1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
#
# SPI driver configuration
#
# NOTE: the reason this doesn't show SPI slave support is mostly that
# nobody's needed a slave side API yet. The master-role API is not
# fully appropriate there, so it'd need some thought to do well.
#
menuconfig SPI
bool "SPI support"
depends on HAS_IOMEM
help
The "Serial Peripheral Interface" is a low level synchronous
protocol. Chips that support SPI can have data transfer rates
up to several tens of Mbit/sec. Chips are addressed with a
controller and a chipselect. Most SPI slaves don't support
dynamic device discovery; some are even write-only or read-only.
SPI is widely used by microcontrollers to talk with sensors,
eeprom and flash memory, codecs and various other controller
chips, analog to digital (and d-to-a) converters, and more.
MMC and SD cards can be accessed using SPI protocol; and for
DataFlash cards used in MMC sockets, SPI must always be used.
SPI is one of a family of similar protocols using a four wire
interface (select, clock, data in, data out) including Microwire
(half duplex), SSP, SSI, and PSP. This driver framework should
work with most such devices and controllers.
if SPI
config SPI_DEBUG
boolean "Debug support for SPI drivers"
depends on DEBUG_KERNEL
help
Say "yes" to enable debug messaging (like dev_dbg and pr_debug),
sysfs, and debugfs support in SPI controller and protocol drivers.
#
# MASTER side ... talking to discrete SPI slave chips including microcontrollers
#
config SPI_MASTER
# boolean "SPI Master Support"
boolean
default SPI
help
If your system has an master-capable SPI controller (which
provides the clock and chipselect), you can enable that
controller and the protocol drivers for the SPI slave chips
that are connected.
if SPI_MASTER
comment "SPI Master Controller Drivers"
config SPI_ATMEL
tristate "Atmel SPI Controller"
depends on (ARCH_AT91 || AVR32)
help
This selects a driver for the Atmel SPI Controller, present on
many AT32 (AVR32) and AT91 (ARM) chips.
config SPI_BFIN
tristate "SPI controller driver for ADI Blackfin5xx"
depends on BLACKFIN
help
This is the SPI controller master driver for Blackfin 5xx processor.
config SPI_AU1550
tristate "Au1550/Au12x0 SPI Controller"
depends on (SOC_AU1550 || SOC_AU1200) && EXPERIMENTAL
select SPI_BITBANG
help
If you say yes to this option, support will be included for the
Au1550 SPI controller (may also work with Au1200,Au1210,Au1250).
This driver can also be built as a module. If so, the module
will be called au1550_spi.
config SPI_BITBANG
tristate "Utilities for Bitbanging SPI masters"
help
With a few GPIO pins, your system can bitbang the SPI protocol.
Select this to get SPI support through I/O pins (GPIO, parallel
port, etc). Or, some systems' SPI master controller drivers use
this code to manage the per-word or per-transfer accesses to the
hardware shift registers.
This is library code, and is automatically selected by drivers that
need it. You only need to select this explicitly to support driver
modules that aren't part of this kernel tree.
config SPI_BUTTERFLY
tristate "Parallel port adapter for AVR Butterfly (DEVELOPMENT)"
depends on PARPORT
select SPI_BITBANG
help
This uses a custom parallel port cable to connect to an AVR
Butterfly <http://www.atmel.com/products/avr/butterfly>, an
inexpensive battery powered microcontroller evaluation board.
This same cable can be used to flash new firmware.
config SPI_GPIO
tristate "GPIO-based bitbanging SPI Master"
depends on GENERIC_GPIO
select SPI_BITBANG
help
This simple GPIO bitbanging SPI master uses the arch-neutral GPIO
interface to manage MOSI, MISO, SCK, and chipselect signals. SPI
slaves connected to a bus using this driver are configured as usual,
except that the spi_board_info.controller_data holds the GPIO number
for the chipselect used by this controller driver.
Note that this driver often won't achieve even 1 Mbit/sec speeds,
making it unusually slow for SPI. If your platform can inline
GPIO operations, you should be able to leverage that for better
speed with a custom version of this driver; see the source code.
config SPI_LM70_LLP
tristate "Parallel port adapter for LM70 eval board (DEVELOPMENT)"
depends on PARPORT && EXPERIMENTAL
select SPI_BITBANG
help
This driver supports the NS LM70 LLP Evaluation Board,
which interfaces to an LM70 temperature sensor using
a parallel port.
config SPI_MPC52xx_PSC
tristate "Freescale MPC52xx PSC SPI controller"
depends on PPC_MPC52xx && EXPERIMENTAL
help
This enables using the Freescale MPC52xx Programmable Serial
Controller in master SPI mode.
config SPI_MPC8xxx
tristate "Freescale MPC8xxx SPI controller"
depends on FSL_SOC
help
This enables using the Freescale MPC8xxx SPI controllers in master
mode.
This driver uses a simple set of shift registers for data (opposed
to the CPM based descriptor model).
config SPI_OMAP_UWIRE
tristate "OMAP1 MicroWire"
depends on ARCH_OMAP1
select SPI_BITBANG
help
This hooks up to the MicroWire controller on OMAP1 chips.
config SPI_OMAP24XX
tristate "McSPI driver for OMAP24xx/OMAP34xx"
depends on ARCH_OMAP24XX || ARCH_OMAP34XX
help
SPI master controller for OMAP24xx/OMAP34xx Multichannel SPI
(McSPI) modules.
config SPI_ORION
tristate "Orion SPI master (EXPERIMENTAL)"
depends on PLAT_ORION && EXPERIMENTAL
help
This enables using the SPI master controller on the Orion chips.
config SPI_PL022
tristate "ARM AMBA PL022 SSP controller (EXPERIMENTAL)"
depends on ARM_AMBA && EXPERIMENTAL
default y if MACH_U300
help
This selects the ARM(R) AMBA(R) PrimeCell PL022 SSP
controller. If you have an embedded system with an AMBA(R)
bus and a PL022 controller, say Y or M here.
config SPI_PPC4xx
tristate "PPC4xx SPI Controller"
depends on PPC32 && 4xx && SPI_MASTER
select SPI_BITBANG
help
This selects a driver for the PPC4xx SPI Controller.
config SPI_PXA2XX
tristate "PXA2xx SSP SPI master"
depends on ARCH_PXA && EXPERIMENTAL
select PXA_SSP
help
This enables using a PXA2xx SSP port as a SPI master controller.
The driver can be configured to use any SSP port and additional
documentation can be found a Documentation/spi/pxa2xx.
config SPI_S3C24XX
tristate "Samsung S3C24XX series SPI"
depends on ARCH_S3C2410 && EXPERIMENTAL
select SPI_BITBANG
help
SPI driver for Samsung S3C24XX series ARM SoCs
config SPI_S3C24XX_GPIO
tristate "Samsung S3C24XX series SPI by GPIO"
depends on ARCH_S3C2410 && EXPERIMENTAL
select SPI_BITBANG
help
SPI driver for Samsung S3C24XX series ARM SoCs using
GPIO lines to provide the SPI bus. This can be used where
the inbuilt hardware cannot provide the transfer mode, or
where the board is using non hardware connected pins.
config SPI_SH_SCI
tristate "SuperH SCI SPI controller"
depends on SUPERH
select SPI_BITBANG
help
SPI driver for SuperH SCI blocks.
config SPI_TXX9
tristate "Toshiba TXx9 SPI controller"
depends on GENERIC_GPIO && CPU_TX49XX
help
SPI driver for Toshiba TXx9 MIPS SoCs
config SPI_XILINX
tristate "Xilinx SPI controller"
depends on (XILINX_VIRTEX || MICROBLAZE) && EXPERIMENTAL
select SPI_BITBANG
help
This exposes the SPI controller IP from the Xilinx EDK.
See the "OPB Serial Peripheral Interface (SPI) (v1.00e)"
Product Specification document (DS464) for hardware details.
#
# Add new SPI master controllers in alphabetical order above this line
#
#
# There are lots of SPI device types, with sensors and memory
# being probably the most widely used ones.
#
comment "SPI Protocol Masters"
config SPI_SPIDEV
tristate "User mode SPI device driver support"
depends on EXPERIMENTAL
help
This supports user mode SPI protocol drivers.
Note that this application programming interface is EXPERIMENTAL
and hence SUBJECT TO CHANGE WITHOUT NOTICE while it stabilizes.
config SPI_TLE62X0
tristate "Infineon TLE62X0 (for power switching)"
depends on SYSFS
help
SPI driver for Infineon TLE62X0 series line driver chips,
such as the TLE6220, TLE6230 and TLE6240. This provides a
sysfs interface, with each line presented as a kind of GPIO
exposing both switch control and diagnostic feedback.
#
# Add new SPI protocol masters in alphabetical order above this line
#
endif # SPI_MASTER
# (slave support would go here)
endif # SPI
|