summaryrefslogtreecommitdiff
path: root/lib/crc32.c
blob: 2a68dfd3b96c88c757c2f543c1bc102c634c45b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*
 * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
 * cleaned up code to current version of sparse and added the slicing-by-8
 * algorithm to the closely similar existing slicing-by-4 algorithm.
 *
 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
 * Nicer crc32 functions/docs submitted by linux@horizon.com.  Thanks!
 * Code was from the public domain, copyright abandoned.  Code was
 * subsequently included in the kernel, thus was re-licensed under the
 * GNU GPL v2.
 *
 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
 * Same crc32 function was used in 5 other places in the kernel.
 * I made one version, and deleted the others.
 * There are various incantations of crc32().  Some use a seed of 0 or ~0.
 * Some xor at the end with ~0.  The generic crc32() function takes
 * seed as an argument, and doesn't xor at the end.  Then individual
 * users can do whatever they need.
 *   drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
 *   fs/jffs2 uses seed 0, doesn't xor with ~0.
 *   fs/partitions/efi.c uses seed ~0, xor's with ~0.
 *
 * This source code is licensed under the GNU General Public License,
 * Version 2.  See the file COPYING for more details.
 */

/* see: Documentation/staging/crc32.rst for a description of algorithms */

#include <linux/crc32.h>
#include <linux/crc32poly.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/sched.h>
#include "crc32defs.h"

#if CRC_LE_BITS > 8
# define tole(x) ((__force u32) cpu_to_le32(x))
#else
# define tole(x) (x)
#endif

#if CRC_BE_BITS > 8
# define tobe(x) ((__force u32) cpu_to_be32(x))
#else
# define tobe(x) (x)
#endif

#include "crc32table.h"

MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
MODULE_DESCRIPTION("Various CRC32 calculations");
MODULE_LICENSE("GPL");

#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8

/* implements slicing-by-4 or slicing-by-8 algorithm */
static inline u32 __pure
crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
{
# ifdef __LITTLE_ENDIAN
#  define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
#  define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
		   t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
#  define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
		   t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
# else
#  define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
#  define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
		   t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
#  define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
		   t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
# endif
	const u32 *b;
	size_t    rem_len;
# ifdef CONFIG_X86
	size_t i;
# endif
	const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
# if CRC_LE_BITS != 32
	const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
# endif
	u32 q;

	/* Align it */
	if (unlikely((long)buf & 3 && len)) {
		do {
			DO_CRC(*buf++);
		} while ((--len) && ((long)buf)&3);
	}

# if CRC_LE_BITS == 32
	rem_len = len & 3;
	len = len >> 2;
# else
	rem_len = len & 7;
	len = len >> 3;
# endif

	b = (const u32 *)buf;
# ifdef CONFIG_X86
	--b;
	for (i = 0; i < len; i++) {
# else
	for (--b; len; --len) {
# endif
		q = crc ^ *++b; /* use pre increment for speed */
# if CRC_LE_BITS == 32
		crc = DO_CRC4;
# else
		crc = DO_CRC8;
		q = *++b;
		crc ^= DO_CRC4;
# endif
	}
	len = rem_len;
	/* And the last few bytes */
	if (len) {
		u8 *p = (u8 *)(b + 1) - 1;
# ifdef CONFIG_X86
		for (i = 0; i < len; i++)
			DO_CRC(*++p); /* use pre increment for speed */
# else
		do {
			DO_CRC(*++p); /* use pre increment for speed */
		} while (--len);
# endif
	}
	return crc;
#undef DO_CRC
#undef DO_CRC4
#undef DO_CRC8
}
#endif


/**
 * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
 *			CRC32/CRC32C
 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for other
 *	 uses, or the previous crc32/crc32c value if computing incrementally.
 * @p: pointer to buffer over which CRC32/CRC32C is run
 * @len: length of buffer @p
 * @tab: little-endian Ethernet table
 * @polynomial: CRC32/CRC32c LE polynomial
 */
static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
					  size_t len, const u32 (*tab)[256],
					  u32 polynomial)
{
#if CRC_LE_BITS == 1
	int i;
	while (len--) {
		crc ^= *p++;
		for (i = 0; i < 8; i++)
			crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
	}
# elif CRC_LE_BITS == 2
	while (len--) {
		crc ^= *p++;
		crc = (crc >> 2) ^ tab[0][crc & 3];
		crc = (crc >> 2) ^ tab[0][crc & 3];
		crc = (crc >> 2) ^ tab[0][crc & 3];
		crc = (crc >> 2) ^ tab[0][crc & 3];
	}
# elif CRC_LE_BITS == 4
	while (len--) {
		crc ^= *p++;
		crc = (crc >> 4) ^ tab[0][crc & 15];
		crc = (crc >> 4) ^ tab[0][crc & 15];
	}
# elif CRC_LE_BITS == 8
	/* aka Sarwate algorithm */
	while (len--) {
		crc ^= *p++;
		crc = (crc >> 8) ^ tab[0][crc & 255];
	}
# else
	crc = (__force u32) __cpu_to_le32(crc);
	crc = crc32_body(crc, p, len, tab);
	crc = __le32_to_cpu((__force __le32)crc);
#endif
	return crc;
}

#if CRC_LE_BITS == 1
u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
{
	return crc32_le_generic(crc, p, len, NULL, CRC32_POLY_LE);
}
u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
{
	return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
}
#else
u32 __pure __weak crc32_le(u32 crc, unsigned char const *p, size_t len)
{
	return crc32_le_generic(crc, p, len,
			(const u32 (*)[256])crc32table_le, CRC32_POLY_LE);
}
u32 __pure __weak __crc32c_le(u32 crc, unsigned char const *p, size_t len)
{
	return crc32_le_generic(crc, p, len,
			(const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
}
#endif
EXPORT_SYMBOL(crc32_le);
EXPORT_SYMBOL(__crc32c_le);

u32 __pure crc32_le_base(u32, unsigned char const *, size_t) __alias(crc32_le);
u32 __pure __crc32c_le_base(u32, unsigned char const *, size_t) __alias(__crc32c_le);

/*
 * This multiplies the polynomials x and y modulo the given modulus.
 * This follows the "little-endian" CRC convention that the lsbit
 * represents the highest power of x, and the msbit represents x^0.
 */
static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
{
	u32 product = x & 1 ? y : 0;
	int i;

	for (i = 0; i < 31; i++) {
		product = (product >> 1) ^ (product & 1 ? modulus : 0);
		x >>= 1;
		product ^= x & 1 ? y : 0;
	}

	return product;
}

/**
 * crc32_generic_shift - Append @len 0 bytes to crc, in logarithmic time
 * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
 * @len: The number of bytes. @crc is multiplied by x^(8*@len)
 * @polynomial: The modulus used to reduce the result to 32 bits.
 *
 * It's possible to parallelize CRC computations by computing a CRC
 * over separate ranges of a buffer, then summing them.
 * This shifts the given CRC by 8*len bits (i.e. produces the same effect
 * as appending len bytes of zero to the data), in time proportional
 * to log(len).
 */
static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
						   u32 polynomial)
{
	u32 power = polynomial;	/* CRC of x^32 */
	int i;

	/* Shift up to 32 bits in the simple linear way */
	for (i = 0; i < 8 * (int)(len & 3); i++)
		crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);

	len >>= 2;
	if (!len)
		return crc;

	for (;;) {
		/* "power" is x^(2^i), modulo the polynomial */
		if (len & 1)
			crc = gf2_multiply(crc, power, polynomial);

		len >>= 1;
		if (!len)
			break;

		/* Square power, advancing to x^(2^(i+1)) */
		power = gf2_multiply(power, power, polynomial);
	}

	return crc;
}

u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
{
	return crc32_generic_shift(crc, len, CRC32_POLY_LE);
}

u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
{
	return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
}
EXPORT_SYMBOL(crc32_le_shift);
EXPORT_SYMBOL(__crc32c_le_shift);

/**
 * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
 * @crc: seed value for computation.  ~0 for Ethernet, sometimes 0 for
 *	other uses, or the previous crc32 value if computing incrementally.
 * @p: pointer to buffer over which CRC32 is run
 * @len: length of buffer @p
 * @tab: big-endian Ethernet table
 * @polynomial: CRC32 BE polynomial
 */
static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
					  size_t len, const u32 (*tab)[256],
					  u32 polynomial)
{
#if CRC_BE_BITS == 1
	int i;
	while (len--) {
		crc ^= *p++ << 24;
		for (i = 0; i < 8; i++)
			crc =
			    (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
					  0);
	}
# elif CRC_BE_BITS == 2
	while (len--) {
		crc ^= *p++ << 24;
		crc = (crc << 2) ^ tab[0][crc >> 30];
		crc = (crc << 2) ^ tab[0][crc >> 30];
		crc = (crc << 2) ^ tab[0][crc >> 30];
		crc = (crc << 2) ^ tab[0][crc >> 30];
	}
# elif CRC_BE_BITS == 4
	while (len--) {
		crc ^= *p++ << 24;
		crc = (crc << 4) ^ tab[0][crc >> 28];
		crc = (crc << 4) ^ tab[0][crc >> 28];
	}
# elif CRC_BE_BITS == 8
	while (len--) {
		crc ^= *p++ << 24;
		crc = (crc << 8) ^ tab[0][crc >> 24];
	}
# else
	crc = (__force u32) __cpu_to_be32(crc);
	crc = crc32_body(crc, p, len, tab);
	crc = __be32_to_cpu((__force __be32)crc);
# endif
	return crc;
}

#if CRC_BE_BITS == 1
u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
{
	return crc32_be_generic(crc, p, len, NULL, CRC32_POLY_BE);
}
#else
u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
{
	return crc32_be_generic(crc, p, len,
			(const u32 (*)[256])crc32table_be, CRC32_POLY_BE);
}
#endif
EXPORT_SYMBOL(crc32_be);