/* * Performance events ring-buffer code: * * Copyright (C) 2008 Thomas Gleixner * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra * Copyright © 2009 Paul Mackerras, IBM Corp. * * For licensing details see kernel-base/COPYING */ #include #include #include #include #include #include "internal.h" static void perf_output_wakeup(struct perf_output_handle *handle) { atomic_set(&handle->rb->poll, POLLIN); handle->event->pending_wakeup = 1; irq_work_queue(&handle->event->pending); } /* * We need to ensure a later event_id doesn't publish a head when a former * event isn't done writing. However since we need to deal with NMIs we * cannot fully serialize things. * * We only publish the head (and generate a wakeup) when the outer-most * event completes. */ static void perf_output_get_handle(struct perf_output_handle *handle) { struct ring_buffer *rb = handle->rb; preempt_disable(); local_inc(&rb->nest); handle->wakeup = local_read(&rb->wakeup); } static void perf_output_put_handle(struct perf_output_handle *handle) { struct ring_buffer *rb = handle->rb; unsigned long head; again: head = local_read(&rb->head); /* * IRQ/NMI can happen here, which means we can miss a head update. */ if (!local_dec_and_test(&rb->nest)) goto out; /* * Since the mmap() consumer (userspace) can run on a different CPU: * * kernel user * * if (LOAD ->data_tail) { LOAD ->data_head * (A) smp_rmb() (C) * STORE $data LOAD $data * smp_wmb() (B) smp_mb() (D) * STORE ->data_head STORE ->data_tail * } * * Where A pairs with D, and B pairs with C. * * In our case (A) is a control dependency that separates the load of * the ->data_tail and the stores of $data. In case ->data_tail * indicates there is no room in the buffer to store $data we do not. * * D needs to be a full barrier since it separates the data READ * from the tail WRITE. * * For B a WMB is sufficient since it separates two WRITEs, and for C * an RMB is sufficient since it separates two READs. * * See perf_output_begin(). */ smp_wmb(); /* B, matches C */ rb->user_page->data_head = head; /* * Now check if we missed an update -- rely on previous implied * compiler barriers to force a re-read. */ if (unlikely(head != local_read(&rb->head))) { local_inc(&rb->nest); goto again; } if (handle->wakeup != local_read(&rb->wakeup)) perf_output_wakeup(handle); out: preempt_enable(); } int perf_output_begin(struct perf_output_handle *handle, struct perf_event *event, unsigned int size) { struct ring_buffer *rb; unsigned long tail, offset, head; int have_lost, page_shift; struct { struct perf_event_header header; u64 id; u64 lost; } lost_event; rcu_read_lock(); /* * For inherited events we send all the output towards the parent. */ if (event->parent) event = event->parent; rb = rcu_dereference(event->rb); if (unlikely(!rb)) goto out; if (unlikely(!rb->nr_pages)) goto out; handle->rb = rb; handle->event = event; have_lost = local_read(&rb->lost); if (unlikely(have_lost)) { size += sizeof(lost_event); if (event->attr.sample_id_all) size += event->id_header_size; } perf_output_get_handle(handle); do { tail = ACCESS_ONCE(rb->user_page->data_tail); offset = head = local_read(&rb->head); if (!rb->overwrite && unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size)) goto fail; /* * The above forms a control dependency barrier separating the * @tail load above from the data stores below. Since the @tail * load is required to compute the branch to fail below. * * A, matches D; the full memory barrier userspace SHOULD issue * after reading the data and before storing the new tail * position. * * See perf_output_put_handle(). */ head += size; } while (local_cmpxchg(&rb->head, offset, head) != offset); /* * We rely on the implied barrier() by local_cmpxchg() to ensure * none of the data stores below can be lifted up by the compiler. */ if (unlikely(head - local_read(&rb->wakeup) > rb->watermark)) local_add(rb->watermark, &rb->wakeup); page_shift = PAGE_SHIFT + page_order(rb); handle->page = (offset >> page_shift) & (rb->nr_pages - 1); offset &= (1UL << page_shift) - 1; handle->addr = rb->data_pages[handle->page] + offset; handle->size = (1UL << page_shift) - offset; if (unlikely(have_lost)) { struct perf_sample_data sample_data; lost_event.header.size = sizeof(lost_event); lost_event.header.type = PERF_RECORD_LOST; lost_event.header.misc = 0; lost_event.id = event->id; lost_event.lost = local_xchg(&rb->lost, 0); perf_event_header__init_id(&lost_event.header, &sample_data, event); perf_output_put(handle, lost_event); perf_event__output_id_sample(event, handle, &sample_data); } return 0; fail: local_inc(&rb->lost); perf_output_put_handle(handle); out: rcu_read_unlock(); return -ENOSPC; } unsigned int perf_output_copy(struct perf_output_handle *handle, const void *buf, unsigned int len) { return __output_copy(handle, buf, len); } unsigned int perf_output_skip(struct perf_output_handle *handle, unsigned int len) { return __output_skip(handle, NULL, len); } void perf_output_end(struct perf_output_handle *handle) { perf_output_put_handle(handle); rcu_read_unlock(); } static void ring_buffer_init(struct ring_buffer *rb, long watermark, int flags) { long max_size = perf_data_size(rb); if (watermark) rb->watermark = min(max_size, watermark); if (!rb->watermark) rb->watermark = max_size / 2; if (flags & RING_BUFFER_WRITABLE) rb->overwrite = 0; else rb->overwrite = 1; atomic_set(&rb->refcount, 1); INIT_LIST_HEAD(&rb->event_list); spin_lock_init(&rb->event_lock); } /* * This is called before hardware starts writing to the AUX area to * obtain an output handle and make sure there's room in the buffer. * When the capture completes, call perf_aux_output_end() to commit * the recorded data to the buffer. * * The ordering is similar to that of perf_output_{begin,end}, with * the exception of (B), which should be taken care of by the pmu * driver, since ordering rules will differ depending on hardware. */ void *perf_aux_output_begin(struct perf_output_handle *handle, struct perf_event *event) { struct perf_event *output_event = event; unsigned long aux_head, aux_tail; struct ring_buffer *rb; if (output_event->parent) output_event = output_event->parent; /* * Since this will typically be open across pmu::add/pmu::del, we * grab ring_buffer's refcount instead of holding rcu read lock * to make sure it doesn't disappear under us. */ rb = ring_buffer_get(output_event); if (!rb) return NULL; if (!rb_has_aux(rb) || !atomic_inc_not_zero(&rb->aux_refcount)) goto err; /* * Nesting is not supported for AUX area, make sure nested * writers are caught early */ if (WARN_ON_ONCE(local_xchg(&rb->aux_nest, 1))) goto err_put; aux_head = local_read(&rb->aux_head); handle->rb = rb; handle->event = event; handle->head = aux_head; handle->size = 0; /* * In overwrite mode, AUX data stores do not depend on aux_tail, * therefore (A) control dependency barrier does not exist. The * (B) <-> (C) ordering is still observed by the pmu driver. */ if (!rb->aux_overwrite) { aux_tail = ACCESS_ONCE(rb->user_page->aux_tail); if (aux_head - aux_tail < perf_aux_size(rb)) handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb)); /* * handle->size computation depends on aux_tail load; this forms a * control dependency barrier separating aux_tail load from aux data * store that will be enabled on successful return */ if (!handle->size) { /* A, matches D */ event->pending_disable = 1; perf_output_wakeup(handle); local_set(&rb->aux_nest, 0); goto err_put; } } return handle->rb->aux_priv; err_put: rb_free_aux(rb); err: ring_buffer_put(rb); handle->event = NULL; return NULL; } /* * Commit the data written by hardware into the ring buffer by adjusting * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the * pmu driver's responsibility to observe ordering rules of the hardware, * so that all the data is externally visible before this is called. */ void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size, bool truncated) { struct ring_buffer *rb = handle->rb; unsigned long aux_head; u64 flags = 0; if (truncated) flags |= PERF_AUX_FLAG_TRUNCATED; /* in overwrite mode, driver provides aux_head via handle */ if (rb->aux_overwrite) { flags |= PERF_AUX_FLAG_OVERWRITE; aux_head = handle->head; local_set(&rb->aux_head, aux_head); } else { aux_head = local_read(&rb->aux_head); local_add(size, &rb->aux_head); } if (size || flags) { /* * Only send RECORD_AUX if we have something useful to communicate */ perf_event_aux_event(handle->event, aux_head, size, flags); } rb->user_page->aux_head = local_read(&rb->aux_head); perf_output_wakeup(handle); handle->event = NULL; local_set(&rb->aux_nest, 0); rb_free_aux(rb); ring_buffer_put(rb); } /* * Skip over a given number of bytes in the AUX buffer, due to, for example, * hardware's alignment constraints. */ int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size) { struct ring_buffer *rb = handle->rb; unsigned long aux_head; if (size > handle->size) return -ENOSPC; local_add(size, &rb->aux_head); handle->head = aux_head; handle->size -= size; return 0; } void *perf_get_aux(struct perf_output_handle *handle) { /* this is only valid between perf_aux_output_begin and *_end */ if (!handle->event) return NULL; return handle->rb->aux_priv; } #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY) static struct page *rb_alloc_aux_page(int node, int order) { struct page *page; if (order > MAX_ORDER) order = MAX_ORDER; do { page = alloc_pages_node(node, PERF_AUX_GFP, order); } while (!page && order--); if (page && order) { /* * Communicate the allocation size to the driver */ split_page(page, order); SetPagePrivate(page); set_page_private(page, order); } return page; } static void rb_free_aux_page(struct ring_buffer *rb, int idx) { struct page *page = virt_to_page(rb->aux_pages[idx]); ClearPagePrivate(page); page->mapping = NULL; __free_page(page); } int rb_alloc_aux(struct ring_buffer *rb, struct perf_event *event, pgoff_t pgoff, int nr_pages, int flags) { bool overwrite = !(flags & RING_BUFFER_WRITABLE); int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu); int ret = -ENOMEM, max_order = 0; if (!has_aux(event)) return -ENOTSUPP; if (event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) { /* * We need to start with the max_order that fits in nr_pages, * not the other way around, hence ilog2() and not get_order. */ max_order = ilog2(nr_pages); /* * PMU requests more than one contiguous chunks of memory * for SW double buffering */ if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_SW_DOUBLEBUF) && !overwrite) { if (!max_order) return -EINVAL; max_order--; } } rb->aux_pages = kzalloc_node(nr_pages * sizeof(void *), GFP_KERNEL, node); if (!rb->aux_pages) return -ENOMEM; rb->free_aux = event->pmu->free_aux; for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) { struct page *page; int last, order; order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages)); page = rb_alloc_aux_page(node, order); if (!page) goto out; for (last = rb->aux_nr_pages + (1 << page_private(page)); last > rb->aux_nr_pages; rb->aux_nr_pages++) rb->aux_pages[rb->aux_nr_pages] = page_address(page++); } rb->aux_priv = event->pmu->setup_aux(event->cpu, rb->aux_pages, nr_pages, overwrite); if (!rb->aux_priv) goto out; ret = 0; /* * aux_pages (and pmu driver's private data, aux_priv) will be * referenced in both producer's and consumer's contexts, thus * we keep a refcount here to make sure either of the two can * reference them safely. */ atomic_set(&rb->aux_refcount, 1); rb->aux_overwrite = overwrite; out: if (!ret) rb->aux_pgoff = pgoff; else rb_free_aux(rb); return ret; } static void __rb_free_aux(struct ring_buffer *rb) { int pg; if (rb->aux_priv) { rb->free_aux(rb->aux_priv); rb->free_aux = NULL; rb->aux_priv = NULL; } for (pg = 0; pg < rb->aux_nr_pages; pg++) rb_free_aux_page(rb, pg); kfree(rb->aux_pages); rb->aux_nr_pages = 0; } void rb_free_aux(struct ring_buffer *rb) { if (atomic_dec_and_test(&rb->aux_refcount)) __rb_free_aux(rb); } #ifndef CONFIG_PERF_USE_VMALLOC /* * Back perf_mmap() with regular GFP_KERNEL-0 pages. */ static struct page * __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) { if (pgoff > rb->nr_pages) return NULL; if (pgoff == 0) return virt_to_page(rb->user_page); return virt_to_page(rb->data_pages[pgoff - 1]); } static void *perf_mmap_alloc_page(int cpu) { struct page *page; int node; node = (cpu == -1) ? cpu : cpu_to_node(cpu); page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); if (!page) return NULL; return page_address(page); } struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) { struct ring_buffer *rb; unsigned long size; int i; size = sizeof(struct ring_buffer); size += nr_pages * sizeof(void *); rb = kzalloc(size, GFP_KERNEL); if (!rb) goto fail; rb->user_page = perf_mmap_alloc_page(cpu); if (!rb->user_page) goto fail_user_page; for (i = 0; i < nr_pages; i++) { rb->data_pages[i] = perf_mmap_alloc_page(cpu); if (!rb->data_pages[i]) goto fail_data_pages; } rb->nr_pages = nr_pages; ring_buffer_init(rb, watermark, flags); return rb; fail_data_pages: for (i--; i >= 0; i--) free_page((unsigned long)rb->data_pages[i]); free_page((unsigned long)rb->user_page); fail_user_page: kfree(rb); fail: return NULL; } static void perf_mmap_free_page(unsigned long addr) { struct page *page = virt_to_page((void *)addr); page->mapping = NULL; __free_page(page); } void rb_free(struct ring_buffer *rb) { int i; perf_mmap_free_page((unsigned long)rb->user_page); for (i = 0; i < rb->nr_pages; i++) perf_mmap_free_page((unsigned long)rb->data_pages[i]); kfree(rb); } #else static int data_page_nr(struct ring_buffer *rb) { return rb->nr_pages << page_order(rb); } static struct page * __perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) { /* The '>' counts in the user page. */ if (pgoff > data_page_nr(rb)) return NULL; return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE); } static void perf_mmap_unmark_page(void *addr) { struct page *page = vmalloc_to_page(addr); page->mapping = NULL; } static void rb_free_work(struct work_struct *work) { struct ring_buffer *rb; void *base; int i, nr; rb = container_of(work, struct ring_buffer, work); nr = data_page_nr(rb); base = rb->user_page; /* The '<=' counts in the user page. */ for (i = 0; i <= nr; i++) perf_mmap_unmark_page(base + (i * PAGE_SIZE)); vfree(base); kfree(rb); } void rb_free(struct ring_buffer *rb) { schedule_work(&rb->work); } struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags) { struct ring_buffer *rb; unsigned long size; void *all_buf; size = sizeof(struct ring_buffer); size += sizeof(void *); rb = kzalloc(size, GFP_KERNEL); if (!rb) goto fail; INIT_WORK(&rb->work, rb_free_work); all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); if (!all_buf) goto fail_all_buf; rb->user_page = all_buf; rb->data_pages[0] = all_buf + PAGE_SIZE; rb->page_order = ilog2(nr_pages); rb->nr_pages = !!nr_pages; ring_buffer_init(rb, watermark, flags); return rb; fail_all_buf: kfree(rb); fail: return NULL; } #endif struct page * perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff) { if (rb->aux_nr_pages) { /* above AUX space */ if (pgoff > rb->aux_pgoff + rb->aux_nr_pages) return NULL; /* AUX space */ if (pgoff >= rb->aux_pgoff) return virt_to_page(rb->aux_pages[pgoff - rb->aux_pgoff]); } return __perf_mmap_to_page(rb, pgoff); }