1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
/*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* Copyright (C) 2011 Thomas Langer <thomas.langer@lantiq.com>
* Copyright (C) 2011 John Crispin <blogic@openwrt.org>
*/
#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/clkdev.h>
#include <linux/of_address.h>
#include <asm/delay.h>
#include <lantiq_soc.h>
#include "../clk.h"
/* infrastructure control register */
#define SYS1_INFRAC 0x00bc
/* Configuration fuses for drivers and pll */
#define STATUS_CONFIG 0x0040
/* GPE frequency selection */
#define GPPC_OFFSET 24
#define GPEFREQ_MASK 0x00000C0
#define GPEFREQ_OFFSET 10
/* Clock status register */
#define SYSCTL_CLKS 0x0000
/* Clock enable register */
#define SYSCTL_CLKEN 0x0004
/* Clock clear register */
#define SYSCTL_CLKCLR 0x0008
/* Activation Status Register */
#define SYSCTL_ACTS 0x0020
/* Activation Register */
#define SYSCTL_ACT 0x0024
/* Deactivation Register */
#define SYSCTL_DEACT 0x0028
/* reboot Register */
#define SYSCTL_RBT 0x002c
/* CPU0 Clock Control Register */
#define SYS1_CPU0CC 0x0040
/* HRST_OUT_N Control Register */
#define SYS1_HRSTOUTC 0x00c0
/* clock divider bit */
#define CPU0CC_CPUDIV 0x0001
/* Activation Status Register */
#define ACTS_ASC1_ACT 0x00000800
#define ACTS_I2C_ACT 0x00004000
#define ACTS_P0 0x00010000
#define ACTS_P1 0x00010000
#define ACTS_P2 0x00020000
#define ACTS_P3 0x00020000
#define ACTS_P4 0x00040000
#define ACTS_PADCTRL0 0x00100000
#define ACTS_PADCTRL1 0x00100000
#define ACTS_PADCTRL2 0x00200000
#define ACTS_PADCTRL3 0x00200000
#define ACTS_PADCTRL4 0x00400000
#define sysctl_w32(m, x, y) ltq_w32((x), sysctl_membase[m] + (y))
#define sysctl_r32(m, x) ltq_r32(sysctl_membase[m] + (x))
#define sysctl_w32_mask(m, clear, set, reg) \
sysctl_w32(m, (sysctl_r32(m, reg) & ~(clear)) | (set), reg)
#define status_w32(x, y) ltq_w32((x), status_membase + (y))
#define status_r32(x) ltq_r32(status_membase + (x))
static void __iomem *sysctl_membase[3], *status_membase;
void __iomem *ltq_sys1_membase, *ltq_ebu_membase;
void falcon_trigger_hrst(int level)
{
sysctl_w32(SYSCTL_SYS1, level & 1, SYS1_HRSTOUTC);
}
static inline void sysctl_wait(struct clk *clk,
unsigned int test, unsigned int reg)
{
int err = 1000000;
do {} while (--err && ((sysctl_r32(clk->module, reg)
& clk->bits) != test));
if (!err)
pr_err("module de/activation failed %d %08X %08X %08X\n",
clk->module, clk->bits, test,
sysctl_r32(clk->module, reg) & clk->bits);
}
static int sysctl_activate(struct clk *clk)
{
sysctl_w32(clk->module, clk->bits, SYSCTL_CLKEN);
sysctl_w32(clk->module, clk->bits, SYSCTL_ACT);
sysctl_wait(clk, clk->bits, SYSCTL_ACTS);
return 0;
}
static void sysctl_deactivate(struct clk *clk)
{
sysctl_w32(clk->module, clk->bits, SYSCTL_CLKCLR);
sysctl_w32(clk->module, clk->bits, SYSCTL_DEACT);
sysctl_wait(clk, 0, SYSCTL_ACTS);
}
static int sysctl_clken(struct clk *clk)
{
sysctl_w32(clk->module, clk->bits, SYSCTL_CLKEN);
sysctl_wait(clk, clk->bits, SYSCTL_CLKS);
return 0;
}
static void sysctl_clkdis(struct clk *clk)
{
sysctl_w32(clk->module, clk->bits, SYSCTL_CLKCLR);
sysctl_wait(clk, 0, SYSCTL_CLKS);
}
static void sysctl_reboot(struct clk *clk)
{
unsigned int act;
unsigned int bits;
act = sysctl_r32(clk->module, SYSCTL_ACT);
bits = ~act & clk->bits;
if (bits != 0) {
sysctl_w32(clk->module, bits, SYSCTL_CLKEN);
sysctl_w32(clk->module, bits, SYSCTL_ACT);
sysctl_wait(clk, bits, SYSCTL_ACTS);
}
sysctl_w32(clk->module, act & clk->bits, SYSCTL_RBT);
sysctl_wait(clk, clk->bits, SYSCTL_ACTS);
}
/* enable the ONU core */
static void falcon_gpe_enable(void)
{
unsigned int freq;
unsigned int status;
/* if if the clock is already enabled */
status = sysctl_r32(SYSCTL_SYS1, SYS1_INFRAC);
if (status & (1 << (GPPC_OFFSET + 1)))
return;
if (status_r32(STATUS_CONFIG) == 0)
freq = 1; /* use 625MHz on unfused chip */
else
freq = (status_r32(STATUS_CONFIG) &
GPEFREQ_MASK) >>
GPEFREQ_OFFSET;
/* apply new frequency */
sysctl_w32_mask(SYSCTL_SYS1, 7 << (GPPC_OFFSET + 1),
freq << (GPPC_OFFSET + 2) , SYS1_INFRAC);
udelay(1);
/* enable new frequency */
sysctl_w32_mask(SYSCTL_SYS1, 0, 1 << (GPPC_OFFSET + 1), SYS1_INFRAC);
udelay(1);
}
static inline void clkdev_add_sys(const char *dev, unsigned int module,
unsigned int bits)
{
struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
clk->cl.dev_id = dev;
clk->cl.con_id = NULL;
clk->cl.clk = clk;
clk->module = module;
clk->activate = sysctl_activate;
clk->deactivate = sysctl_deactivate;
clk->enable = sysctl_clken;
clk->disable = sysctl_clkdis;
clk->reboot = sysctl_reboot;
clkdev_add(&clk->cl);
}
void __init ltq_soc_init(void)
{
struct device_node *np_status =
of_find_compatible_node(NULL, NULL, "lantiq,status-falcon");
struct device_node *np_ebu =
of_find_compatible_node(NULL, NULL, "lantiq,ebu-falcon");
struct device_node *np_sys1 =
of_find_compatible_node(NULL, NULL, "lantiq,sys1-falcon");
struct device_node *np_syseth =
of_find_compatible_node(NULL, NULL, "lantiq,syseth-falcon");
struct device_node *np_sysgpe =
of_find_compatible_node(NULL, NULL, "lantiq,sysgpe-falcon");
struct resource res_status, res_ebu, res_sys[3];
int i;
/* check if all the core register ranges are available */
if (!np_status || !np_ebu || !np_sys1 || !np_syseth || !np_sysgpe)
panic("Failed to load core nodes from devicetree");
if (of_address_to_resource(np_status, 0, &res_status) ||
of_address_to_resource(np_ebu, 0, &res_ebu) ||
of_address_to_resource(np_sys1, 0, &res_sys[0]) ||
of_address_to_resource(np_syseth, 0, &res_sys[1]) ||
of_address_to_resource(np_sysgpe, 0, &res_sys[2]))
panic("Failed to get core resources");
if ((request_mem_region(res_status.start, resource_size(&res_status),
res_status.name) < 0) ||
(request_mem_region(res_ebu.start, resource_size(&res_ebu),
res_ebu.name) < 0) ||
(request_mem_region(res_sys[0].start,
resource_size(&res_sys[0]),
res_sys[0].name) < 0) ||
(request_mem_region(res_sys[1].start,
resource_size(&res_sys[1]),
res_sys[1].name) < 0) ||
(request_mem_region(res_sys[2].start,
resource_size(&res_sys[2]),
res_sys[2].name) < 0))
pr_err("Failed to request core reources");
status_membase = ioremap_nocache(res_status.start,
resource_size(&res_status));
ltq_ebu_membase = ioremap_nocache(res_ebu.start,
resource_size(&res_ebu));
if (!status_membase || !ltq_ebu_membase)
panic("Failed to remap core resources");
for (i = 0; i < 3; i++) {
sysctl_membase[i] = ioremap_nocache(res_sys[i].start,
resource_size(&res_sys[i]));
if (!sysctl_membase[i])
panic("Failed to remap sysctrl resources");
}
ltq_sys1_membase = sysctl_membase[0];
falcon_gpe_enable();
/* get our 3 static rates for cpu, fpi and io clocks */
if (ltq_sys1_r32(SYS1_CPU0CC) & CPU0CC_CPUDIV)
clkdev_add_static(CLOCK_200M, CLOCK_100M, CLOCK_200M);
else
clkdev_add_static(CLOCK_400M, CLOCK_100M, CLOCK_200M);
/* add our clock domains */
clkdev_add_sys("1d810000.gpio", SYSCTL_SYSETH, ACTS_P0);
clkdev_add_sys("1d810100.gpio", SYSCTL_SYSETH, ACTS_P2);
clkdev_add_sys("1e800100.gpio", SYSCTL_SYS1, ACTS_P1);
clkdev_add_sys("1e800200.gpio", SYSCTL_SYS1, ACTS_P3);
clkdev_add_sys("1e800300.gpio", SYSCTL_SYS1, ACTS_P4);
clkdev_add_sys("1db01000.pad", SYSCTL_SYSETH, ACTS_PADCTRL0);
clkdev_add_sys("1db02000.pad", SYSCTL_SYSETH, ACTS_PADCTRL2);
clkdev_add_sys("1e800400.pad", SYSCTL_SYS1, ACTS_PADCTRL1);
clkdev_add_sys("1e800500.pad", SYSCTL_SYS1, ACTS_PADCTRL3);
clkdev_add_sys("1e800600.pad", SYSCTL_SYS1, ACTS_PADCTRL4);
clkdev_add_sys("1e100C00.serial", SYSCTL_SYS1, ACTS_ASC1_ACT);
clkdev_add_sys("1e200000.i2c", SYSCTL_SYS1, ACTS_I2C_ACT);
}
|