZE; dev_limits.limits.max_hw_sectors = RD_MAX_SECTORS; dev_limits.limits.max_sectors = RD_MAX_SECTORS; dev_limits.hw_queue_depth = RD_MAX_DEVICE_QUEUE_DEPTH; dev_limits.queue_depth = RD_DEVICE_QUEUE_DEPTH; dev = transport_add_device_to_core_hba(hba, &rd_mcp_template, se_dev, dev_flags, rd_dev, &dev_limits, prod, rev); if (!dev) goto fail; rd_dev->rd_dev_id = rd_host->rd_host_dev_id_count++; rd_dev->rd_queue_depth = dev->queue_depth; pr_debug("CORE_RD[%u] - Added TCM %s Ramdisk Device ID: %u of" " %u pages in %u tables, %lu total bytes\n", rd_host->rd_host_id, (!rd_dev->rd_direct) ? "MEMCPY" : "DIRECT", rd_dev->rd_dev_id, rd_dev->rd_page_count, rd_dev->sg_table_count, (unsigned long)(rd_dev->rd_page_count * PAGE_SIZE)); return dev; fail: rd_release_device_space(rd_dev); return ERR_PTR(ret); } static struct se_device *rd_MEMCPY_create_virtdevice( struct se_hba *hba, struct se_subsystem_dev *se_dev, void *p) { return rd_create_virtdevice(hba, se_dev, p, 0); } /* rd_free_device(): (Part of se_subsystem_api_t template) * * */ static void rd_free_device(void *p) { struct rd_dev *rd_dev = p; rd_release_device_space(rd_dev); kfree(rd_dev); } static inline struct rd_request *RD_REQ(struct se_task *task) { return container_of(task, struct rd_request, rd_task); } static struct se_task * rd_alloc_task(unsigned char *cdb) { struct rd_request *rd_req; rd_req = kzalloc(sizeof(struct rd_request), GFP_KERNEL); if (!rd_req) { pr_err("Unable to allocate struct rd_request\n"); return NULL; } return &rd_req->rd_task; } /* rd_get_sg_table(): * * */ static struct rd_dev_sg_table *rd_get_sg_table(struct rd_dev *rd_dev, u32 page) { u32 i; struct rd_dev_sg_table *sg_table; for (i = 0; i < rd_dev->sg_table_count; i++) { sg_table = &rd_dev->sg_table_array[i]; if ((sg_table->page_start_offset <= page) && (sg_table->page_end_offset >= page)) return sg_table; } pr_err("Unable to locate struct rd_dev_sg_table for page: %u\n", page); return NULL; } static int rd_MEMCPY(struct rd_request *req, u32 read_rd) { struct se_task *task = &req->rd_task; struct rd_dev *dev = req->rd_task.task_se_cmd->se_dev->dev_ptr; struct rd_dev_sg_table *table; struct scatterlist *rd_sg; struct sg_mapping_iter m; u32 rd_offset = req->rd_offset; u32 src_len; table = rd_get_sg_table(dev, req->rd_page); if (!table) return -EINVAL; rd_sg = &table->sg_table[req->rd_page - table->page_start_offset]; pr_debug("RD[%u]: %s LBA: %llu, Size: %u Page: %u, Offset: %u\n", dev->rd_dev_id, read_rd ? "Read" : "Write", task->task_lba, req->rd_size, req->rd_page, rd_offset); src_len = PAGE_SIZE - rd_offset; sg_miter_start(&m, task->task_sg, task->task_sg_nents, read_rd ? SG_MITER_TO_SG : SG_MITER_FROM_SG); while (req->rd_size) { u32 len; void *rd_addr; sg_miter_next(&m); len = min((u32)m.length, src_len); m.consumed = len; rd_addr = sg_virt(rd_sg) + rd_offset; if (read_rd) memcpy(m.addr, rd_addr, len); else memcpy(rd_addr, m.addr, len); req->rd_size -= len; if (!req->rd_size) continue; src_len -= len; if (src_len) { rd_offset += len; continue; } /* rd page completed, next one please */ req->rd_page++; rd_offset = 0; src_len = PAGE_SIZE; if (req->rd_page <= table->page_end_offset) { rd_sg++; continue; } table = rd_get_sg_table(dev, req->rd_page); if (!table) { sg_miter_stop(&m); return -EINVAL; } /* since we increment, the first sg entry is correct */ rd_sg = table->sg_table; } sg_miter_stop(&m); return 0; } /* rd_MEMCPY_do_task(): (Part of se_subsystem_api_t template) * * */ static int rd_MEMCPY_do_task(struct se_task *task) { struct se_device *dev = task->task_se_cmd->se_dev; struct rd_request *req = RD_REQ(task); u64 tmp; int ret; tmp = task->task_lba * dev->se_sub_dev->se_dev_attrib.block_size; req->rd_offset = do_div(tmp, PAGE_SIZE); req->rd_page = tmp; req->rd_size = task->task_size; ret = rd_MEMCPY(req, task->task_data_direction == DMA_FROM_DEVICE); if (ret != 0) return ret; task->task_scsi_status = GOOD; transport_complete_task(task, 1); return 0; } /* rd_free_task(): (Part of se_subsystem_api_t template) * * */ static void rd_free_task(struct se_task *task) { kfree(RD_REQ(task)); } enum { Opt_rd_pages, Opt_err }; static match_table_t tokens = { {Opt_rd_pages, "rd_pages=%d"}, {Opt_err, NULL} }; static ssize_t rd_set_configfs_dev_params( struct se_hba *hba, struct se_subsystem_dev *se_dev, const char *page, ssize_t count) { struct rd_dev *rd_dev = se_dev->se_dev_su_ptr; char *orig, *ptr, *opts; substring_t args[MAX_OPT_ARGS]; int ret = 0, arg, token; opts = kstrdup(page, GFP_KERNEL); if (!opts) return -ENOMEM; orig = opts; while ((ptr = strsep(&opts, ",")) != NULL) { if (!*ptr) continue; token = match_token(ptr, tokens, args); switch (token) { case Opt_rd_pages: match_int(args, &arg); rd_dev->rd_page_count = arg; pr_debug("RAMDISK: Referencing Page" " Count: %u\n", rd_dev->rd_page_count); rd_dev->rd_flags |= RDF_HAS_PAGE_COUNT; break; default: break; } } kfree(orig); return (!ret) ? count : ret; } static ssize_t rd_check_configfs_dev_params(struct se_hba *hba, struct se_subsystem_dev *se_dev) { struct rd_dev *rd_dev = se_dev->se_dev_su_ptr; if (!(rd_dev->rd_flags & RDF_HAS_PAGE_COUNT)) { pr_debug("Missing rd_pages= parameter\n"); return -EINVAL; } return 0; } static ssize_t rd_show_configfs_dev_params( struct se_hba *hba, struct se_subsystem_dev *se_dev, char *b) { struct rd_dev *rd_dev = se_dev->se_dev_su_ptr; ssize_t bl = sprintf(b, "TCM RamDisk ID: %u RamDisk Makeup: %s\n", rd_dev->rd_dev_id, (rd_dev->rd_direct) ? "rd_direct" : "rd_mcp"); bl += sprintf(b + bl, " PAGES/PAGE_SIZE: %u*%lu" " SG_table_count: %u\n", rd_dev->rd_page_count, PAGE_SIZE, rd_dev->sg_table_count); return bl; } static u32 rd_get_device_rev(struct se_device *dev) { return SCSI_SPC_2; /* Returns SPC-3 in Initiator Data */ } static u32 rd_get_device_type(struct se_device *dev) { return TYPE_DISK; } static sector_t rd_get_blocks(struct se_device *dev) { struct rd_dev *rd_dev = dev->dev_ptr; unsigned long long blocks_long = ((rd_dev->rd_page_count * PAGE_SIZE) / dev->se_sub_dev->se_dev_attrib.block_size) - 1; return blocks_long; } static struct se_subsystem_api rd_mcp_template = { .name = "rd_mcp", .transport_type = TRANSPORT_PLUGIN_VHBA_VDEV, .attach_hba = rd_attach_hba, .detach_hba = rd_detach_hba, .allocate_virtdevice = rd_MEMCPY_allocate_virtdevice, .create_virtdevice = rd_MEMCPY_create_virtdevice, .free_device = rd_free_device, .alloc_task = rd_alloc_task, .do_task = rd_MEMCPY_do_task, .free_task = rd_free_task, .check_configfs_dev_params = rd_check_configfs_dev_params, .set_configfs_dev_params = rd_set_configfs_dev_params, .show_configfs_dev_params = rd_show_configfs_dev_params, .get_device_rev = rd_get_device_rev, .get_device_type = rd_get_device_type, .get_blocks = rd_get_blocks, }; int __init rd_module_init(void) { int ret; ret = transport_subsystem_register(&rd_mcp_template); if (ret < 0) { return ret; } return 0; } void rd_module_exit(void) { transport_subsystem_release(&rd_mcp_template); }