summaryrefslogtreecommitdiff
path: root/include/linux/crypto.h
blob: 23365a9d062e3fa0daaba31d17e192281a58fbad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Scatterlist Cryptographic API.
 *
 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
 * and Nettle, by Niels Möller.
 */
#ifndef _LINUX_CRYPTO_H
#define _LINUX_CRYPTO_H

#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/bug.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/completion.h>

/*
 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
 * arbitrary modules to be loaded. Loading from userspace may still need the
 * unprefixed names, so retains those aliases as well.
 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
 * expands twice on the same line. Instead, use a separate base name for the
 * alias.
 */
#define MODULE_ALIAS_CRYPTO(name)	\
		__MODULE_INFO(alias, alias_userspace, name);	\
		__MODULE_INFO(alias, alias_crypto, "crypto-" name)

/*
 * Algorithm masks and types.
 */
#define CRYPTO_ALG_TYPE_MASK		0x0000000f
#define CRYPTO_ALG_TYPE_CIPHER		0x00000001
#define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
#define CRYPTO_ALG_TYPE_AEAD		0x00000003
#define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
#define CRYPTO_ALG_TYPE_KPP		0x00000008
#define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
#define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
#define CRYPTO_ALG_TYPE_RNG		0x0000000c
#define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
#define CRYPTO_ALG_TYPE_HASH		0x0000000e
#define CRYPTO_ALG_TYPE_SHASH		0x0000000e
#define CRYPTO_ALG_TYPE_AHASH		0x0000000f

#define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
#define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e

#define CRYPTO_ALG_LARVAL		0x00000010
#define CRYPTO_ALG_DEAD			0x00000020
#define CRYPTO_ALG_DYING		0x00000040
#define CRYPTO_ALG_ASYNC		0x00000080

/*
 * Set this bit if and only if the algorithm requires another algorithm of
 * the same type to handle corner cases.
 */
#define CRYPTO_ALG_NEED_FALLBACK	0x00000100

/*
 * Set if the algorithm has passed automated run-time testing.  Note that
 * if there is no run-time testing for a given algorithm it is considered
 * to have passed.
 */

#define CRYPTO_ALG_TESTED		0x00000400

/*
 * Set if the algorithm is an instance that is built from templates.
 */
#define CRYPTO_ALG_INSTANCE		0x00000800

/* Set this bit if the algorithm provided is hardware accelerated but
 * not available to userspace via instruction set or so.
 */
#define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000

/*
 * Mark a cipher as a service implementation only usable by another
 * cipher and never by a normal user of the kernel crypto API
 */
#define CRYPTO_ALG_INTERNAL		0x00002000

/*
 * Set if the algorithm has a ->setkey() method but can be used without
 * calling it first, i.e. there is a default key.
 */
#define CRYPTO_ALG_OPTIONAL_KEY		0x00004000

/*
 * Don't trigger module loading
 */
#define CRYPTO_NOLOAD			0x00008000

/*
 * Transform masks and values (for crt_flags).
 */
#define CRYPTO_TFM_NEED_KEY		0x00000001

#define CRYPTO_TFM_REQ_MASK		0x000fff00
#define CRYPTO_TFM_RES_MASK		0xfff00000

#define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
#define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
#define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
#define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
#define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
#define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
#define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000

/*
 * Miscellaneous stuff.
 */
#define CRYPTO_MAX_ALG_NAME		128

/*
 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
 * declaration) is used to ensure that the crypto_tfm context structure is
 * aligned correctly for the given architecture so that there are no alignment
 * faults for C data types.  In particular, this is required on platforms such
 * as arm where pointers are 32-bit aligned but there are data types such as
 * u64 which require 64-bit alignment.
 */
#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN

#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))

struct scatterlist;
struct crypto_async_request;
struct crypto_tfm;
struct crypto_type;

typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);

/**
 * DOC: Block Cipher Context Data Structures
 *
 * These data structures define the operating context for each block cipher
 * type.
 */

struct crypto_async_request {
	struct list_head list;
	crypto_completion_t complete;
	void *data;
	struct crypto_tfm *tfm;

	u32 flags;
};

/**
 * DOC: Block Cipher Algorithm Definitions
 *
 * These data structures define modular crypto algorithm implementations,
 * managed via crypto_register_alg() and crypto_unregister_alg().
 */

/**
 * struct cipher_alg - single-block symmetric ciphers definition
 * @cia_min_keysize: Minimum key size supported by the transformation. This is
 *		     the smallest key length supported by this transformation
 *		     algorithm. This must be set to one of the pre-defined
 *		     values as this is not hardware specific. Possible values
 *		     for this field can be found via git grep "_MIN_KEY_SIZE"
 *		     include/crypto/
 * @cia_max_keysize: Maximum key size supported by the transformation. This is
 *		    the largest key length supported by this transformation
 *		    algorithm. This must be set to one of the pre-defined values
 *		    as this is not hardware specific. Possible values for this
 *		    field can be found via git grep "_MAX_KEY_SIZE"
 *		    include/crypto/
 * @cia_setkey: Set key for the transformation. This function is used to either
 *	        program a supplied key into the hardware or store the key in the
 *	        transformation context for programming it later. Note that this
 *	        function does modify the transformation context. This function
 *	        can be called multiple times during the existence of the
 *	        transformation object, so one must make sure the key is properly
 *	        reprogrammed into the hardware. This function is also
 *	        responsible for checking the key length for validity.
 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
 *		 single block of data, which must be @cra_blocksize big. This
 *		 always operates on a full @cra_blocksize and it is not possible
 *		 to encrypt a block of smaller size. The supplied buffers must
 *		 therefore also be at least of @cra_blocksize size. Both the
 *		 input and output buffers are always aligned to @cra_alignmask.
 *		 In case either of the input or output buffer supplied by user
 *		 of the crypto API is not aligned to @cra_alignmask, the crypto
 *		 API will re-align the buffers. The re-alignment means that a
 *		 new buffer will be allocated, the data will be copied into the
 *		 new buffer, then the processing will happen on the new buffer,
 *		 then the data will be copied back into the original buffer and
 *		 finally the new buffer will be freed. In case a software
 *		 fallback was put in place in the @cra_init call, this function
 *		 might need to use the fallback if the algorithm doesn't support
 *		 all of the key sizes. In case the key was stored in
 *		 transformation context, the key might need to be re-programmed
 *		 into the hardware in this function. This function shall not
 *		 modify the transformation context, as this function may be
 *		 called in parallel with the same transformation object.
 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
 *		 @cia_encrypt, and the conditions are exactly the same.
 *
 * All fields are mandatory and must be filled.
 */
struct cipher_alg {
	unsigned int cia_min_keysize;
	unsigned int cia_max_keysize;
	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
	                  unsigned int keylen);
	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
};

/**
 * struct compress_alg - compression/decompression algorithm
 * @coa_compress: Compress a buffer of specified length, storing the resulting
 *		  data in the specified buffer. Return the length of the
 *		  compressed data in dlen.
 * @coa_decompress: Decompress the source buffer, storing the uncompressed
 *		    data in the specified buffer. The length of the data is
 *		    returned in dlen.
 *
 * All fields are mandatory.
 */
struct compress_alg {
	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
			    unsigned int slen, u8 *dst, unsigned int *dlen);
	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
			      unsigned int slen, u8 *dst, unsigned int *dlen);
};

#ifdef CONFIG_CRYPTO_STATS
/*
 * struct crypto_istat_aead - statistics for AEAD algorithm
 * @encrypt_cnt:	number of encrypt requests
 * @encrypt_tlen:	total data size handled by encrypt requests
 * @decrypt_cnt:	number of decrypt requests
 * @decrypt_tlen:	total data size handled by decrypt requests
 * @err_cnt:		number of error for AEAD requests
 */
struct crypto_istat_aead {
	atomic64_t encrypt_cnt;
	atomic64_t encrypt_tlen;
	atomic64_t decrypt_cnt;
	atomic64_t decrypt_tlen;
	atomic64_t err_cnt;
};

/*
 * struct crypto_istat_akcipher - statistics for akcipher algorithm
 * @encrypt_cnt:	number of encrypt requests
 * @encrypt_tlen:	total data size handled by encrypt requests
 * @decrypt_cnt:	number of decrypt requests
 * @decrypt_tlen:	total data size handled by decrypt requests
 * @verify_cnt:		number of verify operation
 * @sign_cnt:		number of sign requests
 * @err_cnt:		number of error for akcipher requests
 */
struct crypto_istat_akcipher {
	atomic64_t encrypt_cnt;
	atomic64_t encrypt_tlen;
	atomic64_t decrypt_cnt;
	atomic64_t decrypt_tlen;
	atomic64_t verify_cnt;
	atomic64_t sign_cnt;
	atomic64_t err_cnt;
};

/*
 * struct crypto_istat_cipher - statistics for cipher algorithm
 * @encrypt_cnt:	number of encrypt requests
 * @encrypt_tlen:	total data size handled by encrypt requests
 * @decrypt_cnt:	number of decrypt requests
 * @decrypt_tlen:	total data size handled by decrypt requests
 * @err_cnt:		number of error for cipher requests
 */
struct crypto_istat_cipher {
	atomic64_t encrypt_cnt;
	atomic64_t encrypt_tlen;
	atomic64_t decrypt_cnt;
	atomic64_t decrypt_tlen;
	atomic64_t err_cnt;
};

/*
 * struct crypto_istat_compress - statistics for compress algorithm
 * @compress_cnt:	number of compress requests
 * @compress_tlen:	total data size handled by compress requests
 * @decompress_cnt:	number of decompress requests
 * @decompress_tlen:	total data size handled by decompress requests
 * @err_cnt:		number of error for compress requests
 */
struct crypto_istat_compress {
	atomic64_t compress_cnt;
	atomic64_t compress_tlen;
	atomic64_t decompress_cnt;
	atomic64_t decompress_tlen;
	atomic64_t err_cnt;
};

/*
 * struct crypto_istat_hash - statistics for has algorithm
 * @hash_cnt:		number of hash requests
 * @hash_tlen:		total data size hashed
 * @err_cnt:		number of error for hash requests
 */
struct crypto_istat_hash {
	atomic64_t hash_cnt;
	atomic64_t hash_tlen;
	atomic64_t err_cnt;
};

/*
 * struct crypto_istat_kpp - statistics for KPP algorithm
 * @setsecret_cnt:		number of setsecrey operation
 * @generate_public_key_cnt:	number of generate_public_key operation
 * @compute_shared_secret_cnt:	number of compute_shared_secret operation
 * @err_cnt:			number of error for KPP requests
 */
struct crypto_istat_kpp {
	atomic64_t setsecret_cnt;
	atomic64_t generate_public_key_cnt;
	atomic64_t compute_shared_secret_cnt;
	atomic64_t err_cnt;
};

/*
 * struct crypto_istat_rng: statistics for RNG algorithm
 * @generate_cnt:	number of RNG generate requests
 * @generate_tlen:	total data size of generated data by the RNG
 * @seed_cnt:		number of times the RNG was seeded
 * @err_cnt:		number of error for RNG requests
 */
struct crypto_istat_rng {
	atomic64_t generate_cnt;
	atomic64_t generate_tlen;
	atomic64_t seed_cnt;
	atomic64_t err_cnt;
};
#endif /* CONFIG_CRYPTO_STATS */

#define cra_cipher	cra_u.cipher
#define cra_compress	cra_u.compress

/**
 * struct crypto_alg - definition of a cryptograpic cipher algorithm
 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
 *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
 *	       used for fine-tuning the description of the transformation
 *	       algorithm.
 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
 *		   of the smallest possible unit which can be transformed with
 *		   this algorithm. The users must respect this value.
 *		   In case of HASH transformation, it is possible for a smaller
 *		   block than @cra_blocksize to be passed to the crypto API for
 *		   transformation, in case of any other transformation type, an
 * 		   error will be returned upon any attempt to transform smaller
 *		   than @cra_blocksize chunks.
 * @cra_ctxsize: Size of the operational context of the transformation. This
 *		 value informs the kernel crypto API about the memory size
 *		 needed to be allocated for the transformation context.
 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
 *		   buffer containing the input data for the algorithm must be
 *		   aligned to this alignment mask. The data buffer for the
 *		   output data must be aligned to this alignment mask. Note that
 *		   the Crypto API will do the re-alignment in software, but
 *		   only under special conditions and there is a performance hit.
 *		   The re-alignment happens at these occasions for different
 *		   @cra_u types: cipher -- For both input data and output data
 *		   buffer; ahash -- For output hash destination buf; shash --
 *		   For output hash destination buf.
 *		   This is needed on hardware which is flawed by design and
 *		   cannot pick data from arbitrary addresses.
 * @cra_priority: Priority of this transformation implementation. In case
 *		  multiple transformations with same @cra_name are available to
 *		  the Crypto API, the kernel will use the one with highest
 *		  @cra_priority.
 * @cra_name: Generic name (usable by multiple implementations) of the
 *	      transformation algorithm. This is the name of the transformation
 *	      itself. This field is used by the kernel when looking up the
 *	      providers of particular transformation.
 * @cra_driver_name: Unique name of the transformation provider. This is the
 *		     name of the provider of the transformation. This can be any
 *		     arbitrary value, but in the usual case, this contains the
 *		     name of the chip or provider and the name of the
 *		     transformation algorithm.
 * @cra_type: Type of the cryptographic transformation. This is a pointer to
 *	      struct crypto_type, which implements callbacks common for all
 *	      transformation types. There are multiple options, such as
 *	      &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
 *	      This field might be empty. In that case, there are no common
 *	      callbacks. This is the case for: cipher, compress, shash.
 * @cra_u: Callbacks implementing the transformation. This is a union of
 *	   multiple structures. Depending on the type of transformation selected
 *	   by @cra_type and @cra_flags above, the associated structure must be
 *	   filled with callbacks. This field might be empty. This is the case
 *	   for ahash, shash.
 * @cra_init: Initialize the cryptographic transformation object. This function
 *	      is used to initialize the cryptographic transformation object.
 *	      This function is called only once at the instantiation time, right
 *	      after the transformation context was allocated. In case the
 *	      cryptographic hardware has some special requirements which need to
 *	      be handled by software, this function shall check for the precise
 *	      requirement of the transformation and put any software fallbacks
 *	      in place.
 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
 *	      counterpart to @cra_init, used to remove various changes set in
 *	      @cra_init.
 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
 *		  definition. See @struct @cipher_alg.
 * @cra_u.compress: Union member which contains a (de)compression algorithm.
 *		    See @struct @compress_alg.
 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
 * @cra_list: internally used
 * @cra_users: internally used
 * @cra_refcnt: internally used
 * @cra_destroy: internally used
 *
 * @stats: union of all possible crypto_istat_xxx structures
 * @stats.aead:		statistics for AEAD algorithm
 * @stats.akcipher:	statistics for akcipher algorithm
 * @stats.cipher:	statistics for cipher algorithm
 * @stats.compress:	statistics for compress algorithm
 * @stats.hash:		statistics for hash algorithm
 * @stats.rng:		statistics for rng algorithm
 * @stats.kpp:		statistics for KPP algorithm
 *
 * The struct crypto_alg describes a generic Crypto API algorithm and is common
 * for all of the transformations. Any variable not documented here shall not
 * be used by a cipher implementation as it is internal to the Crypto API.
 */
struct crypto_alg {
	struct list_head cra_list;
	struct list_head cra_users;

	u32 cra_flags;
	unsigned int cra_blocksize;
	unsigned int cra_ctxsize;
	unsigned int cra_alignmask;

	int cra_priority;
	refcount_t cra_refcnt;

	char cra_name[CRYPTO_MAX_ALG_NAME];
	char cra_driver_name[CRYPTO_MAX_ALG_NAME];

	const struct crypto_type *cra_type;

	union {
		struct cipher_alg cipher;
		struct compress_alg compress;
	} cra_u;

	int (*cra_init)(struct crypto_tfm *tfm);
	void (*cra_exit)(struct crypto_tfm *tfm);
	void (*cra_destroy)(struct crypto_alg *alg);
	
	struct module *cra_module;

#ifdef CONFIG_CRYPTO_STATS
	union {
		struct crypto_istat_aead aead;
		struct crypto_istat_akcipher akcipher;
		struct crypto_istat_cipher cipher;
		struct crypto_istat_compress compress;
		struct crypto_istat_hash hash;
		struct crypto_istat_rng rng;
		struct crypto_istat_kpp kpp;
	} stats;
#endif /* CONFIG_CRYPTO_STATS */

} CRYPTO_MINALIGN_ATTR;

#ifdef CONFIG_CRYPTO_STATS
void crypto_stats_init(struct crypto_alg *alg);
void crypto_stats_get(struct crypto_alg *alg);
void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
#else
static inline void crypto_stats_init(struct crypto_alg *alg)
{}
static inline void crypto_stats_get(struct crypto_alg *alg)
{}
static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
{}
static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
{}
static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
{}
static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
{}
#endif
/*
 * A helper struct for waiting for completion of async crypto ops
 */
struct crypto_wait {
	struct completion completion;
	int err;
};

/*
 * Macro for declaring a crypto op async wait object on stack
 */
#define DECLARE_CRYPTO_WAIT(_wait) \
	struct crypto_wait _wait = { \
		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }

/*
 * Async ops completion helper functioons
 */
void crypto_req_done(struct crypto_async_request *req, int err);

static inline int crypto_wait_req(int err, struct crypto_wait *wait)
{
	switch (err) {
	case -EINPROGRESS:
	case -EBUSY:
		wait_for_completion(&wait->completion);
		reinit_completion(&wait->completion);
		err = wait->err;
		break;
	};

	return err;
}

static inline void crypto_init_wait(struct crypto_wait *wait)
{
	init_completion(&wait->completion);
}

/*
 * Algorithm registration interface.
 */
int crypto_register_alg(struct crypto_alg *alg);
int crypto_unregister_alg(struct crypto_alg *alg);
int crypto_register_algs(struct crypto_alg *algs, int count);
int crypto_unregister_algs(struct crypto_alg *algs, int count);

/*
 * Algorithm query interface.
 */
int crypto_has_alg(const char *name, u32 type, u32 mask);

/*
 * Transforms: user-instantiated objects which encapsulate algorithms
 * and core processing logic.  Managed via crypto_alloc_*() and
 * crypto_free_*(), as well as the various helpers below.
 */

struct cipher_tfm {
	int (*cit_setkey)(struct crypto_tfm *tfm,
	                  const u8 *key, unsigned int keylen);
	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
};

struct compress_tfm {
	int (*cot_compress)(struct crypto_tfm *tfm,
	                    const u8 *src, unsigned int slen,
	                    u8 *dst, unsigned int *dlen);
	int (*cot_decompress)(struct crypto_tfm *tfm,
	                      const u8 *src, unsigned int slen,
	                      u8 *dst, unsigned int *dlen);
};

#define crt_cipher	crt_u.cipher
#define crt_compress	crt_u.compress

struct crypto_tfm {

	u32 crt_flags;
	
	union {
		struct cipher_tfm cipher;
		struct compress_tfm compress;
	} crt_u;

	void (*exit)(struct crypto_tfm *tfm);
	
	struct crypto_alg *__crt_alg;

	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
};

struct crypto_cipher {
	struct crypto_tfm base;
};

struct crypto_comp {
	struct crypto_tfm base;
};

enum {
	CRYPTOA_UNSPEC,
	CRYPTOA_ALG,
	CRYPTOA_TYPE,
	CRYPTOA_U32,
	__CRYPTOA_MAX,
};

#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)

/* Maximum number of (rtattr) parameters for each template. */
#define CRYPTO_MAX_ATTRS 32

struct crypto_attr_alg {
	char name[CRYPTO_MAX_ALG_NAME];
};

struct crypto_attr_type {
	u32 type;
	u32 mask;
};

struct crypto_attr_u32 {
	u32 num;
};

/* 
 * Transform user interface.
 */
 
struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);

static inline void crypto_free_tfm(struct crypto_tfm *tfm)
{
	return crypto_destroy_tfm(tfm, tfm);
}

int alg_test(const char *driver, const char *alg, u32 type, u32 mask);

/*
 * Transform helpers which query the underlying algorithm.
 */
static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
{
	return tfm->__crt_alg->cra_name;
}

static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
{
	return tfm->__crt_alg->cra_driver_name;
}

static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
{
	return tfm->__crt_alg->cra_priority;
}

static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
{
	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
}

static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
{
	return tfm->__crt_alg->cra_blocksize;
}

static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
{
	return tfm->__crt_alg->cra_alignmask;
}

static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
{
	return tfm->crt_flags;
}

static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
{
	tfm->crt_flags |= flags;
}

static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
{
	tfm->crt_flags &= ~flags;
}

static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
{
	return tfm->__crt_ctx;
}

static inline unsigned int crypto_tfm_ctx_alignment(void)
{
	struct crypto_tfm *tfm;
	return __alignof__(tfm->__crt_ctx);
}

/**
 * DOC: Single Block Cipher API
 *
 * The single block cipher API is used with the ciphers of type
 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
 *
 * Using the single block cipher API calls, operations with the basic cipher
 * primitive can be implemented. These cipher primitives exclude any block
 * chaining operations including IV handling.
 *
 * The purpose of this single block cipher API is to support the implementation
 * of templates or other concepts that only need to perform the cipher operation
 * on one block at a time. Templates invoke the underlying cipher primitive
 * block-wise and process either the input or the output data of these cipher
 * operations.
 */

static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
{
	return (struct crypto_cipher *)tfm;
}

static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
{
	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
	return __crypto_cipher_cast(tfm);
}

/**
 * crypto_alloc_cipher() - allocate single block cipher handle
 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 *	     single block cipher
 * @type: specifies the type of the cipher
 * @mask: specifies the mask for the cipher
 *
 * Allocate a cipher handle for a single block cipher. The returned struct
 * crypto_cipher is the cipher handle that is required for any subsequent API
 * invocation for that single block cipher.
 *
 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
 *	   of an error, PTR_ERR() returns the error code.
 */
static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
							u32 type, u32 mask)
{
	type &= ~CRYPTO_ALG_TYPE_MASK;
	type |= CRYPTO_ALG_TYPE_CIPHER;
	mask |= CRYPTO_ALG_TYPE_MASK;

	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
}

static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
{
	return &tfm->base;
}

/**
 * crypto_free_cipher() - zeroize and free the single block cipher handle
 * @tfm: cipher handle to be freed
 */
static inline void crypto_free_cipher(struct crypto_cipher *tfm)
{
	crypto_free_tfm(crypto_cipher_tfm(tfm));
}

/**
 * crypto_has_cipher() - Search for the availability of a single block cipher
 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
 *	     single block cipher
 * @type: specifies the type of the cipher
 * @mask: specifies the mask for the cipher
 *
 * Return: true when the single block cipher is known to the kernel crypto API;
 *	   false otherwise
 */
static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
{
	type &= ~CRYPTO_ALG_TYPE_MASK;
	type |= CRYPTO_ALG_TYPE_CIPHER;
	mask |= CRYPTO_ALG_TYPE_MASK;

	return crypto_has_alg(alg_name, type, mask);
}

static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
{
	return &crypto_cipher_tfm(tfm)->crt_cipher;
}

/**
 * crypto_cipher_blocksize() - obtain block size for cipher
 * @tfm: cipher handle
 *
 * The block size for the single block cipher referenced with the cipher handle
 * tfm is returned. The caller may use that information to allocate appropriate
 * memory for the data returned by the encryption or decryption operation
 *
 * Return: block size of cipher
 */
static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
{
	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
}

static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
{
	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
}

static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
{
	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
}

static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
					   u32 flags)
{
	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
}

static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
					     u32 flags)
{
	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
}

/**
 * crypto_cipher_setkey() - set key for cipher
 * @tfm: cipher handle
 * @key: buffer holding the key
 * @keylen: length of the key in bytes
 *
 * The caller provided key is set for the single block cipher referenced by the
 * cipher handle.
 *
 * Note, the key length determines the cipher type. Many block ciphers implement
 * different cipher modes depending on the key size, such as AES-128 vs AES-192
 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
 * is performed.
 *
 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
 */
static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
                                       const u8 *key, unsigned int keylen)
{
	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
						  key, keylen);
}

/**
 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
 * @tfm: cipher handle
 * @dst: points to the buffer that will be filled with the ciphertext
 * @src: buffer holding the plaintext to be encrypted
 *
 * Invoke the encryption operation of one block. The caller must ensure that
 * the plaintext and ciphertext buffers are at least one block in size.
 */
static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
					     u8 *dst, const u8 *src)
{
	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
						dst, src);
}

/**
 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
 * @tfm: cipher handle
 * @dst: points to the buffer that will be filled with the plaintext
 * @src: buffer holding the ciphertext to be decrypted
 *
 * Invoke the decryption operation of one block. The caller must ensure that
 * the plaintext and ciphertext buffers are at least one block in size.
 */
static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
					     u8 *dst, const u8 *src)
{
	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
						dst, src);
}

static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
{
	return (struct crypto_comp *)tfm;
}

static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
{
	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
	       CRYPTO_ALG_TYPE_MASK);
	return __crypto_comp_cast(tfm);
}

static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
						    u32 type, u32 mask)
{
	type &= ~CRYPTO_ALG_TYPE_MASK;
	type |= CRYPTO_ALG_TYPE_COMPRESS;
	mask |= CRYPTO_ALG_TYPE_MASK;

	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
}

static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
{
	return &tfm->base;
}

static inline void crypto_free_comp(struct crypto_comp *tfm)
{
	crypto_free_tfm(crypto_comp_tfm(tfm));
}

static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
{
	type &= ~CRYPTO_ALG_TYPE_MASK;
	type |= CRYPTO_ALG_TYPE_COMPRESS;
	mask |= CRYPTO_ALG_TYPE_MASK;

	return crypto_has_alg(alg_name, type, mask);
}

static inline const char *crypto_comp_name(struct crypto_comp *tfm)
{
	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
}

static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
{
	return &crypto_comp_tfm(tfm)->crt_compress;
}

static inline int crypto_comp_compress(struct crypto_comp *tfm,
                                       const u8 *src, unsigned int slen,
                                       u8 *dst, unsigned int *dlen)
{
	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
						  src, slen, dst, dlen);
}

static inline int crypto_comp_decompress(struct crypto_comp *tfm,
                                         const u8 *src, unsigned int slen,
                                         u8 *dst, unsigned int *dlen)
{
	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
						    src, slen, dst, dlen);
}

#endif	/* _LINUX_CRYPTO_H */