/* * Macros for manipulating and testing page->flags */ #ifndef PAGE_FLAGS_H #define PAGE_FLAGS_H #include #include #include #ifndef __GENERATING_BOUNDS_H #include #include #endif /* !__GENERATING_BOUNDS_H */ /* * Various page->flags bits: * * PG_reserved is set for special pages, which can never be swapped out. Some * of them might not even exist (eg empty_bad_page)... * * The PG_private bitflag is set on pagecache pages if they contain filesystem * specific data (which is normally at page->private). It can be used by * private allocations for its own usage. * * During initiation of disk I/O, PG_locked is set. This bit is set before I/O * and cleared when writeback _starts_ or when read _completes_. PG_writeback * is set before writeback starts and cleared when it finishes. * * PG_locked also pins a page in pagecache, and blocks truncation of the file * while it is held. * * page_waitqueue(page) is a wait queue of all tasks waiting for the page * to become unlocked. * * PG_uptodate tells whether the page's contents is valid. When a read * completes, the page becomes uptodate, unless a disk I/O error happened. * * PG_referenced, PG_reclaim are used for page reclaim for anonymous and * file-backed pagecache (see mm/vmscan.c). * * PG_error is set to indicate that an I/O error occurred on this page. * * PG_arch_1 is an architecture specific page state bit. The generic code * guarantees that this bit is cleared for a page when it first is entered into * the page cache. * * PG_highmem pages are not permanently mapped into the kernel virtual address * space, they need to be kmapped separately for doing IO on the pages. The * struct page (these bits with information) are always mapped into kernel * address space... * * PG_hwpoison indicates that a page got corrupted in hardware and contains * data with incorrect ECC bits that triggered a machine check. Accessing is * not safe since it may cause another machine check. Don't touch! */ /* * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break * locked- and dirty-page accounting. * * The page flags field is split into two parts, the main flags area * which extends from the low bits upwards, and the fields area which * extends from the high bits downwards. * * | FIELD | ... | FLAGS | * N-1 ^ 0 * (NR_PAGEFLAGS) * * The fields area is reserved for fields mapping zone, node (for NUMA) and * SPARSEMEM section (for variants of SPARSEMEM that require section ids like * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). */ enum pageflags { PG_locked, /* Page is locked. Don't touch. */ PG_error, PG_referenced, PG_uptodate, PG_dirty, PG_lru, PG_active, PG_slab, PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ PG_arch_1, PG_reserved, PG_private, /* If pagecache, has fs-private data */ PG_private_2, /* If pagecache, has fs aux data */ PG_writeback, /* Page is under writeback */ PG_head, /* A head page */ PG_swapcache, /* Swap page: swp_entry_t in private */ PG_mappedtodisk, /* Has blocks allocated on-disk */ PG_reclaim, /* To be reclaimed asap */ PG_swapbacked, /* Page is backed by RAM/swap */ PG_unevictable, /* Page is "unevictable" */ #ifdef CONFIG_MMU PG_mlocked, /* Page is vma mlocked */ #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PG_uncached, /* Page has been mapped as uncached */ #endif #ifdef CONFIG_MEMORY_FAILURE PG_hwpoison, /* hardware poisoned page. Don't touch */ #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE PG_compound_lock, #endif #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) PG_young, PG_idle, #endif __NR_PAGEFLAGS, /* Filesystems */ PG_checked = PG_owner_priv_1, /* Two page bits are conscripted by FS-Cache to maintain local caching * state. These bits are set on pages belonging to the netfs's inodes * when those inodes are being locally cached. */ PG_fscache = PG_private_2, /* page backed by cache */ /* XEN */ /* Pinned in Xen as a read-only pagetable page. */ PG_pinned = PG_owner_priv_1, /* Pinned as part of domain save (see xen_mm_pin_all()). */ PG_savepinned = PG_dirty, /* Has a grant mapping of another (foreign) domain's page. */ PG_foreign = PG_owner_priv_1, /* SLOB */ PG_slob_free = PG_private, }; #ifndef __GENERATING_BOUNDS_H struct page; /* forward declaration */ static inline struct page *compound_head(struct page *page) { unsigned long head = READ_ONCE(page->compound_head); if (unlikely(head & 1)) return (struct page *) (head - 1); return page; } static inline int PageTail(struct page *page) { return READ_ONCE(page->compound_head) & 1; } static inline int PageCompound(struct page *page) { return test_bit(PG_head, &page->flags) || PageTail(page); } /* * Page flags policies wrt compound pages * * PF_ANY: * the page flag is relevant for small, head and tail pages. * * PF_HEAD: * for compound page all operations related to the page flag applied to * head page. * * PF_NO_TAIL: * modifications of the page flag must be done on small or head pages, * checks can be done on tail pages too. * * PF_NO_COMPOUND: * the page flag is not relevant for compound pages. */ #define PF_ANY(page, enforce) page #define PF_HEAD(page, enforce) compound_head(page) #define PF_NO_TAIL(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ compound_head(page);}) #define PF_NO_COMPOUND(page, enforce) ({ \ VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ page;}) /* * Macros to create function definitions for page flags */ #define TESTPAGEFLAG(uname, lname, policy) \ static inline int Page##uname(struct page *page) \ { return test_bit(PG_##lname, &policy(page, 0)->flags); } #define SETPAGEFLAG(uname, lname, policy) \ static inline void SetPage##uname(struct page *page) \ { set_bit(PG_##lname, &policy(page, 1)->flags); } #define CLEARPAGEFLAG(uname, lname, policy) \ static inline void ClearPage##uname(struct page *page) \ { clear_bit(PG_##lname, &policy(page, 1)->flags); } #define __SETPAGEFLAG(uname, lname, policy) \ static inline void __SetPage##uname(struct page *page) \ { __set_bit(PG_##lname, &policy(page, 1)->flags); } #define __CLEARPAGEFLAG(uname, lname, policy) \ static inline void __ClearPage##uname(struct page *page) \ { __clear_bit(PG_##lname, &policy(page, 1)->flags); } #define TESTSETFLAG(uname, lname, policy) \ static inline int TestSetPage##uname(struct page *page) \ { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } #define TESTCLEARFLAG(uname, lname, policy) \ static inline int TestClearPage##uname(struct page *page) \ { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } #define __TESTCLEARFLAG(uname, lname, policy) \ static inline int __TestClearPage##uname(struct page *page) \ { return __test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } #define PAGEFLAG(uname, lname, policy) \ TESTPAGEFLAG(uname, lname, policy) \ SETPAGEFLAG(uname, lname, policy) \ CLEARPAGEFLAG(uname, lname, policy) #define __PAGEFLAG(uname, lname, policy) \ TESTPAGEFLAG(uname, lname, policy) \ __SETPAGEFLAG(uname, lname, policy) \ __CLEARPAGEFLAG(uname, lname, policy) #define TESTSCFLAG(uname, lname, policy) \ TESTSETFLAG(uname, lname, policy) \ TESTCLEARFLAG(uname, lname, policy) #define TESTPAGEFLAG_FALSE(uname) \ static inline int Page##uname(const struct page *page) { return 0; } #define SETPAGEFLAG_NOOP(uname) \ static inline void SetPage##uname(struct page *page) { } #define CLEARPAGEFLAG_NOOP(uname) \ static inline void ClearPage##uname(struct page *page) { } #define __CLEARPAGEFLAG_NOOP(uname) \ static inline void __ClearPage##uname(struct page *page) { } #define TESTSETFLAG_FALSE(uname) \ static inline int TestSetPage##uname(struct page *page) { return 0; } #define TESTCLEARFLAG_FALSE(uname) \ static inline int TestClearPage##uname(struct page *page) { return 0; } #define __TESTCLEARFLAG_FALSE(uname) \ static inline int __TestClearPage##uname(struct page *page) { return 0; } #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) #define TESTSCFLAG_FALSE(uname) \ TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) __PAGEFLAG(Locked, locked, PF_NO_TAIL) PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND) PAGEFLAG(Referenced, referenced, PF_HEAD) TESTCLEARFLAG(Referenced, referenced, PF_HEAD) __SETPAGEFLAG(Referenced, referenced, PF_HEAD) PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) TESTCLEARFLAG(Active, active, PF_HEAD) __PAGEFLAG(Slab, slab, PF_NO_TAIL) __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ /* Xen */ PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); PAGEFLAG(Reserved, reserved, PF_ANY) __CLEARPAGEFLAG(Reserved, reserved, PF_ANY) PAGEFLAG(SwapBacked, swapbacked, PF_ANY) __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_ANY) __SETPAGEFLAG(SwapBacked, swapbacked, PF_ANY) /* * Private page markings that may be used by the filesystem that owns the page * for its own purposes. * - PG_private and PG_private_2 cause releasepage() and co to be invoked */ PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) __CLEARPAGEFLAG(Private, private, PF_ANY) PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) /* * Only test-and-set exist for PG_writeback. The unconditional operators are * risky: they bypass page accounting. */ TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND) TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND) PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_COMPOUND) /* PG_readahead is only used for reads; PG_reclaim is only for writes */ PAGEFLAG(Reclaim, reclaim, PF_NO_COMPOUND) TESTCLEARFLAG(Reclaim, reclaim, PF_NO_COMPOUND) PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) #ifdef CONFIG_HIGHMEM /* * Must use a macro here due to header dependency issues. page_zone() is not * available at this point. */ #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) #else PAGEFLAG_FALSE(HighMem) #endif #ifdef CONFIG_SWAP PAGEFLAG(SwapCache, swapcache, PF_ANY) #else PAGEFLAG_FALSE(SwapCache) #endif PAGEFLAG(Unevictable, unevictable, PF_HEAD) __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) #ifdef CONFIG_MMU PAGEFLAG(Mlocked, mlocked, PF_ANY) __CLEARPAGEFLAG(Mlocked, mlocked, PF_ANY) TESTSCFLAG(Mlocked, mlocked, PF_ANY) __TESTCLEARFLAG(Mlocked, mlocked, PF_ANY) #else PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked) #endif #ifdef CONFIG_ARCH_USES_PG_UNCACHED PAGEFLAG(Uncached, uncached, PF_ANY) #else PAGEFLAG_FALSE(Uncached) #endif #ifdef CONFIG_MEMORY_FAILURE PAGEFLAG(HWPoison, hwpoison, PF_ANY) TESTSCFLAG(HWPoison, hwpoison, PF_ANY) #define __PG_HWPOISON (1UL << PG_hwpoison) #else PAGEFLAG_FALSE(HWPoison) #define __PG_HWPOISON 0 #endif #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) TESTPAGEFLAG(Young, young, PF_ANY) SETPAGEFLAG(Young, young, PF_ANY) TESTCLEARFLAG(Young, young, PF_ANY) PAGEFLAG(Idle, idle, PF_ANY) #endif /* * On an anonymous page mapped into a user virtual memory area, * page->mapping points to its anon_vma, not to a struct address_space; * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. * * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; * and then page->mapping points, not to an anon_vma, but to a private * structure which KSM associates with that merged page. See ksm.h. * * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. * * Please note that, confusingly, "page_mapping" refers to the inode * address_space which maps the page from disk; whereas "page_mapped" * refers to user virtual address space into which the page is mapped. */ #define PAGE_MAPPING_ANON 1 #define PAGE_MAPPING_KSM 2 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) static inline int PageAnon(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; } #ifdef CONFIG_KSM /* * A KSM page is one of those write-protected "shared pages" or "merged pages" * which KSM maps into multiple mms, wherever identical anonymous page content * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any * anon_vma, but to that page's node of the stable tree. */ static inline int PageKsm(struct page *page) { return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM); } #else TESTPAGEFLAG_FALSE(Ksm) #endif u64 stable_page_flags(struct page *page); static inline int PageUptodate(struct page *page) { int ret = test_bit(PG_uptodate, &(page)->flags); /* * Must ensure that the data we read out of the page is loaded * _after_ we've loaded page->flags to check for PageUptodate. * We can skip the barrier if the page is not uptodate, because * we wouldn't be reading anything from it. * * See SetPageUptodate() for the other side of the story. */ if (ret) smp_rmb(); return ret; } static inline void __SetPageUptodate(struct page *page) { smp_wmb(); __set_bit(PG_uptodate, &page->flags); } static inline void SetPageUptodate(struct page *page) { /* * Memory barrier must be issued before setting the PG_uptodate bit, * so that all previous stores issued in order to bring the page * uptodate are actually visible before PageUptodate becomes true. */ smp_wmb(); set_bit(PG_uptodate, &page->flags); } CLEARPAGEFLAG(Uptodate, uptodate, PF_ANY) int test_clear_page_writeback(struct page *page); int __test_set_page_writeback(struct page *page, bool keep_write); #define test_set_page_writeback(page) \ __test_set_page_writeback(page, false) #define test_set_page_writeback_keepwrite(page) \ __test_set_page_writeback(page, true) static inline void set_page_writeback(struct page *page) { test_set_page_writeback(page); } static inline void set_page_writeback_keepwrite(struct page *page) { test_set_page_writeback_keepwrite(page); } __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) static inline void set_compound_head(struct page *page, struct page *head) { WRITE_ONCE(page->compound_head, (unsigned long)head + 1); } static inline void clear_compound_head(struct page *page) { WRITE_ONCE(page->compound_head, 0); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void ClearPageCompound(struct page *page) { BUG_ON(!PageHead(page)); ClearPageHead(page); } #endif #define PG_head_mask ((1L << PG_head)) #ifdef CONFIG_HUGETLB_PAGE int PageHuge(struct page *page); int PageHeadHuge(struct page *page); bool page_huge_active(struct page *page); #else TESTPAGEFLAG_FALSE(Huge) TESTPAGEFLAG_FALSE(HeadHuge) static inline bool page_huge_active(struct page *page) { return 0; } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE /* * PageHuge() only returns true for hugetlbfs pages, but not for * normal or transparent huge pages. * * PageTransHuge() returns true for both transparent huge and * hugetlbfs pages, but not normal pages. PageTransHuge() can only be * called only in the core VM paths where hugetlbfs pages can't exist. */ static inline int PageTransHuge(struct page *page) { VM_BUG_ON_PAGE(PageTail(page), page); return PageHead(page); } /* * PageTransCompound returns true for both transparent huge pages * and hugetlbfs pages, so it should only be called when it's known * that hugetlbfs pages aren't involved. */ static inline int PageTransCompound(struct page *page) { return PageCompound(page); } /* * PageTransTail returns true for both transparent huge pages * and hugetlbfs pages, so it should only be called when it's known * that hugetlbfs pages aren't involved. */ static inline int PageTransTail(struct page *page) { return PageTail(page); } #else TESTPAGEFLAG_FALSE(TransHuge) TESTPAGEFLAG_FALSE(TransCompound) TESTPAGEFLAG_FALSE(TransTail) #endif /* * PageBuddy() indicate that the page is free and in the buddy system * (see mm/page_alloc.c). * * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to * -2 so that an underflow of the page_mapcount() won't be mistaken * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very * efficiently by most CPU architectures. */ #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) static inline int PageBuddy(struct page *page) { return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; } static inline void __SetPageBuddy(struct page *page) { VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); } static inline void __ClearPageBuddy(struct page *page) { VM_BUG_ON_PAGE(!PageBuddy(page), page); atomic_set(&page->_mapcount, -1); } #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) static inline int PageBalloon(struct page *page) { return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; } static inline void __SetPageBalloon(struct page *page) { VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); } static inline void __ClearPageBalloon(struct page *page) { VM_BUG_ON_PAGE(!PageBalloon(page), page); atomic_set(&page->_mapcount, -1); } /* * If network-based swap is enabled, sl*b must keep track of whether pages * were allocated from pfmemalloc reserves. */ static inline int PageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); return PageActive(page); } static inline void SetPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); SetPageActive(page); } static inline void __ClearPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); __ClearPageActive(page); } static inline void ClearPageSlabPfmemalloc(struct page *page) { VM_BUG_ON_PAGE(!PageSlab(page), page); ClearPageActive(page); } #ifdef CONFIG_MMU #define __PG_MLOCKED (1 << PG_mlocked) #else #define __PG_MLOCKED 0 #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE #define __PG_COMPOUND_LOCK (1 << PG_compound_lock) #else #define __PG_COMPOUND_LOCK 0 #endif /* * Flags checked when a page is freed. Pages being freed should not have * these flags set. It they are, there is a problem. */ #define PAGE_FLAGS_CHECK_AT_FREE \ (1 << PG_lru | 1 << PG_locked | \ 1 << PG_private | 1 << PG_private_2 | \ 1 << PG_writeback | 1 << PG_reserved | \ 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ 1 << PG_unevictable | __PG_MLOCKED | \ __PG_COMPOUND_LOCK) /* * Flags checked when a page is prepped for return by the page allocator. * Pages being prepped should not have these flags set. It they are set, * there has been a kernel bug or struct page corruption. * * __PG_HWPOISON is exceptional because it needs to be kept beyond page's * alloc-free cycle to prevent from reusing the page. */ #define PAGE_FLAGS_CHECK_AT_PREP \ (((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) #define PAGE_FLAGS_PRIVATE \ (1 << PG_private | 1 << PG_private_2) /** * page_has_private - Determine if page has private stuff * @page: The page to be checked * * Determine if a page has private stuff, indicating that release routines * should be invoked upon it. */ static inline int page_has_private(struct page *page) { return !!(page->flags & PAGE_FLAGS_PRIVATE); } #undef PF_ANY #undef PF_HEAD #undef PF_NO_TAIL #undef PF_NO_COMPOUND #endif /* !__GENERATING_BOUNDS_H */ #endif /* PAGE_FLAGS_H */