// SPDX-License-Identifier: GPL-2.0-or-later /* handling of writes to regular files and writing back to the server * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) */ #include #include #include #include #include #include #include "internal.h" /* * mark a page as having been made dirty and thus needing writeback */ int afs_set_page_dirty(struct page *page) { _enter(""); return __set_page_dirty_nobuffers(page); } /* * Handle completion of a read operation to fill a page. */ static void afs_fill_hole(struct afs_read *req) { if (iov_iter_count(req->iter) > 0) /* The read was short - clear the excess buffer. */ iov_iter_zero(iov_iter_count(req->iter), req->iter); } /* * partly or wholly fill a page that's under preparation for writing */ static int afs_fill_page(struct file *file, loff_t pos, unsigned int len, struct page *page) { struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); struct afs_read *req; size_t p; void *data; int ret; _enter(",,%llu", (unsigned long long)pos); if (pos >= vnode->vfs_inode.i_size) { p = pos & ~PAGE_MASK; ASSERTCMP(p + len, <=, PAGE_SIZE); data = kmap(page); memset(data + p, 0, len); kunmap(page); return 0; } req = kzalloc(sizeof(struct afs_read), GFP_KERNEL); if (!req) return -ENOMEM; refcount_set(&req->usage, 1); req->vnode = vnode; req->done = afs_fill_hole; req->key = key_get(afs_file_key(file)); req->pos = pos; req->len = len; req->nr_pages = 1; req->iter = &req->def_iter; iov_iter_xarray(&req->def_iter, READ, &file->f_mapping->i_pages, pos, len); ret = afs_fetch_data(vnode, req); afs_put_read(req); if (ret < 0) { if (ret == -ENOENT) { _debug("got NOENT from server" " - marking file deleted and stale"); set_bit(AFS_VNODE_DELETED, &vnode->flags); ret = -ESTALE; } } _leave(" = %d", ret); return ret; } /* * prepare to perform part of a write to a page */ int afs_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **_page, void **fsdata) { struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); struct page *page; unsigned long priv; unsigned f, from; unsigned t, to; pgoff_t index; int ret; _enter("{%llx:%llu},%llx,%x", vnode->fid.vid, vnode->fid.vnode, pos, len); page = grab_cache_page_write_begin(mapping, pos / PAGE_SIZE, flags); if (!page) return -ENOMEM; if (!PageUptodate(page) && len != PAGE_SIZE) { ret = afs_fill_page(file, pos & PAGE_MASK, PAGE_SIZE, page); if (ret < 0) { unlock_page(page); put_page(page); _leave(" = %d [prep]", ret); return ret; } SetPageUptodate(page); } #ifdef CONFIG_AFS_FSCACHE wait_on_page_fscache(page); #endif index = page->index; from = pos - index * PAGE_SIZE; to = from + len; try_again: /* See if this page is already partially written in a way that we can * merge the new write with. */ if (PagePrivate(page)) { priv = page_private(page); f = afs_page_dirty_from(page, priv); t = afs_page_dirty_to(page, priv); ASSERTCMP(f, <=, t); if (PageWriteback(page)) { trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page); goto flush_conflicting_write; } /* If the file is being filled locally, allow inter-write * spaces to be merged into writes. If it's not, only write * back what the user gives us. */ if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && (to < f || from > t)) goto flush_conflicting_write; } *_page = page; _leave(" = 0"); return 0; /* The previous write and this write aren't adjacent or overlapping, so * flush the page out. */ flush_conflicting_write: _debug("flush conflict"); ret = write_one_page(page); if (ret < 0) goto error; ret = lock_page_killable(page); if (ret < 0) goto error; goto try_again; error: put_page(page); _leave(" = %d", ret); return ret; } /* * finalise part of a write to a page */ int afs_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); unsigned long priv; unsigned int f, from = pos & (thp_size(page) - 1); unsigned int t, to = from + copied; loff_t i_size, maybe_i_size; int ret = 0; _enter("{%llx:%llu},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index); if (copied == 0) goto out; maybe_i_size = pos + copied; i_size = i_size_read(&vnode->vfs_inode); if (maybe_i_size > i_size) { write_seqlock(&vnode->cb_lock); i_size = i_size_read(&vnode->vfs_inode); if (maybe_i_size > i_size) i_size_write(&vnode->vfs_inode, maybe_i_size); write_sequnlock(&vnode->cb_lock); } if (!PageUptodate(page)) { if (copied < len) { /* Try and load any missing data from the server. The * unmarshalling routine will take care of clearing any * bits that are beyond the EOF. */ ret = afs_fill_page(file, pos + copied, len - copied, page); if (ret < 0) goto out; } SetPageUptodate(page); } if (PagePrivate(page)) { priv = page_private(page); f = afs_page_dirty_from(page, priv); t = afs_page_dirty_to(page, priv); if (from < f) f = from; if (to > t) t = to; priv = afs_page_dirty(page, f, t); set_page_private(page, priv); trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page); } else { priv = afs_page_dirty(page, from, to); attach_page_private(page, (void *)priv); trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page); } if (set_page_dirty(page)) _debug("dirtied %lx", page->index); ret = copied; out: unlock_page(page); put_page(page); return ret; } /* * kill all the pages in the given range */ static void afs_kill_pages(struct address_space *mapping, loff_t start, loff_t len) { struct afs_vnode *vnode = AFS_FS_I(mapping->host); struct pagevec pv; unsigned int loop, psize; _enter("{%llx:%llu},%llx @%llx", vnode->fid.vid, vnode->fid.vnode, len, start); pagevec_init(&pv); do { _debug("kill %llx @%llx", len, start); pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE, PAGEVEC_SIZE, pv.pages); if (pv.nr == 0) break; for (loop = 0; loop < pv.nr; loop++) { struct page *page = pv.pages[loop]; if (page->index * PAGE_SIZE >= start + len) break; psize = thp_size(page); start += psize; len -= psize; ClearPageUptodate(page); end_page_writeback(page); lock_page(page); generic_error_remove_page(mapping, page); unlock_page(page); } __pagevec_release(&pv); } while (len > 0); _leave(""); } /* * Redirty all the pages in a given range. */ static void afs_redirty_pages(struct writeback_control *wbc, struct address_space *mapping, loff_t start, loff_t len) { struct afs_vnode *vnode = AFS_FS_I(mapping->host); struct pagevec pv; unsigned int loop, psize; _enter("{%llx:%llu},%llx @%llx", vnode->fid.vid, vnode->fid.vnode, len, start); pagevec_init(&pv); do { _debug("redirty %llx @%llx", len, start); pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE, PAGEVEC_SIZE, pv.pages); if (pv.nr == 0) break; for (loop = 0; loop < pv.nr; loop++) { struct page *page = pv.pages[loop]; if (page->index * PAGE_SIZE >= start + len) break; psize = thp_size(page); start += psize; len -= psize; redirty_page_for_writepage(wbc, page); end_page_writeback(page); } __pagevec_release(&pv); } while (len > 0); _leave(""); } /* * completion of write to server */ static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) { struct address_space *mapping = vnode->vfs_inode.i_mapping; struct page *page; pgoff_t end; XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); _enter("{%llx:%llu},{%x @%llx}", vnode->fid.vid, vnode->fid.vnode, len, start); rcu_read_lock(); end = (start + len - 1) / PAGE_SIZE; xas_for_each(&xas, page, end) { if (!PageWriteback(page)) { kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end); ASSERT(PageWriteback(page)); } trace_afs_page_dirty(vnode, tracepoint_string("clear"), page); detach_page_private(page); page_endio(page, true, 0); } rcu_read_unlock(); afs_prune_wb_keys(vnode); _leave(""); } /* * Find a key to use for the writeback. We cached the keys used to author the * writes on the vnode. *_wbk will contain the last writeback key used or NULL * and we need to start from there if it's set. */ static int afs_get_writeback_key(struct afs_vnode *vnode, struct afs_wb_key **_wbk) { struct afs_wb_key *wbk = NULL; struct list_head *p; int ret = -ENOKEY, ret2; spin_lock(&vnode->wb_lock); if (*_wbk) p = (*_wbk)->vnode_link.next; else p = vnode->wb_keys.next; while (p != &vnode->wb_keys) { wbk = list_entry(p, struct afs_wb_key, vnode_link); _debug("wbk %u", key_serial(wbk->key)); ret2 = key_validate(wbk->key); if (ret2 == 0) { refcount_inc(&wbk->usage); _debug("USE WB KEY %u", key_serial(wbk->key)); break; } wbk = NULL; if (ret == -ENOKEY) ret = ret2; p = p->next; } spin_unlock(&vnode->wb_lock); if (*_wbk) afs_put_wb_key(*_wbk); *_wbk = wbk; return 0; } static void afs_store_data_success(struct afs_operation *op) { struct afs_vnode *vnode = op->file[0].vnode; op->ctime = op->file[0].scb.status.mtime_client; afs_vnode_commit_status(op, &op->file[0]); if (op->error == 0) { if (!op->store.laundering) afs_pages_written_back(vnode, op->store.pos, op->store.size); afs_stat_v(vnode, n_stores); atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); } } static const struct afs_operation_ops afs_store_data_operation = { .issue_afs_rpc = afs_fs_store_data, .issue_yfs_rpc = yfs_fs_store_data, .success = afs_store_data_success, }; /* * write to a file */ static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, bool laundering) { struct afs_operation *op; struct afs_wb_key *wbk = NULL; loff_t size = iov_iter_count(iter), i_size; int ret = -ENOKEY; _enter("%s{%llx:%llu.%u},%llx,%llx", vnode->volume->name, vnode->fid.vid, vnode->fid.vnode, vnode->fid.unique, size, pos); ret = afs_get_writeback_key(vnode, &wbk); if (ret) { _leave(" = %d [no keys]", ret); return ret; } op = afs_alloc_operation(wbk->key, vnode->volume); if (IS_ERR(op)) { afs_put_wb_key(wbk); return -ENOMEM; } i_size = i_size_read(&vnode->vfs_inode); afs_op_set_vnode(op, 0, vnode); op->file[0].dv_delta = 1; op->store.write_iter = iter; op->store.pos = pos; op->store.size = size; op->store.i_size = max(pos + size, i_size); op->store.laundering = laundering; op->mtime = vnode->vfs_inode.i_mtime; op->flags |= AFS_OPERATION_UNINTR; op->ops = &afs_store_data_operation; try_next_key: afs_begin_vnode_operation(op); afs_wait_for_operation(op); switch (op->error) { case -EACCES: case -EPERM: case -ENOKEY: case -EKEYEXPIRED: case -EKEYREJECTED: case -EKEYREVOKED: _debug("next"); ret = afs_get_writeback_key(vnode, &wbk); if (ret == 0) { key_put(op->key); op->key = key_get(wbk->key); goto try_next_key; } break; } afs_put_wb_key(wbk); _leave(" = %d", op->error); return afs_put_operation(op); } /* * Extend the region to be written back to include subsequent contiguously * dirty pages if possible, but don't sleep while doing so. * * If this page holds new content, then we can include filler zeros in the * writeback. */ static void afs_extend_writeback(struct address_space *mapping, struct afs_vnode *vnode, long *_count, loff_t start, loff_t max_len, bool new_content, unsigned int *_len) { struct pagevec pvec; struct page *page; unsigned long priv; unsigned int psize, filler = 0; unsigned int f, t; loff_t len = *_len; pgoff_t index = (start + len) / PAGE_SIZE; bool stop = true; unsigned int i; XA_STATE(xas, &mapping->i_pages, index); pagevec_init(&pvec); do { /* Firstly, we gather up a batch of contiguous dirty pages * under the RCU read lock - but we can't clear the dirty flags * there if any of those pages are mapped. */ rcu_read_lock(); xas_for_each(&xas, page, ULONG_MAX) { stop = true; if (xas_retry(&xas, page)) continue; if (xa_is_value(page)) break; if (page->index != index) break; if (!page_cache_get_speculative(page)) { xas_reset(&xas); continue; } /* Has the page moved or been split? */ if (unlikely(page != xas_reload(&xas))) break; if (!trylock_page(page)) break; if (!PageDirty(page) || PageWriteback(page)) { unlock_page(page); break; } psize = thp_size(page); priv = page_private(page); f = afs_page_dirty_from(page, priv); t = afs_page_dirty_to(page, priv); if (f != 0 && !new_content) { unlock_page(page); break; } len += filler + t; filler = psize - t; if (len >= max_len || *_count <= 0) stop = true; else if (t == psize || new_content) stop = false; index += thp_nr_pages(page); if (!pagevec_add(&pvec, page)) break; if (stop) break; } if (!stop) xas_pause(&xas); rcu_read_unlock(); /* Now, if we obtained any pages, we can shift them to being * writable and mark them for caching. */ if (!pagevec_count(&pvec)) break; for (i = 0; i < pagevec_count(&pvec); i++) { page = pvec.pages[i]; trace_afs_page_dirty(vnode, tracepoint_string("store+"), page); if (!clear_page_dirty_for_io(page)) BUG(); if (test_set_page_writeback(page)) BUG(); *_count -= thp_nr_pages(page); unlock_page(page); } pagevec_release(&pvec); cond_resched(); } while (!stop); *_len = len; } /* * Synchronously write back the locked page and any subsequent non-locked dirty * pages. */ static ssize_t afs_write_back_from_locked_page(struct address_space *mapping, struct writeback_control *wbc, struct page *page, loff_t start, loff_t end) { struct afs_vnode *vnode = AFS_FS_I(mapping->host); struct iov_iter iter; unsigned long priv; unsigned int offset, to, len, max_len; loff_t i_size = i_size_read(&vnode->vfs_inode); bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); long count = wbc->nr_to_write; int ret; _enter(",%lx,%llx-%llx", page->index, start, end); if (test_set_page_writeback(page)) BUG(); count -= thp_nr_pages(page); /* Find all consecutive lockable dirty pages that have contiguous * written regions, stopping when we find a page that is not * immediately lockable, is not dirty or is missing, or we reach the * end of the range. */ priv = page_private(page); offset = afs_page_dirty_from(page, priv); to = afs_page_dirty_to(page, priv); trace_afs_page_dirty(vnode, tracepoint_string("store"), page); len = to - offset; start += offset; if (start < i_size) { /* Trim the write to the EOF; the extra data is ignored. Also * put an upper limit on the size of a single storedata op. */ max_len = 65536 * 4096; max_len = min_t(unsigned long long, max_len, end - start + 1); max_len = min_t(unsigned long long, max_len, i_size - start); if (len < max_len && (to == thp_size(page) || new_content)) afs_extend_writeback(mapping, vnode, &count, start, max_len, new_content, &len); len = min_t(loff_t, len, max_len); } /* We now have a contiguous set of dirty pages, each with writeback * set; the first page is still locked at this point, but all the rest * have been unlocked. */ unlock_page(page); if (start < i_size) { _debug("write back %x @%llx [%llx]", len, start, i_size); iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len); ret = afs_store_data(vnode, &iter, start, false); } else { _debug("write discard %x @%llx [%llx]", len, start, i_size); /* The dirty region was entirely beyond the EOF. */ afs_pages_written_back(vnode, start, len); ret = 0; } switch (ret) { case 0: wbc->nr_to_write = count; ret = len; break; default: pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); fallthrough; case -EACCES: case -EPERM: case -ENOKEY: case -EKEYEXPIRED: case -EKEYREJECTED: case -EKEYREVOKED: afs_redirty_pages(wbc, mapping, start, len); mapping_set_error(mapping, ret); break; case -EDQUOT: case -ENOSPC: afs_redirty_pages(wbc, mapping, start, len); mapping_set_error(mapping, -ENOSPC); break; case -EROFS: case -EIO: case -EREMOTEIO: case -EFBIG: case -ENOENT: case -ENOMEDIUM: case -ENXIO: trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); afs_kill_pages(mapping, start, len); mapping_set_error(mapping, ret); break; } _leave(" = %d", ret); return ret; } /* * write a page back to the server * - the caller locked the page for us */ int afs_writepage(struct page *page, struct writeback_control *wbc) { ssize_t ret; loff_t start; _enter("{%lx},", page->index); start = page->index * PAGE_SIZE; ret = afs_write_back_from_locked_page(page->mapping, wbc, page, start, LLONG_MAX - start); if (ret < 0) { _leave(" = %zd", ret); return ret; } _leave(" = 0"); return 0; } /* * write a region of pages back to the server */ static int afs_writepages_region(struct address_space *mapping, struct writeback_control *wbc, loff_t start, loff_t end, loff_t *_next) { struct page *page; ssize_t ret; int n; _enter("%llx,%llx,", start, end); do { pgoff_t index = start / PAGE_SIZE; n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE, PAGECACHE_TAG_DIRTY, 1, &page); if (!n) break; start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */ _debug("wback %lx", page->index); /* At this point we hold neither the i_pages lock nor the * page lock: the page may be truncated or invalidated * (changing page->mapping to NULL), or even swizzled * back from swapper_space to tmpfs file mapping */ if (wbc->sync_mode != WB_SYNC_NONE) { ret = lock_page_killable(page); if (ret < 0) { put_page(page); return ret; } } else { if (!trylock_page(page)) { put_page(page); return 0; } } if (page->mapping != mapping || !PageDirty(page)) { start += thp_size(page); unlock_page(page); put_page(page); continue; } if (PageWriteback(page)) { unlock_page(page); if (wbc->sync_mode != WB_SYNC_NONE) wait_on_page_writeback(page); put_page(page); continue; } if (!clear_page_dirty_for_io(page)) BUG(); ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end); put_page(page); if (ret < 0) { _leave(" = %zd", ret); return ret; } start += ret * PAGE_SIZE; cond_resched(); } while (wbc->nr_to_write > 0); *_next = start; _leave(" = 0 [%llx]", *_next); return 0; } /* * write some of the pending data back to the server */ int afs_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct afs_vnode *vnode = AFS_FS_I(mapping->host); loff_t start, next; int ret; _enter(""); /* We have to be careful as we can end up racing with setattr() * truncating the pagecache since the caller doesn't take a lock here * to prevent it. */ if (wbc->sync_mode == WB_SYNC_ALL) down_read(&vnode->validate_lock); else if (!down_read_trylock(&vnode->validate_lock)) return 0; if (wbc->range_cyclic) { start = mapping->writeback_index * PAGE_SIZE; ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next); if (start > 0 && wbc->nr_to_write > 0 && ret == 0) ret = afs_writepages_region(mapping, wbc, 0, start, &next); mapping->writeback_index = next / PAGE_SIZE; } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next); if (wbc->nr_to_write > 0) mapping->writeback_index = next; } else { ret = afs_writepages_region(mapping, wbc, wbc->range_start, wbc->range_end, &next); } up_read(&vnode->validate_lock); _leave(" = %d", ret); return ret; } /* * write to an AFS file */ ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) { struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); ssize_t result; size_t count = iov_iter_count(from); _enter("{%llx:%llu},{%zu},", vnode->fid.vid, vnode->fid.vnode, count); if (IS_SWAPFILE(&vnode->vfs_inode)) { printk(KERN_INFO "AFS: Attempt to write to active swap file!\n"); return -EBUSY; } if (!count) return 0; result = generic_file_write_iter(iocb, from); _leave(" = %zd", result); return result; } /* * flush any dirty pages for this process, and check for write errors. * - the return status from this call provides a reliable indication of * whether any write errors occurred for this process. */ int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file_inode(file); struct afs_vnode *vnode = AFS_FS_I(inode); _enter("{%llx:%llu},{n=%pD},%d", vnode->fid.vid, vnode->fid.vnode, file, datasync); return file_write_and_wait_range(file, start, end); } /* * notification that a previously read-only page is about to become writable * - if it returns an error, the caller will deliver a bus error signal */ vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) { struct page *page = thp_head(vmf->page); struct file *file = vmf->vma->vm_file; struct inode *inode = file_inode(file); struct afs_vnode *vnode = AFS_FS_I(inode); unsigned long priv; _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index); sb_start_pagefault(inode->i_sb); /* Wait for the page to be written to the cache before we allow it to * be modified. We then assume the entire page will need writing back. */ #ifdef CONFIG_AFS_FSCACHE if (PageFsCache(page) && wait_on_page_bit_killable(page, PG_fscache) < 0) return VM_FAULT_RETRY; #endif if (wait_on_page_writeback_killable(page)) return VM_FAULT_RETRY; if (lock_page_killable(page) < 0) return VM_FAULT_RETRY; /* We mustn't change page->private until writeback is complete as that * details the portion of the page we need to write back and we might * need to redirty the page if there's a problem. */ wait_on_page_writeback(page); priv = afs_page_dirty(page, 0, thp_size(page)); priv = afs_page_dirty_mmapped(priv); if (PagePrivate(page)) { set_page_private(page, priv); trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page); } else { attach_page_private(page, (void *)priv); trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page); } file_update_time(file); sb_end_pagefault(inode->i_sb); return VM_FAULT_LOCKED; } /* * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. */ void afs_prune_wb_keys(struct afs_vnode *vnode) { LIST_HEAD(graveyard); struct afs_wb_key *wbk, *tmp; /* Discard unused keys */ spin_lock(&vnode->wb_lock); if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) && !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) { list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { if (refcount_read(&wbk->usage) == 1) list_move(&wbk->vnode_link, &graveyard); } } spin_unlock(&vnode->wb_lock); while (!list_empty(&graveyard)) { wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); list_del(&wbk->vnode_link); afs_put_wb_key(wbk); } } /* * Clean up a page during invalidation. */ int afs_launder_page(struct page *page) { struct address_space *mapping = page->mapping; struct afs_vnode *vnode = AFS_FS_I(mapping->host); struct iov_iter iter; struct bio_vec bv[1]; unsigned long priv; unsigned int f, t; int ret = 0; _enter("{%lx}", page->index); priv = page_private(page); if (clear_page_dirty_for_io(page)) { f = 0; t = thp_size(page); if (PagePrivate(page)) { f = afs_page_dirty_from(page, priv); t = afs_page_dirty_to(page, priv); } bv[0].bv_page = page; bv[0].bv_offset = f; bv[0].bv_len = t - f; iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len); trace_afs_page_dirty(vnode, tracepoint_string("launder"), page); ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE, true); } trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page); detach_page_private(page); wait_on_page_fscache(page); return ret; }