summaryrefslogtreecommitdiff
path: root/drivers/mtd/chips/cfi_cmdset_0001.c
blob: b99400f6e484fad44a105bdd1486c6c305cd2ad9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
/*
 * Common Flash Interface support:
 *   Intel Extended Vendor Command Set (ID 0x0001)
 *
 * (C) 2000 Red Hat. GPL'd
 *
 * $Id: cfi_cmdset_0001.c,v 1.175 2005/04/01 16:36:25 nico Exp $
 *
 * 
 * 10/10/2000	Nicolas Pitre <nico@cam.org>
 * 	- completely revamped method functions so they are aware and
 * 	  independent of the flash geometry (buswidth, interleave, etc.)
 * 	- scalability vs code size is completely set at compile-time
 * 	  (see include/linux/mtd/cfi.h for selection)
 *	- optimized write buffer method
 * 02/05/2002	Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com>
 *	- reworked lock/unlock/erase support for var size flash
 */

#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/io.h>
#include <asm/byteorder.h>

#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/reboot.h>
#include <linux/mtd/xip.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/compatmac.h>
#include <linux/mtd/cfi.h>

/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */
/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */

// debugging, turns off buffer write mode if set to 1
#define FORCE_WORD_WRITE 0

#define MANUFACTURER_INTEL	0x0089
#define I82802AB	0x00ad
#define I82802AC	0x00ac
#define MANUFACTURER_ST         0x0020
#define M50LPW080       0x002F

static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_intelext_sync (struct mtd_info *);
static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
#ifdef CONFIG_MTD_OTP
static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_write_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_intelext_lock_user_prot_reg (struct mtd_info *, loff_t, size_t);
static int cfi_intelext_get_fact_prot_info (struct mtd_info *,
					    struct otp_info *, size_t);
static int cfi_intelext_get_user_prot_info (struct mtd_info *,
					    struct otp_info *, size_t);
#endif
static int cfi_intelext_suspend (struct mtd_info *);
static void cfi_intelext_resume (struct mtd_info *);
static int cfi_intelext_reboot (struct notifier_block *, unsigned long, void *);

static void cfi_intelext_destroy(struct mtd_info *);

struct mtd_info *cfi_cmdset_0001(struct map_info *, int);

static struct mtd_info *cfi_intelext_setup (struct mtd_info *);
static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **);

static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
		     size_t *retlen, u_char **mtdbuf);
static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
			size_t len);

static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
#include "fwh_lock.h"



/*
 *  *********** SETUP AND PROBE BITS  ***********
 */

static struct mtd_chip_driver cfi_intelext_chipdrv = {
	.probe		= NULL, /* Not usable directly */
	.destroy	= cfi_intelext_destroy,
	.name		= "cfi_cmdset_0001",
	.module		= THIS_MODULE
};

/* #define DEBUG_LOCK_BITS */
/* #define DEBUG_CFI_FEATURES */

#ifdef DEBUG_CFI_FEATURES
static void cfi_tell_features(struct cfi_pri_intelext *extp)
{
	int i;
	printk("  Feature/Command Support:      %4.4X\n", extp->FeatureSupport);
	printk("     - Chip Erase:              %s\n", extp->FeatureSupport&1?"supported":"unsupported");
	printk("     - Suspend Erase:           %s\n", extp->FeatureSupport&2?"supported":"unsupported");
	printk("     - Suspend Program:         %s\n", extp->FeatureSupport&4?"supported":"unsupported");
	printk("     - Legacy Lock/Unlock:      %s\n", extp->FeatureSupport&8?"supported":"unsupported");
	printk("     - Queued Erase:            %s\n", extp->FeatureSupport&16?"supported":"unsupported");
	printk("     - Instant block lock:      %s\n", extp->FeatureSupport&32?"supported":"unsupported");
	printk("     - Protection Bits:         %s\n", extp->FeatureSupport&64?"supported":"unsupported");
	printk("     - Page-mode read:          %s\n", extp->FeatureSupport&128?"supported":"unsupported");
	printk("     - Synchronous read:        %s\n", extp->FeatureSupport&256?"supported":"unsupported");
	printk("     - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported");
	for (i=10; i<32; i++) {
		if (extp->FeatureSupport & (1<<i)) 
			printk("     - Unknown Bit %X:      supported\n", i);
	}
	
	printk("  Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport);
	printk("     - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported");
	for (i=1; i<8; i++) {
		if (extp->SuspendCmdSupport & (1<<i))
			printk("     - Unknown Bit %X:               supported\n", i);
	}
	
	printk("  Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask);
	printk("     - Lock Bit Active:      %s\n", extp->BlkStatusRegMask&1?"yes":"no");
	printk("     - Valid Bit Active:     %s\n", extp->BlkStatusRegMask&2?"yes":"no");
	for (i=2; i<16; i++) {
		if (extp->BlkStatusRegMask & (1<<i))
			printk("     - Unknown Bit %X Active: yes\n",i);
	}
	
	printk("  Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", 
	       extp->VccOptimal >> 4, extp->VccOptimal & 0xf);
	if (extp->VppOptimal)
		printk("  Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", 
		       extp->VppOptimal >> 4, extp->VppOptimal & 0xf);
}
#endif

#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ 
static void fixup_intel_strataflash(struct mtd_info *mtd, void* param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;

	printk(KERN_WARNING "cfi_cmdset_0001: Suspend "
	                    "erase on write disabled.\n");
	extp->SuspendCmdSupport &= ~1;
}
#endif

#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
static void fixup_no_write_suspend(struct mtd_info *mtd, void* param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;

	if (cfip && (cfip->FeatureSupport&4)) {
		cfip->FeatureSupport &= ~4;
		printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n");
	}
}
#endif

static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	
	cfi->cfiq->BufWriteTimeoutTyp = 0;	/* Not supported */
	cfi->cfiq->BufWriteTimeoutMax = 0;	/* Not supported */
}

static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	
	/* Note this is done after the region info is endian swapped */
	cfi->cfiq->EraseRegionInfo[1] =
		(cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e;
};

static void fixup_use_point(struct mtd_info *mtd, void *param)
{
	struct map_info *map = mtd->priv;
	if (!mtd->point && map_is_linear(map)) {
		mtd->point   = cfi_intelext_point;
		mtd->unpoint = cfi_intelext_unpoint;
	}
}

static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	if (cfi->cfiq->BufWriteTimeoutTyp) {
		printk(KERN_INFO "Using buffer write method\n" );
		mtd->write = cfi_intelext_write_buffers;
	}
}

static struct cfi_fixup cfi_fixup_table[] = {
#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, 
#endif
#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL },
#endif
#if !FORCE_WORD_WRITE
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL },
#endif
	{ CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL },
	{ CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL },
	{ 0, 0, NULL, NULL }
};

static struct cfi_fixup jedec_fixup_table[] = {
	{ MANUFACTURER_INTEL, I82802AB,   fixup_use_fwh_lock, NULL, },
	{ MANUFACTURER_INTEL, I82802AC,   fixup_use_fwh_lock, NULL, },
	{ MANUFACTURER_ST,    M50LPW080,  fixup_use_fwh_lock, NULL, },
	{ 0, 0, NULL, NULL }
};
static struct cfi_fixup fixup_table[] = {
	/* The CFI vendor ids and the JEDEC vendor IDs appear
	 * to be common.  It is like the devices id's are as
	 * well.  This table is to pick all cases where
	 * we know that is the case.
	 */
	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL },
	{ 0, 0, NULL, NULL }
};

static inline struct cfi_pri_intelext *
read_pri_intelext(struct map_info *map, __u16 adr)
{
	struct cfi_pri_intelext *extp;
	unsigned int extp_size = sizeof(*extp);

 again:
	extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp");
	if (!extp)
		return NULL;

	/* Do some byteswapping if necessary */
	extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport);
	extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask);
	extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr);

	if (extp->MajorVersion == '1' && extp->MinorVersion == '3') {
		unsigned int extra_size = 0;
		int nb_parts, i;

		/* Protection Register info */
		extra_size += (extp->NumProtectionFields - 1) *
			      sizeof(struct cfi_intelext_otpinfo);

		/* Burst Read info */
		extra_size += 6;

		/* Number of hardware-partitions */
		extra_size += 1;
		if (extp_size < sizeof(*extp) + extra_size)
			goto need_more;
		nb_parts = extp->extra[extra_size - 1];

		for (i = 0; i < nb_parts; i++) {
			struct cfi_intelext_regioninfo *rinfo;
			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size];
			extra_size += sizeof(*rinfo);
			if (extp_size < sizeof(*extp) + extra_size)
				goto need_more;
			rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions);
			extra_size += (rinfo->NumBlockTypes - 1)
				      * sizeof(struct cfi_intelext_blockinfo);
		}

		if (extp_size < sizeof(*extp) + extra_size) {
			need_more:
			extp_size = sizeof(*extp) + extra_size;
			kfree(extp);
			if (extp_size > 4096) {
				printk(KERN_ERR
					"%s: cfi_pri_intelext is too fat\n",
					__FUNCTION__);
				return NULL;
			}
			goto again;
		}
	}
		
	return extp;
}

/* This routine is made available to other mtd code via
 * inter_module_register.  It must only be accessed through
 * inter_module_get which will bump the use count of this module.  The
 * addresses passed back in cfi are valid as long as the use count of
 * this module is non-zero, i.e. between inter_module_get and
 * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
 */
struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct mtd_info *mtd;
	int i;

	mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
	if (!mtd) {
		printk(KERN_ERR "Failed to allocate memory for MTD device\n");
		return NULL;
	}
	memset(mtd, 0, sizeof(*mtd));
	mtd->priv = map;
	mtd->type = MTD_NORFLASH;

	/* Fill in the default mtd operations */
	mtd->erase   = cfi_intelext_erase_varsize;
	mtd->read    = cfi_intelext_read;
	mtd->write   = cfi_intelext_write_words;
	mtd->sync    = cfi_intelext_sync;
	mtd->lock    = cfi_intelext_lock;
	mtd->unlock  = cfi_intelext_unlock;
	mtd->suspend = cfi_intelext_suspend;
	mtd->resume  = cfi_intelext_resume;
	mtd->flags   = MTD_CAP_NORFLASH;
	mtd->name    = map->name;

	mtd->reboot_notifier.notifier_call = cfi_intelext_reboot;

	if (cfi->cfi_mode == CFI_MODE_CFI) {
		/* 
		 * It's a real CFI chip, not one for which the probe
		 * routine faked a CFI structure. So we read the feature
		 * table from it.
		 */
		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
		struct cfi_pri_intelext *extp;

		extp = read_pri_intelext(map, adr);
		if (!extp) {
			kfree(mtd);
			return NULL;
		}

		/* Install our own private info structure */
		cfi->cmdset_priv = extp;	

		cfi_fixup(mtd, cfi_fixup_table);

#ifdef DEBUG_CFI_FEATURES
		/* Tell the user about it in lots of lovely detail */
		cfi_tell_features(extp);
#endif	

		if(extp->SuspendCmdSupport & 1) {
			printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n");
		}
	}
	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
		/* Apply jedec specific fixups */
		cfi_fixup(mtd, jedec_fixup_table);
	}
	/* Apply generic fixups */
	cfi_fixup(mtd, fixup_table);

	for (i=0; i< cfi->numchips; i++) {
		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
		cfi->chips[i].ref_point_counter = 0;
	}		

	map->fldrv = &cfi_intelext_chipdrv;
	
	return cfi_intelext_setup(mtd);
}

static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long offset = 0;
	int i,j;
	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;

	//printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips);

	mtd->size = devsize * cfi->numchips;

	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) 
			* mtd->numeraseregions, GFP_KERNEL);
	if (!mtd->eraseregions) { 
		printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n");
		goto setup_err;
	}
	
	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
		unsigned long ernum, ersize;
		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;

		if (mtd->erasesize < ersize) {
			mtd->erasesize = ersize;
		}
		for (j=0; j<cfi->numchips; j++) {
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
		}
		offset += (ersize * ernum);
	}

	if (offset != devsize) {
		/* Argh */
		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
		goto setup_err;
	}

	for (i=0; i<mtd->numeraseregions;i++){
		printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n",
		       i,mtd->eraseregions[i].offset,
		       mtd->eraseregions[i].erasesize,
		       mtd->eraseregions[i].numblocks);
	}

#ifdef CONFIG_MTD_OTP
	mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg;
	mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg;
	mtd->write_user_prot_reg = cfi_intelext_write_user_prot_reg;
	mtd->lock_user_prot_reg = cfi_intelext_lock_user_prot_reg;
	mtd->get_fact_prot_info = cfi_intelext_get_fact_prot_info;
	mtd->get_user_prot_info = cfi_intelext_get_user_prot_info;
#endif

	/* This function has the potential to distort the reality
	   a bit and therefore should be called last. */
	if (cfi_intelext_partition_fixup(mtd, &cfi) != 0)
		goto setup_err;

	__module_get(THIS_MODULE);
	register_reboot_notifier(&mtd->reboot_notifier);
	return mtd;

 setup_err:
	if(mtd) {
		if(mtd->eraseregions)
			kfree(mtd->eraseregions);
		kfree(mtd);
	}
	kfree(cfi->cmdset_priv);
	return NULL;
}

static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
					struct cfi_private **pcfi)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = *pcfi;
	struct cfi_pri_intelext *extp = cfi->cmdset_priv;

	/*
	 * Probing of multi-partition flash ships.
	 *
	 * To support multiple partitions when available, we simply arrange
	 * for each of them to have their own flchip structure even if they
	 * are on the same physical chip.  This means completely recreating
	 * a new cfi_private structure right here which is a blatent code
	 * layering violation, but this is still the least intrusive
	 * arrangement at this point. This can be rearranged in the future
	 * if someone feels motivated enough.  --nico
	 */
	if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3'
	    && extp->FeatureSupport & (1 << 9)) {
		struct cfi_private *newcfi;
		struct flchip *chip;
		struct flchip_shared *shared;
		int offs, numregions, numparts, partshift, numvirtchips, i, j;

		/* Protection Register info */
		offs = (extp->NumProtectionFields - 1) *
		       sizeof(struct cfi_intelext_otpinfo);

		/* Burst Read info */
		offs += 6;

		/* Number of partition regions */
		numregions = extp->extra[offs];
		offs += 1;

		/* Number of hardware partitions */
		numparts = 0;
		for (i = 0; i < numregions; i++) {
			struct cfi_intelext_regioninfo *rinfo;
			rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs];
			numparts += rinfo->NumIdentPartitions;
			offs += sizeof(*rinfo)
				+ (rinfo->NumBlockTypes - 1) *
				  sizeof(struct cfi_intelext_blockinfo);
		}

		/*
		 * All functions below currently rely on all chips having
		 * the same geometry so we'll just assume that all hardware
		 * partitions are of the same size too.
		 */
		partshift = cfi->chipshift - __ffs(numparts);

		if ((1 << partshift) < mtd->erasesize) {
			printk( KERN_ERR
				"%s: bad number of hw partitions (%d)\n",
				__FUNCTION__, numparts);
			return -EINVAL;
		}

		numvirtchips = cfi->numchips * numparts;
		newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL);
		if (!newcfi)
			return -ENOMEM;
		shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL);
		if (!shared) {
			kfree(newcfi);
			return -ENOMEM;
		}
		memcpy(newcfi, cfi, sizeof(struct cfi_private));
		newcfi->numchips = numvirtchips;
		newcfi->chipshift = partshift;

		chip = &newcfi->chips[0];
		for (i = 0; i < cfi->numchips; i++) {
			shared[i].writing = shared[i].erasing = NULL;
			spin_lock_init(&shared[i].lock);
			for (j = 0; j < numparts; j++) {
				*chip = cfi->chips[i];
				chip->start += j << partshift;
				chip->priv = &shared[i];
				/* those should be reset too since
				   they create memory references. */
				init_waitqueue_head(&chip->wq);
				spin_lock_init(&chip->_spinlock);
				chip->mutex = &chip->_spinlock;
				chip++;
			}
		}

		printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips "
				  "--> %d partitions of %d KiB\n",
				  map->name, cfi->numchips, cfi->interleave,
				  newcfi->numchips, 1<<(newcfi->chipshift-10));

		map->fldrv_priv = newcfi;
		*pcfi = newcfi;
		kfree(cfi);
	}

	return 0;
}

/*
 *  *********** CHIP ACCESS FUNCTIONS ***********
 */

static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
	DECLARE_WAITQUEUE(wait, current);
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
	unsigned long timeo;
	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;

 resettime:
	timeo = jiffies + HZ;
 retry:
	if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE)) {
		/*
		 * OK. We have possibility for contension on the write/erase
		 * operations which are global to the real chip and not per
		 * partition.  So let's fight it over in the partition which
		 * currently has authority on the operation.
		 *
		 * The rules are as follows:
		 *
		 * - any write operation must own shared->writing.
		 *
		 * - any erase operation must own _both_ shared->writing and
		 *   shared->erasing.
		 *
		 * - contension arbitration is handled in the owner's context.
		 *
		 * The 'shared' struct can be read when its lock is taken.
		 * However any writes to it can only be made when the current
		 * owner's lock is also held.
		 */
		struct flchip_shared *shared = chip->priv;
		struct flchip *contender;
		spin_lock(&shared->lock);
		contender = shared->writing;
		if (contender && contender != chip) {
			/*
			 * The engine to perform desired operation on this
			 * partition is already in use by someone else.
			 * Let's fight over it in the context of the chip
			 * currently using it.  If it is possible to suspend,
			 * that other partition will do just that, otherwise
			 * it'll happily send us to sleep.  In any case, when
			 * get_chip returns success we're clear to go ahead.
			 */
			int ret = spin_trylock(contender->mutex);
			spin_unlock(&shared->lock);
			if (!ret)
				goto retry;
			spin_unlock(chip->mutex);
			ret = get_chip(map, contender, contender->start, mode);
			spin_lock(chip->mutex);
			if (ret) {
				spin_unlock(contender->mutex);
				return ret;
			}
			timeo = jiffies + HZ;
			spin_lock(&shared->lock);
		}

		/* We now own it */
		shared->writing = chip;
		if (mode == FL_ERASING)
			shared->erasing = chip;
		if (contender && contender != chip)
			spin_unlock(contender->mutex);
		spin_unlock(&shared->lock);
	}

	switch (chip->state) {

	case FL_STATUS:
		for (;;) {
			status = map_read(map, adr);
			if (map_word_andequal(map, status, status_OK, status_OK))
				break;

			/* At this point we're fine with write operations
			   in other partitions as they don't conflict. */
			if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
				break;

			if (time_after(jiffies, timeo)) {
				printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", 
				       status.x[0]);
				return -EIO;
			}
			spin_unlock(chip->mutex);
			cfi_udelay(1);
			spin_lock(chip->mutex);
			/* Someone else might have been playing with it. */
			goto retry;
		}
				
	case FL_READY:
	case FL_CFI_QUERY:
	case FL_JEDEC_QUERY:
		return 0;

	case FL_ERASING:
		if (!cfip ||
		    !(cfip->FeatureSupport & 2) ||
		    !(mode == FL_READY || mode == FL_POINT ||
		     (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1))))
			goto sleep;


		/* Erase suspend */
		map_write(map, CMD(0xB0), adr);

		/* If the flash has finished erasing, then 'erase suspend'
		 * appears to make some (28F320) flash devices switch to
		 * 'read' mode.  Make sure that we switch to 'read status'
		 * mode so we get the right data. --rmk
		 */
		map_write(map, CMD(0x70), adr);
		chip->oldstate = FL_ERASING;
		chip->state = FL_ERASE_SUSPENDING;
		chip->erase_suspended = 1;
		for (;;) {
			status = map_read(map, adr);
			if (map_word_andequal(map, status, status_OK, status_OK))
			        break;

			if (time_after(jiffies, timeo)) {
				/* Urgh. Resume and pretend we weren't here.  */
				map_write(map, CMD(0xd0), adr);
				/* Make sure we're in 'read status' mode if it had finished */
				map_write(map, CMD(0x70), adr);
				chip->state = FL_ERASING;
				chip->oldstate = FL_READY;
				printk(KERN_ERR "Chip not ready after erase "
				       "suspended: status = 0x%lx\n", status.x[0]);
				return -EIO;
			}

			spin_unlock(chip->mutex);
			cfi_udelay(1);
			spin_lock(chip->mutex);
			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
			   So we can just loop here. */
		}
		chip->state = FL_STATUS;
		return 0;

	case FL_XIP_WHILE_ERASING:
		if (mode != FL_READY && mode != FL_POINT &&
		    (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1)))
			goto sleep;
		chip->oldstate = chip->state;
		chip->state = FL_READY;
		return 0;

	case FL_POINT:
		/* Only if there's no operation suspended... */
		if (mode == FL_READY && chip->oldstate == FL_READY)
			return 0;

	default:
	sleep:
		set_current_state(TASK_UNINTERRUPTIBLE);
		add_wait_queue(&chip->wq, &wait);
		spin_unlock(chip->mutex);
		schedule();
		remove_wait_queue(&chip->wq, &wait);
		spin_lock(chip->mutex);
		goto resettime;
	}
}

static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;

	if (chip->priv) {
		struct flchip_shared *shared = chip->priv;
		spin_lock(&shared->lock);
		if (shared->writing == chip && chip->oldstate == FL_READY) {
			/* We own the ability to write, but we're done */
			shared->writing = shared->erasing;
			if (shared->writing && shared->writing != chip) {
				/* give back ownership to who we loaned it from */
				struct flchip *loaner = shared->writing;
				spin_lock(loaner->mutex);
				spin_unlock(&shared->lock);
				spin_unlock(chip->mutex);
				put_chip(map, loaner, loaner->start);
				spin_lock(chip->mutex);
				spin_unlock(loaner->mutex);
				wake_up(&chip->wq);
				return;
			}
			shared->erasing = NULL;
			shared->writing = NULL;
		} else if (shared->erasing == chip && shared->writing != chip) {
			/*
			 * We own the ability to erase without the ability
			 * to write, which means the erase was suspended
			 * and some other partition is currently writing.
			 * Don't let the switch below mess things up since
			 * we don't have ownership to resume anything.
			 */
			spin_unlock(&shared->lock);
			wake_up(&chip->wq);
			return;
		}
		spin_unlock(&shared->lock);
	}

	switch(chip->oldstate) {
	case FL_ERASING:
		chip->state = chip->oldstate;
		/* What if one interleaved chip has finished and the 
		   other hasn't? The old code would leave the finished
		   one in READY mode. That's bad, and caused -EROFS 
		   errors to be returned from do_erase_oneblock because
		   that's the only bit it checked for at the time.
		   As the state machine appears to explicitly allow 
		   sending the 0x70 (Read Status) command to an erasing
		   chip and expecting it to be ignored, that's what we 
		   do. */
		map_write(map, CMD(0xd0), adr);
		map_write(map, CMD(0x70), adr);
		chip->oldstate = FL_READY;
		chip->state = FL_ERASING;
		break;

	case FL_XIP_WHILE_ERASING:
		chip->state = chip->oldstate;
		chip->oldstate = FL_READY;
		break;

	case FL_READY:
	case FL_STATUS:
	case FL_JEDEC_QUERY:
		/* We should really make set_vpp() count, rather than doing this */
		DISABLE_VPP(map);
		break;
	default:
		printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate);
	}
	wake_up(&chip->wq);
}

#ifdef CONFIG_MTD_XIP

/*
 * No interrupt what so ever can be serviced while the flash isn't in array
 * mode.  This is ensured by the xip_disable() and xip_enable() functions
 * enclosing any code path where the flash is known not to be in array mode.
 * And within a XIP disabled code path, only functions marked with __xipram
 * may be called and nothing else (it's a good thing to inspect generated
 * assembly to make sure inline functions were actually inlined and that gcc
 * didn't emit calls to its own support functions). Also configuring MTD CFI
 * support to a single buswidth and a single interleave is also recommended.
 * Note that not only IRQs are disabled but the preemption count is also
 * increased to prevent other locking primitives (namely spin_unlock) from
 * decrementing the preempt count to zero and scheduling the CPU away while
 * not in array mode.
 */

static void xip_disable(struct map_info *map, struct flchip *chip,
			unsigned long adr)
{
	/* TODO: chips with no XIP use should ignore and return */
	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
	preempt_disable();
	local_irq_disable();
}

static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
				unsigned long adr)
{
	struct cfi_private *cfi = map->fldrv_priv;
	if (chip->state != FL_POINT && chip->state != FL_READY) {
		map_write(map, CMD(0xff), adr);
		chip->state = FL_READY;
	}
	(void) map_read(map, adr);
	asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */
	local_irq_enable();
	preempt_enable();
}

/*
 * When a delay is required for the flash operation to complete, the
 * xip_udelay() function is polling for both the given timeout and pending
 * (but still masked) hardware interrupts.  Whenever there is an interrupt
 * pending then the flash erase or write operation is suspended, array mode
 * restored and interrupts unmasked.  Task scheduling might also happen at that
 * point.  The CPU eventually returns from the interrupt or the call to
 * schedule() and the suspended flash operation is resumed for the remaining
 * of the delay period.
 *
 * Warning: this function _will_ fool interrupt latency tracing tools.
 */

static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
				unsigned long adr, int usec)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
	map_word status, OK = CMD(0x80);
	unsigned long suspended, start = xip_currtime();
	flstate_t oldstate, newstate;

	do {
		cpu_relax();
		if (xip_irqpending() && cfip &&
		    ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) ||
		     (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) &&
		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
			/*
			 * Let's suspend the erase or write operation when
			 * supported.  Note that we currently don't try to
			 * suspend interleaved chips if there is already
			 * another operation suspended (imagine what happens
			 * when one chip was already done with the current
			 * operation while another chip suspended it, then
			 * we resume the whole thing at once).  Yes, it
			 * can happen!
			 */
			map_write(map, CMD(0xb0), adr);
			map_write(map, CMD(0x70), adr);
			usec -= xip_elapsed_since(start);
			suspended = xip_currtime();
			do {
				if (xip_elapsed_since(suspended) > 100000) {
					/*
					 * The chip doesn't want to suspend
					 * after waiting for 100 msecs.
					 * This is a critical error but there
					 * is not much we can do here.
					 */
					return;
				}
				status = map_read(map, adr);
			} while (!map_word_andequal(map, status, OK, OK));

			/* Suspend succeeded */
			oldstate = chip->state;
			if (oldstate == FL_ERASING) {
				if (!map_word_bitsset(map, status, CMD(0x40)))
					break;
				newstate = FL_XIP_WHILE_ERASING;
				chip->erase_suspended = 1;
			} else {
				if (!map_word_bitsset(map, status, CMD(0x04)))
					break;
				newstate = FL_XIP_WHILE_WRITING;
				chip->write_suspended = 1;
			}
			chip->state = newstate;
			map_write(map, CMD(0xff), adr);
			(void) map_read(map, adr);
			asm volatile (".rep 8; nop; .endr");
			local_irq_enable();
			preempt_enable();
			asm volatile (".rep 8; nop; .endr");
			cond_resched();

			/*
			 * We're back.  However someone else might have
			 * decided to go write to the chip if we are in
			 * a suspended erase state.  If so let's wait
			 * until it's done.
			 */
			preempt_disable();
			while (chip->state != newstate) {
				DECLARE_WAITQUEUE(wait, current);
				set_current_state(TASK_UNINTERRUPTIBLE);
				add_wait_queue(&chip->wq, &wait);
				preempt_enable();
				schedule();
				remove_wait_queue(&chip->wq, &wait);
				preempt_disable();
			}
			/* Disallow XIP again */
			local_irq_disable();

			/* Resume the write or erase operation */
			map_write(map, CMD(0xd0), adr);
			map_write(map, CMD(0x70), adr);
			chip->state = oldstate;
			start = xip_currtime();
		} else if (usec >= 1000000/HZ) {
			/*
			 * Try to save on CPU power when waiting delay
			 * is at least a system timer tick period.
			 * No need to be extremely accurate here.
			 */
			xip_cpu_idle();
		}
		status = map_read(map, adr);
	} while (!map_word_andequal(map, status, OK, OK)
		 && xip_elapsed_since(start) < usec);
}

#define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)

/*
 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
 * the flash is actively programming or erasing since we have to poll for
 * the operation to complete anyway.  We can't do that in a generic way with
 * a XIP setup so do it before the actual flash operation in this case.
 */
#undef INVALIDATE_CACHED_RANGE
#define INVALIDATE_CACHED_RANGE(x...)
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
	do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0)

/*
 * Extra notes:
 *
 * Activating this XIP support changes the way the code works a bit.  For
 * example the code to suspend the current process when concurrent access
 * happens is never executed because xip_udelay() will always return with the
 * same chip state as it was entered with.  This is why there is no care for
 * the presence of add_wait_queue() or schedule() calls from within a couple
 * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
 * The queueing and scheduling are always happening within xip_udelay().
 *
 * Similarly, get_chip() and put_chip() just happen to always be executed
 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
 * is in array mode, therefore never executing many cases therein and not
 * causing any problem with XIP.
 */

#else

#define xip_disable(map, chip, adr)
#define xip_enable(map, chip, adr)

#define UDELAY(map, chip, adr, usec)  cfi_udelay(usec)

#define XIP_INVAL_CACHED_RANGE(x...)

#endif

static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len)
{
	unsigned long cmd_addr;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret = 0;

	adr += chip->start;

	/* Ensure cmd read/writes are aligned. */ 
	cmd_addr = adr & ~(map_bankwidth(map)-1); 

	spin_lock(chip->mutex);

	ret = get_chip(map, chip, cmd_addr, FL_POINT);

	if (!ret) {
		if (chip->state != FL_POINT && chip->state != FL_READY)
			map_write(map, CMD(0xff), cmd_addr);

		chip->state = FL_POINT;
		chip->ref_point_counter++;
	}
	spin_unlock(chip->mutex);

	return ret;
}

static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	if (!map->virt || (from + len > mtd->size))
		return -EINVAL;
	
	*mtdbuf = (void *)map->virt + from;
	*retlen = 0;

	/* Now lock the chip(s) to POINT state */

	/* ofs: offset within the first chip that the first read should start */
	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum << cfi->chipshift);

	while (len) {
		unsigned long thislen;

		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen);
		if (ret)
			break;

		*retlen += thislen;
		len -= thislen;
		
		ofs = 0;
		chipnum++;
	}
	return 0;
}

static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;

	/* Now unlock the chip(s) POINT state */

	/* ofs: offset within the first chip that the first read should start */
	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum <<  cfi->chipshift);

	while (len) {
		unsigned long thislen;
		struct flchip *chip;

		chip = &cfi->chips[chipnum];
		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		spin_lock(chip->mutex);
		if (chip->state == FL_POINT) {
			chip->ref_point_counter--;
			if(chip->ref_point_counter == 0)
				chip->state = FL_READY;
		} else
			printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */

		put_chip(map, chip, chip->start);
		spin_unlock(chip->mutex);

		len -= thislen;
		ofs = 0;
		chipnum++;
	}
}

static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
	unsigned long cmd_addr;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret;

	adr += chip->start;

	/* Ensure cmd read/writes are aligned. */ 
	cmd_addr = adr & ~(map_bankwidth(map)-1); 

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, cmd_addr, FL_READY);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	if (chip->state != FL_POINT && chip->state != FL_READY) {
		map_write(map, CMD(0xff), cmd_addr);

		chip->state = FL_READY;
	}

	map_copy_from(map, buf, adr, len);

	put_chip(map, chip, cmd_addr);

	spin_unlock(chip->mutex);
	return 0;
}

static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	unsigned long ofs;
	int chipnum;
	int ret = 0;

	/* ofs: offset within the first chip that the first read should start */
	chipnum = (from >> cfi->chipshift);
	ofs = from - (chipnum <<  cfi->chipshift);

	*retlen = 0;

	while (len) {
		unsigned long thislen;

		if (chipnum >= cfi->numchips)
			break;

		if ((len + ofs -1) >> cfi->chipshift)
			thislen = (1<<cfi->chipshift) - ofs;
		else
			thislen = len;

		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
		if (ret)
			break;

		*retlen += thislen;
		len -= thislen;
		buf += thislen;
		
		ofs = 0;
		chipnum++;
	}
	return ret;
}

static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
				     unsigned long adr, map_word datum, int mode)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK, write_cmd;
	unsigned long timeo;
	int z, ret=0;

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);
	switch (mode) {
	case FL_WRITING:   write_cmd = CMD(0x40); break;
	case FL_OTP_WRITE: write_cmd = CMD(0xc0); break;
	default: return -EINVAL;
	}

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, adr, mode);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
	ENABLE_VPP(map);
	xip_disable(map, chip, adr);
	map_write(map, write_cmd, adr);
	map_write(map, datum, adr);
	chip->state = mode;

	spin_unlock(chip->mutex);
	INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map));
	UDELAY(map, chip, adr, chip->word_write_time);
	spin_lock(chip->mutex);

	timeo = jiffies + (HZ/2);
	z = 0;
	for (;;) {
		if (chip->state != mode) {
			/* Someone's suspended the write. Sleep */
			DECLARE_WAITQUEUE(wait, current);

			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			spin_unlock(chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			timeo = jiffies + (HZ / 2); /* FIXME */
			spin_lock(chip->mutex);
			continue;
		}

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;
		
		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			chip->state = FL_STATUS;
			xip_enable(map, chip, adr);
			printk(KERN_ERR "waiting for chip to be ready timed out in word write\n");
			ret = -EIO;
			goto out;
		}

		/* Latency issues. Drop the lock, wait a while and retry */
		spin_unlock(chip->mutex);
		z++;
		UDELAY(map, chip, adr, 1);
		spin_lock(chip->mutex);
	}
	if (!z) {
		chip->word_write_time--;
		if (!chip->word_write_time)
			chip->word_write_time++;
	}
	if (z > 1) 
		chip->word_write_time++;

	/* Done and happy. */
	chip->state = FL_STATUS;

	/* check for lock bit */
	if (map_word_bitsset(map, status, CMD(0x02))) {
		/* clear status */
		map_write(map, CMD(0x50), adr);
		/* put back into read status register mode */
		map_write(map, CMD(0x70), adr);
		ret = -EROFS;
	}

	xip_enable(map, chip, adr);
 out:	put_chip(map, chip, adr);
	spin_unlock(chip->mutex);

	return ret;
}


static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int ret = 0;
	int chipnum;
	unsigned long ofs;

	*retlen = 0;
	if (!len)
		return 0;

	chipnum = to >> cfi->chipshift;
	ofs = to  - (chipnum << cfi->chipshift);

	/* If it's not bus-aligned, do the first byte write */
	if (ofs & (map_bankwidth(map)-1)) {
		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
		int gap = ofs - bus_ofs;
		int n;
		map_word datum;

		n = min_t(int, len, map_bankwidth(map)-gap);
		datum = map_word_ff(map);
		datum = map_word_load_partial(map, datum, buf, gap, n);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
					       bus_ofs, datum, FL_WRITING);
		if (ret) 
			return ret;

		len -= n;
		ofs += n;
		buf += n;
		(*retlen) += n;

		if (ofs >> cfi->chipshift) {
			chipnum ++; 
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}
	
	while(len >= map_bankwidth(map)) {
		map_word datum = map_word_load(map, buf);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
				       ofs, datum, FL_WRITING);
		if (ret)
			return ret;

		ofs += map_bankwidth(map);
		buf += map_bankwidth(map);
		(*retlen) += map_bankwidth(map);
		len -= map_bankwidth(map);

		if (ofs >> cfi->chipshift) {
			chipnum ++; 
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	if (len & (map_bankwidth(map)-1)) {
		map_word datum;

		datum = map_word_ff(map);
		datum = map_word_load_partial(map, datum, buf, 0, len);

		ret = do_write_oneword(map, &cfi->chips[chipnum],
				       ofs, datum, FL_WRITING);
		if (ret) 
			return ret;
		
		(*retlen) += len;
	}

	return 0;
}


static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, 
				    unsigned long adr, const u_char *buf, int len)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK;
	unsigned long cmd_adr, timeo;
	int wbufsize, z, ret=0, bytes, words;

	wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
	adr += chip->start;
	cmd_adr = adr & ~(wbufsize-1);
	
	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, cmd_adr, FL_WRITING);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	XIP_INVAL_CACHED_RANGE(map, adr, len);
	ENABLE_VPP(map);
	xip_disable(map, chip, cmd_adr);

	/* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set
	   [...], the device will not accept any more Write to Buffer commands". 
	   So we must check here and reset those bits if they're set. Otherwise
	   we're just pissing in the wind */
	if (chip->state != FL_STATUS)
		map_write(map, CMD(0x70), cmd_adr);
	status = map_read(map, cmd_adr);
	if (map_word_bitsset(map, status, CMD(0x30))) {
		xip_enable(map, chip, cmd_adr);
		printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]);
		xip_disable(map, chip, cmd_adr);
		map_write(map, CMD(0x50), cmd_adr);
		map_write(map, CMD(0x70), cmd_adr);
	}

	chip->state = FL_WRITING_TO_BUFFER;

	z = 0;
	for (;;) {
		map_write(map, CMD(0xe8), cmd_adr);

		status = map_read(map, cmd_adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		spin_unlock(chip->mutex);
		UDELAY(map, chip, cmd_adr, 1);
		spin_lock(chip->mutex);

		if (++z > 20) {
			/* Argh. Not ready for write to buffer */
			map_word Xstatus;
			map_write(map, CMD(0x70), cmd_adr);
			chip->state = FL_STATUS;
			Xstatus = map_read(map, cmd_adr);
			/* Odd. Clear status bits */
			map_write(map, CMD(0x50), cmd_adr);
			map_write(map, CMD(0x70), cmd_adr);
			xip_enable(map, chip, cmd_adr);
			printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n",
			       status.x[0], Xstatus.x[0]);
			ret = -EIO;
			goto out;
		}
	}

	/* Write length of data to come */
	bytes = len & (map_bankwidth(map)-1);
	words = len / map_bankwidth(map);
	map_write(map, CMD(words - !bytes), cmd_adr );

	/* Write data */
	z = 0;
	while(z < words * map_bankwidth(map)) {
		map_word datum = map_word_load(map, buf);
		map_write(map, datum, adr+z);

		z += map_bankwidth(map);
		buf += map_bankwidth(map);
	}

	if (bytes) {
		map_word datum;

		datum = map_word_ff(map);
		datum = map_word_load_partial(map, datum, buf, 0, bytes);
		map_write(map, datum, adr+z);
	}

	/* GO GO GO */
	map_write(map, CMD(0xd0), cmd_adr);
	chip->state = FL_WRITING;

	spin_unlock(chip->mutex);
	INVALIDATE_CACHED_RANGE(map, adr, len);
	UDELAY(map, chip, cmd_adr, chip->buffer_write_time);
	spin_lock(chip->mutex);

	timeo = jiffies + (HZ/2);
	z = 0;
	for (;;) {
		if (chip->state != FL_WRITING) {
			/* Someone's suspended the write. Sleep */
			DECLARE_WAITQUEUE(wait, current);
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			spin_unlock(chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			timeo = jiffies + (HZ / 2); /* FIXME */
			spin_lock(chip->mutex);
			continue;
		}

		status = map_read(map, cmd_adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;

		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			chip->state = FL_STATUS;
			xip_enable(map, chip, cmd_adr);
			printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n");
			ret = -EIO;
			goto out;
		}
		
		/* Latency issues. Drop the lock, wait a while and retry */
		spin_unlock(chip->mutex);
		UDELAY(map, chip, cmd_adr, 1);
		z++;
		spin_lock(chip->mutex);
	}
	if (!z) {
		chip->buffer_write_time--;
		if (!chip->buffer_write_time)
			chip->buffer_write_time++;
	}
	if (z > 1) 
		chip->buffer_write_time++;

	/* Done and happy. */
 	chip->state = FL_STATUS;

	/* check for lock bit */
	if (map_word_bitsset(map, status, CMD(0x02))) {
		/* clear status */
		map_write(map, CMD(0x50), cmd_adr);
		/* put back into read status register mode */
		map_write(map, CMD(0x70), adr);
		ret = -EROFS;
	}

	xip_enable(map, chip, cmd_adr);
 out:	put_chip(map, chip, cmd_adr);
	spin_unlock(chip->mutex);
	return ret;
}

static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, 
				       size_t len, size_t *retlen, const u_char *buf)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
	int ret = 0;
	int chipnum;
	unsigned long ofs;

	*retlen = 0;
	if (!len)
		return 0;

	chipnum = to >> cfi->chipshift;
	ofs = to  - (chipnum << cfi->chipshift);

	/* If it's not bus-aligned, do the first word write */
	if (ofs & (map_bankwidth(map)-1)) {
		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
		if (local_len > len)
			local_len = len;
		ret = cfi_intelext_write_words(mtd, to, local_len,
					       retlen, buf);
		if (ret)
			return ret;
		ofs += local_len;
		buf += local_len;
		len -= local_len;

		if (ofs >> cfi->chipshift) {
			chipnum ++;
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}

	while(len) {
		/* We must not cross write block boundaries */
		int size = wbufsize - (ofs & (wbufsize-1));

		if (size > len)
			size = len;
		ret = do_write_buffer(map, &cfi->chips[chipnum], 
				      ofs, buf, size);
		if (ret)
			return ret;

		ofs += size;
		buf += size;
		(*retlen) += size;
		len -= size;

		if (ofs >> cfi->chipshift) {
			chipnum ++; 
			ofs = 0;
			if (chipnum == cfi->numchips)
				return 0;
		}
	}
	return 0;
}

static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
				      unsigned long adr, int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word status, status_OK;
	unsigned long timeo;
	int retries = 3;
	DECLARE_WAITQUEUE(wait, current);
	int ret = 0;

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

 retry:
	spin_lock(chip->mutex);
	ret = get_chip(map, chip, adr, FL_ERASING);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	XIP_INVAL_CACHED_RANGE(map, adr, len);
	ENABLE_VPP(map);
	xip_disable(map, chip, adr);

	/* Clear the status register first */
	map_write(map, CMD(0x50), adr);

	/* Now erase */
	map_write(map, CMD(0x20), adr);
	map_write(map, CMD(0xD0), adr);
	chip->state = FL_ERASING;
	chip->erase_suspended = 0;

	spin_unlock(chip->mutex);
	INVALIDATE_CACHED_RANGE(map, adr, len);
	UDELAY(map, chip, adr, chip->erase_time*1000/2);
	spin_lock(chip->mutex);

	/* FIXME. Use a timer to check this, and return immediately. */
	/* Once the state machine's known to be working I'll do that */

	timeo = jiffies + (HZ*20);
	for (;;) {
		if (chip->state != FL_ERASING) {
			/* Someone's suspended the erase. Sleep */
			set_current_state(TASK_UNINTERRUPTIBLE);
			add_wait_queue(&chip->wq, &wait);
			spin_unlock(chip->mutex);
			schedule();
			remove_wait_queue(&chip->wq, &wait);
			spin_lock(chip->mutex);
			continue;
		}
		if (chip->erase_suspended) {
			/* This erase was suspended and resumed.
			   Adjust the timeout */
			timeo = jiffies + (HZ*20); /* FIXME */
			chip->erase_suspended = 0;
		}

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;
		
		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			map_word Xstatus;
			map_write(map, CMD(0x70), adr);
			chip->state = FL_STATUS;
			Xstatus = map_read(map, adr);
			/* Clear status bits */
			map_write(map, CMD(0x50), adr);
			map_write(map, CMD(0x70), adr);
			xip_enable(map, chip, adr);
			printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n",
			       adr, status.x[0], Xstatus.x[0]);
			ret = -EIO;
			goto out;
		}
		
		/* Latency issues. Drop the lock, wait a while and retry */
		spin_unlock(chip->mutex);
		UDELAY(map, chip, adr, 1000000/HZ);
		spin_lock(chip->mutex);
	}

	/* We've broken this before. It doesn't hurt to be safe */
	map_write(map, CMD(0x70), adr);
	chip->state = FL_STATUS;
	status = map_read(map, adr);

	/* check for lock bit */
	if (map_word_bitsset(map, status, CMD(0x3a))) {
		unsigned long chipstatus;

		/* Reset the error bits */
		map_write(map, CMD(0x50), adr);
		map_write(map, CMD(0x70), adr);
		xip_enable(map, chip, adr);

		chipstatus = MERGESTATUS(status);

		if ((chipstatus & 0x30) == 0x30) {
			printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%lx\n", chipstatus);
			ret = -EIO;
		} else if (chipstatus & 0x02) {
			/* Protection bit set */
			ret = -EROFS;
		} else if (chipstatus & 0x8) {
			/* Voltage */
			printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%lx\n", chipstatus);
			ret = -EIO;
		} else if (chipstatus & 0x20) {
			if (retries--) {
				printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx. Retrying...\n", adr, chipstatus);
				timeo = jiffies + HZ;
				put_chip(map, chip, adr);
				spin_unlock(chip->mutex);
				goto retry;
			}
			printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%lx\n", adr, chipstatus);
			ret = -EIO;
		}
	} else {
		xip_enable(map, chip, adr);
		ret = 0;
	}

 out:	put_chip(map, chip, adr);
	spin_unlock(chip->mutex);
	return ret;
}

int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
{
	unsigned long ofs, len;
	int ret;

	ofs = instr->addr;
	len = instr->len;

	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
	if (ret)
		return ret;

	instr->state = MTD_ERASE_DONE;
	mtd_erase_callback(instr);
	
	return 0;
}

static void cfi_intelext_sync (struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

		spin_lock(chip->mutex);
		ret = get_chip(map, chip, chip->start, FL_SYNCING);

		if (!ret) {
			chip->oldstate = chip->state;
			chip->state = FL_SYNCING;
			/* No need to wake_up() on this state change - 
			 * as the whole point is that nobody can do anything
			 * with the chip now anyway.
			 */
		}
		spin_unlock(chip->mutex);
	}

	/* Unlock the chips again */

	for (i--; i >=0; i--) {
		chip = &cfi->chips[i];

		spin_lock(chip->mutex);
		
		if (chip->state == FL_SYNCING) {
			chip->state = chip->oldstate;
			chip->oldstate = FL_READY;
			wake_up(&chip->wq);
		}
		spin_unlock(chip->mutex);
	}
}

#ifdef DEBUG_LOCK_BITS
static int __xipram do_printlockstatus_oneblock(struct map_info *map,
						struct flchip *chip,
						unsigned long adr,
						int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	int status, ofs_factor = cfi->interleave * cfi->device_type;

	xip_disable(map, chip, adr+(2*ofs_factor));
	cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL);
	chip->state = FL_JEDEC_QUERY;
	status = cfi_read_query(map, adr+(2*ofs_factor));
	xip_enable(map, chip, 0);
	printk(KERN_DEBUG "block status register for 0x%08lx is %x\n",
	       adr, status);
	return 0;
}
#endif

#define DO_XXLOCK_ONEBLOCK_LOCK		((void *) 1)
#define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *) 2)

static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip,
				       unsigned long adr, int len, void *thunk)
{
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
	map_word status, status_OK;
	unsigned long timeo = jiffies + HZ;
	int ret;

	adr += chip->start;

	/* Let's determine this according to the interleave only once */
	status_OK = CMD(0x80);

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, adr, FL_LOCKING);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	ENABLE_VPP(map);
	xip_disable(map, chip, adr);
	
	map_write(map, CMD(0x60), adr);
	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
		map_write(map, CMD(0x01), adr);
		chip->state = FL_LOCKING;
	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
		map_write(map, CMD(0xD0), adr);
		chip->state = FL_UNLOCKING;
	} else
		BUG();

	/*
	 * If Instant Individual Block Locking supported then no need
	 * to delay.
	 */

	if (!extp || !(extp->FeatureSupport & (1 << 5))) {
		spin_unlock(chip->mutex);
		UDELAY(map, chip, adr, 1000000/HZ);
		spin_lock(chip->mutex);
	}

	/* FIXME. Use a timer to check this, and return immediately. */
	/* Once the state machine's known to be working I'll do that */

	timeo = jiffies + (HZ*20);
	for (;;) {

		status = map_read(map, adr);
		if (map_word_andequal(map, status, status_OK, status_OK))
			break;
		
		/* OK Still waiting */
		if (time_after(jiffies, timeo)) {
			map_word Xstatus;
			map_write(map, CMD(0x70), adr);
			chip->state = FL_STATUS;
			Xstatus = map_read(map, adr);
			xip_enable(map, chip, adr);
			printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n",
			       status.x[0], Xstatus.x[0]);
			put_chip(map, chip, adr);
			spin_unlock(chip->mutex);
			return -EIO;
		}
		
		/* Latency issues. Drop the lock, wait a while and retry */
		spin_unlock(chip->mutex);
		UDELAY(map, chip, adr, 1);
		spin_lock(chip->mutex);
	}
	
	/* Done and happy. */
	chip->state = FL_STATUS;
	xip_enable(map, chip, adr);
	put_chip(map, chip, adr);
	spin_unlock(chip->mutex);
	return 0;
}

static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	int ret;

#ifdef DEBUG_LOCK_BITS
	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
	       __FUNCTION__, ofs, len);
	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
		ofs, len, 0);
#endif

	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, 
		ofs, len, DO_XXLOCK_ONEBLOCK_LOCK);
	
#ifdef DEBUG_LOCK_BITS
	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
	       __FUNCTION__, ret);
	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
		ofs, len, 0);
#endif

	return ret;
}

static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
	int ret;

#ifdef DEBUG_LOCK_BITS
	printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n",
	       __FUNCTION__, ofs, len);
	cfi_varsize_frob(mtd, do_printlockstatus_oneblock,
		ofs, len, 0);
#endif

	ret = cfi_varsize_frob(mtd, do_xxlock_oneblock,
					ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK);
	
#ifdef DEBUG_LOCK_BITS
	printk(KERN_DEBUG "%s: lock status after, ret=%d\n",
	       __FUNCTION__, ret);
	cfi_varsize_frob(mtd, do_printlockstatus_oneblock, 
		ofs, len, 0);
#endif
	
	return ret;
}

#ifdef CONFIG_MTD_OTP

typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, 
			u_long data_offset, u_char *buf, u_int size,
			u_long prot_offset, u_int groupno, u_int groupsize);

static int __xipram
do_otp_read(struct map_info *map, struct flchip *chip, u_long offset,
	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
	struct cfi_private *cfi = map->fldrv_priv;
	int ret;

	spin_lock(chip->mutex);
	ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY);
	if (ret) {
		spin_unlock(chip->mutex);
		return ret;
	}

	/* let's ensure we're not reading back cached data from array mode */
	if (map->inval_cache)
		map->inval_cache(map, chip->start + offset, size);

	xip_disable(map, chip, chip->start);
	if (chip->state != FL_JEDEC_QUERY) {
		map_write(map, CMD(0x90), chip->start);
		chip->state = FL_JEDEC_QUERY;
	}
	map_copy_from(map, buf, chip->start + offset, size);
	xip_enable(map, chip, chip->start);

	/* then ensure we don't keep OTP data in the cache */
	if (map->inval_cache)
		map->inval_cache(map, chip->start + offset, size);

	put_chip(map, chip, chip->start);
	spin_unlock(chip->mutex);
	return 0;
}

static int
do_otp_write(struct map_info *map, struct flchip *chip, u_long offset,
	     u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
	int ret;

	while (size) {
		unsigned long bus_ofs = offset & ~(map_bankwidth(map)-1);
		int gap = offset - bus_ofs;
		int n = min_t(int, size, map_bankwidth(map)-gap);
		map_word datum = map_word_ff(map);

		datum = map_word_load_partial(map, datum, buf, gap, n);
		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
		if (ret) 
			return ret;

		offset += n;
		buf += n;
		size -= n;
	}

	return 0;
}

static int
do_otp_lock(struct map_info *map, struct flchip *chip, u_long offset,
	    u_char *buf, u_int size, u_long prot, u_int grpno, u_int grpsz)
{
	struct cfi_private *cfi = map->fldrv_priv;
	map_word datum;

	/* make sure area matches group boundaries */
	if (size != grpsz)
		return -EXDEV;

	datum = map_word_ff(map);
	datum = map_word_clr(map, datum, CMD(1 << grpno));
	return do_write_oneword(map, chip, prot, datum, FL_OTP_WRITE);
}

static int cfi_intelext_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
				 size_t *retlen, u_char *buf,
				 otp_op_t action, int user_regs)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	struct cfi_pri_intelext *extp = cfi->cmdset_priv;
	struct flchip *chip;
	struct cfi_intelext_otpinfo *otp;
	u_long devsize, reg_prot_offset, data_offset;
	u_int chip_num, chip_step, field, reg_fact_size, reg_user_size;
	u_int groups, groupno, groupsize, reg_fact_groups, reg_user_groups;
	int ret;

	*retlen = 0;

	/* Check that we actually have some OTP registers */
	if (!extp || !(extp->FeatureSupport & 64) || !extp->NumProtectionFields)
		return -ENODATA;

	/* we need real chips here not virtual ones */
	devsize = (1 << cfi->cfiq->DevSize) * cfi->interleave;
	chip_step = devsize >> cfi->chipshift;
	chip_num = 0;

	/* Some chips have OTP located in the _top_ partition only.
	   For example: Intel 28F256L18T (T means top-parameter device) */
	if (cfi->mfr == MANUFACTURER_INTEL) {
		switch (cfi->id) {
		case 0x880b:
		case 0x880c:
		case 0x880d:
			chip_num = chip_step - 1;
		}
	}

	for ( ; chip_num < cfi->numchips; chip_num += chip_step) {
		chip = &cfi->chips[chip_num];
		otp = (struct cfi_intelext_otpinfo *)&extp->extra[0];

		/* first OTP region */
		field = 0;
		reg_prot_offset = extp->ProtRegAddr;
		reg_fact_groups = 1;
		reg_fact_size = 1 << extp->FactProtRegSize;
		reg_user_groups = 1;
		reg_user_size = 1 << extp->UserProtRegSize;

		while (len > 0) {
			/* flash geometry fixup */
			data_offset = reg_prot_offset + 1;
			data_offset *= cfi->interleave * cfi->device_type;
			reg_prot_offset *= cfi->interleave * cfi->device_type;
			reg_fact_size *= cfi->interleave;
			reg_user_size *= cfi->interleave;

			if (user_regs) {
				groups = reg_user_groups;
				groupsize = reg_user_size;
				/* skip over factory reg area */
				groupno = reg_fact_groups;
				data_offset += reg_fact_groups * reg_fact_size;
			} else {
				groups = reg_fact_groups;
				groupsize = reg_fact_size;
				groupno = 0;
			}

			while (len > 0 && groups > 0) {
				if (!action) {
					/*
					 * Special case: if action is NULL
					 * we fill buf with otp_info records.
					 */
					struct otp_info *otpinfo;
					map_word lockword;
					len -= sizeof(struct otp_info);
					if (len <= 0)
						return -ENOSPC;
					ret = do_otp_read(map, chip,
							  reg_prot_offset,
							  (u_char *)&lockword,
							  map_bankwidth(map),
							  0, 0,  0);
					if (ret)
						return ret;
					otpinfo = (struct otp_info *)buf;
					otpinfo->start = from;
					otpinfo->length = groupsize;
					otpinfo->locked =
					   !map_word_bitsset(map, lockword,
							     CMD(1 << groupno));
					from += groupsize;
					buf += sizeof(*otpinfo);
					*retlen += sizeof(*otpinfo);
				} else if (from >= groupsize) {
					from -= groupsize;
					data_offset += groupsize;
				} else {
					int size = groupsize;
					data_offset += from;
					size -= from;
					from = 0;
					if (size > len)
						size = len;
					ret = action(map, chip, data_offset,
						     buf, size, reg_prot_offset,
						     groupno, groupsize);
					if (ret < 0)
						return ret;
					buf += size;
					len -= size;
					*retlen += size;
					data_offset += size;
				}
				groupno++;
				groups--;
			}

			/* next OTP region */
			if (++field == extp->NumProtectionFields)
				break;
			reg_prot_offset = otp->ProtRegAddr;
			reg_fact_groups = otp->FactGroups;
			reg_fact_size = 1 << otp->FactProtRegSize;
			reg_user_groups = otp->UserGroups;
			reg_user_size = 1 << otp->UserProtRegSize;
			otp++;
		}
	}

	return 0;
}

static int cfi_intelext_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
					   size_t len, size_t *retlen,
					    u_char *buf)
{
	return cfi_intelext_otp_walk(mtd, from, len, retlen,
				     buf, do_otp_read, 0);
}

static int cfi_intelext_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
					   size_t len, size_t *retlen,
					    u_char *buf)
{
	return cfi_intelext_otp_walk(mtd, from, len, retlen,
				     buf, do_otp_read, 1);
}

static int cfi_intelext_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
					    size_t len, size_t *retlen,
					     u_char *buf)
{
	return cfi_intelext_otp_walk(mtd, from, len, retlen,
				     buf, do_otp_write, 1);
}

static int cfi_intelext_lock_user_prot_reg(struct mtd_info *mtd,
					   loff_t from, size_t len)
{
	size_t retlen;
	return cfi_intelext_otp_walk(mtd, from, len, &retlen,
				     NULL, do_otp_lock, 1);
}

static int cfi_intelext_get_fact_prot_info(struct mtd_info *mtd, 
					   struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 0);
	return ret ? : retlen;
}

static int cfi_intelext_get_user_prot_info(struct mtd_info *mtd,
					   struct otp_info *buf, size_t len)
{
	size_t retlen;
	int ret;

	ret = cfi_intelext_otp_walk(mtd, 0, len, &retlen, (u_char *)buf, NULL, 1);
	return ret ? : retlen;
}

#endif

static int cfi_intelext_suspend(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;
	int ret = 0;

	for (i=0; !ret && i<cfi->numchips; i++) {
		chip = &cfi->chips[i];

		spin_lock(chip->mutex);

		switch (chip->state) {
		case FL_READY:
		case FL_STATUS:
		case FL_CFI_QUERY:
		case FL_JEDEC_QUERY:
			if (chip->oldstate == FL_READY) {
				chip->oldstate = chip->state;
				chip->state = FL_PM_SUSPENDED;
				/* No need to wake_up() on this state change - 
				 * as the whole point is that nobody can do anything
				 * with the chip now anyway.
				 */
			} else {
				/* There seems to be an operation pending. We must wait for it. */
				printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate);
				ret = -EAGAIN;
			}
			break;
		default:
			/* Should we actually wait? Once upon a time these routines weren't
			   allowed to. Or should we return -EAGAIN, because the upper layers
			   ought to have already shut down anything which was using the device
			   anyway? The latter for now. */
			printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate);
			ret = -EAGAIN;
		case FL_PM_SUSPENDED:
			break;
		}
		spin_unlock(chip->mutex);
	}

	/* Unlock the chips again */

	if (ret) {
		for (i--; i >=0; i--) {
			chip = &cfi->chips[i];
			
			spin_lock(chip->mutex);
			
			if (chip->state == FL_PM_SUSPENDED) {
				/* No need to force it into a known state here,
				   because we're returning failure, and it didn't
				   get power cycled */
				chip->state = chip->oldstate;
				chip->oldstate = FL_READY;
				wake_up(&chip->wq);
			}
			spin_unlock(chip->mutex);
		}
	} 
	
	return ret;
}

static void cfi_intelext_resume(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i;
	struct flchip *chip;

	for (i=0; i<cfi->numchips; i++) {
	
		chip = &cfi->chips[i];

		spin_lock(chip->mutex);
		
		/* Go to known state. Chip may have been power cycled */
		if (chip->state == FL_PM_SUSPENDED) {
			map_write(map, CMD(0xFF), cfi->chips[i].start);
			chip->oldstate = chip->state = FL_READY;
			wake_up(&chip->wq);
		}

		spin_unlock(chip->mutex);
	}
}

static int cfi_intelext_reset(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	int i, ret;

	for (i=0; i < cfi->numchips; i++) {
		struct flchip *chip = &cfi->chips[i];

		/* force the completion of any ongoing operation
		   and switch to array mode so any bootloader in 
		   flash is accessible for soft reboot. */
		spin_lock(chip->mutex);
		ret = get_chip(map, chip, chip->start, FL_SYNCING);
		if (!ret) {
			map_write(map, CMD(0xff), chip->start);
			chip->state = FL_READY;
		}
		spin_unlock(chip->mutex);
	}

	return 0;
}

static int cfi_intelext_reboot(struct notifier_block *nb, unsigned long val,
			       void *v)
{
	struct mtd_info *mtd;

	mtd = container_of(nb, struct mtd_info, reboot_notifier);
	cfi_intelext_reset(mtd);
	return NOTIFY_DONE;
}

static void cfi_intelext_destroy(struct mtd_info *mtd)
{
	struct map_info *map = mtd->priv;
	struct cfi_private *cfi = map->fldrv_priv;
	cfi_intelext_reset(mtd);
	unregister_reboot_notifier(&mtd->reboot_notifier);
	kfree(cfi->cmdset_priv);
	kfree(cfi->cfiq);
	kfree(cfi->chips[0].priv);
	kfree(cfi);
	kfree(mtd->eraseregions);
}

static char im_name_1[]="cfi_cmdset_0001";
static char im_name_3[]="cfi_cmdset_0003";

static int __init cfi_intelext_init(void)
{
	inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001);
	inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001);
	return 0;
}

static void __exit cfi_intelext_exit(void)
{
	inter_module_unregister(im_name_1);
	inter_module_unregister(im_name_3);
}

module_init(cfi_intelext_init);
module_exit(cfi_intelext_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips");