1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
|
// SPDX-License-Identifier: GPL-2.0+
/*
* APM X-Gene MSI Driver
*
* Copyright (c) 2014, Applied Micro Circuits Corporation
* Author: Tanmay Inamdar <tinamdar@apm.com>
* Duc Dang <dhdang@apm.com>
*/
#include <linux/cpu.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/of_pci.h>
#define MSI_IR0 0x000000
#define MSI_INT0 0x800000
#define IDX_PER_GROUP 8
#define IRQS_PER_IDX 16
#define NR_HW_IRQS 16
#define NR_MSI_VEC (IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
struct xgene_msi_group {
struct xgene_msi *msi;
int gic_irq;
u32 msi_grp;
};
struct xgene_msi {
struct device_node *node;
struct irq_domain *inner_domain;
struct irq_domain *msi_domain;
u64 msi_addr;
void __iomem *msi_regs;
unsigned long *bitmap;
struct mutex bitmap_lock;
struct xgene_msi_group *msi_groups;
int num_cpus;
};
/* Global data */
static struct xgene_msi xgene_msi_ctrl;
static struct irq_chip xgene_msi_top_irq_chip = {
.name = "X-Gene1 MSI",
.irq_enable = pci_msi_unmask_irq,
.irq_disable = pci_msi_mask_irq,
.irq_mask = pci_msi_mask_irq,
.irq_unmask = pci_msi_unmask_irq,
};
static struct msi_domain_info xgene_msi_domain_info = {
.flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
MSI_FLAG_PCI_MSIX),
.chip = &xgene_msi_top_irq_chip,
};
/*
* X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
* n is group number (0..F), x is index of registers in each group (0..7)
* The register layout is as follows:
* MSI0IR0 base_addr
* MSI0IR1 base_addr + 0x10000
* ... ...
* MSI0IR6 base_addr + 0x60000
* MSI0IR7 base_addr + 0x70000
* MSI1IR0 base_addr + 0x80000
* MSI1IR1 base_addr + 0x90000
* ... ...
* MSI1IR7 base_addr + 0xF0000
* MSI2IR0 base_addr + 0x100000
* ... ...
* MSIFIR0 base_addr + 0x780000
* MSIFIR1 base_addr + 0x790000
* ... ...
* MSIFIR7 base_addr + 0x7F0000
* MSIINT0 base_addr + 0x800000
* MSIINT1 base_addr + 0x810000
* ... ...
* MSIINTF base_addr + 0x8F0000
*
* Each index register supports 16 MSI vectors (0..15) to generate interrupt.
* There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
* registers.
*
* Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
* the MSI pending status caused by 1 of its 8 index registers.
*/
/* MSInIRx read helper */
static u32 xgene_msi_ir_read(struct xgene_msi *msi,
u32 msi_grp, u32 msir_idx)
{
return readl_relaxed(msi->msi_regs + MSI_IR0 +
(msi_grp << 19) + (msir_idx << 16));
}
/* MSIINTn read helper */
static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
{
return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
}
/*
* With 2048 MSI vectors supported, the MSI message can be constructed using
* following scheme:
* - Divide into 8 256-vector groups
* Group 0: 0-255
* Group 1: 256-511
* Group 2: 512-767
* ...
* Group 7: 1792-2047
* - Each 256-vector group is divided into 16 16-vector groups
* As an example: 16 16-vector groups for 256-vector group 0-255 is
* Group 0: 0-15
* Group 1: 16-32
* ...
* Group 15: 240-255
* - The termination address of MSI vector in 256-vector group n and 16-vector
* group x is the address of MSIxIRn
* - The data for MSI vector in 16-vector group x is x
*/
static u32 hwirq_to_reg_set(unsigned long hwirq)
{
return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
}
static u32 hwirq_to_group(unsigned long hwirq)
{
return (hwirq % NR_HW_IRQS);
}
static u32 hwirq_to_msi_data(unsigned long hwirq)
{
return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
}
static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
u32 reg_set = hwirq_to_reg_set(data->hwirq);
u32 group = hwirq_to_group(data->hwirq);
u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
msg->address_hi = upper_32_bits(target_addr);
msg->address_lo = lower_32_bits(target_addr);
msg->data = hwirq_to_msi_data(data->hwirq);
}
/*
* X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors. To maintain
* the expected behaviour of .set_affinity for each MSI interrupt, the 16
* MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
* for each core). The MSI vector is moved fom 1 MSI GIC IRQ to another
* MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core. As a
* consequence, the total MSI vectors that X-Gene v1 supports will be
* reduced to 256 (2048/8) vectors.
*/
static int hwirq_to_cpu(unsigned long hwirq)
{
return (hwirq % xgene_msi_ctrl.num_cpus);
}
static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
{
return (hwirq - hwirq_to_cpu(hwirq));
}
static int xgene_msi_set_affinity(struct irq_data *irqdata,
const struct cpumask *mask, bool force)
{
int target_cpu = cpumask_first(mask);
int curr_cpu;
curr_cpu = hwirq_to_cpu(irqdata->hwirq);
if (curr_cpu == target_cpu)
return IRQ_SET_MASK_OK_DONE;
/* Update MSI number to target the new CPU */
irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu;
return IRQ_SET_MASK_OK;
}
static struct irq_chip xgene_msi_bottom_irq_chip = {
.name = "MSI",
.irq_set_affinity = xgene_msi_set_affinity,
.irq_compose_msi_msg = xgene_compose_msi_msg,
};
static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct xgene_msi *msi = domain->host_data;
int msi_irq;
mutex_lock(&msi->bitmap_lock);
msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0,
msi->num_cpus, 0);
if (msi_irq < NR_MSI_VEC)
bitmap_set(msi->bitmap, msi_irq, msi->num_cpus);
else
msi_irq = -ENOSPC;
mutex_unlock(&msi->bitmap_lock);
if (msi_irq < 0)
return msi_irq;
irq_domain_set_info(domain, virq, msi_irq,
&xgene_msi_bottom_irq_chip, domain->host_data,
handle_simple_irq, NULL, NULL);
return 0;
}
static void xgene_irq_domain_free(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs)
{
struct irq_data *d = irq_domain_get_irq_data(domain, virq);
struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
u32 hwirq;
mutex_lock(&msi->bitmap_lock);
hwirq = hwirq_to_canonical_hwirq(d->hwirq);
bitmap_clear(msi->bitmap, hwirq, msi->num_cpus);
mutex_unlock(&msi->bitmap_lock);
irq_domain_free_irqs_parent(domain, virq, nr_irqs);
}
static const struct irq_domain_ops msi_domain_ops = {
.alloc = xgene_irq_domain_alloc,
.free = xgene_irq_domain_free,
};
static int xgene_allocate_domains(struct xgene_msi *msi)
{
msi->inner_domain = irq_domain_add_linear(NULL, NR_MSI_VEC,
&msi_domain_ops, msi);
if (!msi->inner_domain)
return -ENOMEM;
msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(msi->node),
&xgene_msi_domain_info,
msi->inner_domain);
if (!msi->msi_domain) {
irq_domain_remove(msi->inner_domain);
return -ENOMEM;
}
return 0;
}
static void xgene_free_domains(struct xgene_msi *msi)
{
if (msi->msi_domain)
irq_domain_remove(msi->msi_domain);
if (msi->inner_domain)
irq_domain_remove(msi->inner_domain);
}
static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
{
xgene_msi->bitmap = bitmap_zalloc(NR_MSI_VEC, GFP_KERNEL);
if (!xgene_msi->bitmap)
return -ENOMEM;
mutex_init(&xgene_msi->bitmap_lock);
xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
sizeof(struct xgene_msi_group),
GFP_KERNEL);
if (!xgene_msi->msi_groups)
return -ENOMEM;
return 0;
}
static void xgene_msi_isr(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
struct xgene_msi_group *msi_groups;
struct xgene_msi *xgene_msi;
int msir_index, msir_val, hw_irq, ret;
u32 intr_index, grp_select, msi_grp;
chained_irq_enter(chip, desc);
msi_groups = irq_desc_get_handler_data(desc);
xgene_msi = msi_groups->msi;
msi_grp = msi_groups->msi_grp;
/*
* MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
* If bit x of this register is set (x is 0..7), one or more interrupts
* corresponding to MSInIRx is set.
*/
grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
while (grp_select) {
msir_index = ffs(grp_select) - 1;
/*
* Calculate MSInIRx address to read to check for interrupts
* (refer to termination address and data assignment
* described in xgene_compose_msi_msg() )
*/
msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index);
while (msir_val) {
intr_index = ffs(msir_val) - 1;
/*
* Calculate MSI vector number (refer to the termination
* address and data assignment described in
* xgene_compose_msi_msg function)
*/
hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
NR_HW_IRQS) + msi_grp;
/*
* As we have multiple hw_irq that maps to single MSI,
* always look up the virq using the hw_irq as seen from
* CPU0
*/
hw_irq = hwirq_to_canonical_hwirq(hw_irq);
ret = generic_handle_domain_irq(xgene_msi->inner_domain, hw_irq);
WARN_ON_ONCE(ret);
msir_val &= ~(1 << intr_index);
}
grp_select &= ~(1 << msir_index);
if (!grp_select) {
/*
* We handled all interrupts happened in this group,
* resample this group MSI_INTx register in case
* something else has been made pending in the meantime
*/
grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
}
}
chained_irq_exit(chip, desc);
}
static enum cpuhp_state pci_xgene_online;
static int xgene_msi_remove(struct platform_device *pdev)
{
struct xgene_msi *msi = platform_get_drvdata(pdev);
if (pci_xgene_online)
cpuhp_remove_state(pci_xgene_online);
cpuhp_remove_state(CPUHP_PCI_XGENE_DEAD);
kfree(msi->msi_groups);
bitmap_free(msi->bitmap);
msi->bitmap = NULL;
xgene_free_domains(msi);
return 0;
}
static int xgene_msi_hwirq_alloc(unsigned int cpu)
{
struct xgene_msi *msi = &xgene_msi_ctrl;
struct xgene_msi_group *msi_group;
cpumask_var_t mask;
int i;
int err;
for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
msi_group = &msi->msi_groups[i];
if (!msi_group->gic_irq)
continue;
irq_set_chained_handler_and_data(msi_group->gic_irq,
xgene_msi_isr, msi_group);
/*
* Statically allocate MSI GIC IRQs to each CPU core.
* With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
* to each core.
*/
if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
cpumask_clear(mask);
cpumask_set_cpu(cpu, mask);
err = irq_set_affinity(msi_group->gic_irq, mask);
if (err)
pr_err("failed to set affinity for GIC IRQ");
free_cpumask_var(mask);
} else {
pr_err("failed to alloc CPU mask for affinity\n");
err = -EINVAL;
}
if (err) {
irq_set_chained_handler_and_data(msi_group->gic_irq,
NULL, NULL);
return err;
}
}
return 0;
}
static int xgene_msi_hwirq_free(unsigned int cpu)
{
struct xgene_msi *msi = &xgene_msi_ctrl;
struct xgene_msi_group *msi_group;
int i;
for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
msi_group = &msi->msi_groups[i];
if (!msi_group->gic_irq)
continue;
irq_set_chained_handler_and_data(msi_group->gic_irq, NULL,
NULL);
}
return 0;
}
static const struct of_device_id xgene_msi_match_table[] = {
{.compatible = "apm,xgene1-msi"},
{},
};
static int xgene_msi_probe(struct platform_device *pdev)
{
struct resource *res;
int rc, irq_index;
struct xgene_msi *xgene_msi;
int virt_msir;
u32 msi_val, msi_idx;
xgene_msi = &xgene_msi_ctrl;
platform_set_drvdata(pdev, xgene_msi);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
xgene_msi->msi_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(xgene_msi->msi_regs)) {
rc = PTR_ERR(xgene_msi->msi_regs);
goto error;
}
xgene_msi->msi_addr = res->start;
xgene_msi->node = pdev->dev.of_node;
xgene_msi->num_cpus = num_possible_cpus();
rc = xgene_msi_init_allocator(xgene_msi);
if (rc) {
dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
goto error;
}
rc = xgene_allocate_domains(xgene_msi);
if (rc) {
dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
goto error;
}
for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
virt_msir = platform_get_irq(pdev, irq_index);
if (virt_msir < 0) {
rc = virt_msir;
goto error;
}
xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
xgene_msi->msi_groups[irq_index].msi = xgene_msi;
}
/*
* MSInIRx registers are read-to-clear; before registering
* interrupt handlers, read all of them to clear spurious
* interrupts that may occur before the driver is probed.
*/
for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
xgene_msi_ir_read(xgene_msi, irq_index, msi_idx);
/* Read MSIINTn to confirm */
msi_val = xgene_msi_int_read(xgene_msi, irq_index);
if (msi_val) {
dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
rc = -EINVAL;
goto error;
}
}
rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "pci/xgene:online",
xgene_msi_hwirq_alloc, NULL);
if (rc < 0)
goto err_cpuhp;
pci_xgene_online = rc;
rc = cpuhp_setup_state(CPUHP_PCI_XGENE_DEAD, "pci/xgene:dead", NULL,
xgene_msi_hwirq_free);
if (rc)
goto err_cpuhp;
dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
return 0;
err_cpuhp:
dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
error:
xgene_msi_remove(pdev);
return rc;
}
static struct platform_driver xgene_msi_driver = {
.driver = {
.name = "xgene-msi",
.of_match_table = xgene_msi_match_table,
},
.probe = xgene_msi_probe,
.remove = xgene_msi_remove,
};
static int __init xgene_pcie_msi_init(void)
{
return platform_driver_register(&xgene_msi_driver);
}
subsys_initcall(xgene_pcie_msi_init);
|