summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPhilippe Langlais <philippe.langlais@stericsson.com>2011-10-20 10:47:00 +0200
committerPhilippe Langlais <philippe.langlais@stericsson.com>2012-05-22 11:03:42 +0200
commit85b9e2431e1ef30333952a8c8e4ebf74bfc4e271 (patch)
tree6fb2aa44d30d4a96b60d41efebdcca08632937e3
parentbc37901f41b2f991113a4b8fd9f813094a2fe8bb (diff)
mach-ux500: add dcache necessary for hwmem
Signed-off-by: Philippe Langlais <philippe.langlais@linaro.org>
-rw-r--r--arch/arm/mach-ux500/dcache.c294
-rw-r--r--arch/arm/mach-ux500/include/mach/dcache.h26
2 files changed, 320 insertions, 0 deletions
diff --git a/arch/arm/mach-ux500/dcache.c b/arch/arm/mach-ux500/dcache.c
new file mode 100644
index 00000000000..cb4f8329f32
--- /dev/null
+++ b/arch/arm/mach-ux500/dcache.c
@@ -0,0 +1,294 @@
+/*
+ * Copyright (C) ST-Ericsson SA 2011
+ *
+ * Cache handler integration and data cache helpers.
+ *
+ * Author: Johan Mossberg <johan.xx.mossberg@stericsson.com>
+ * for ST-Ericsson.
+ *
+ * License terms: GNU General Public License (GPL), version 2.
+ */
+
+#include <linux/hwmem.h>
+#include <linux/dma-mapping.h>
+
+#include <asm/pgtable.h>
+#include <asm/cacheflush.h>
+#include <asm/outercache.h>
+#include <asm/system.h>
+
+/*
+ * Values are derived from measurements on HREFP_1.1_V32_OM_S10 running
+ * u8500-android-2.2_r1.1_v0.21.
+ *
+ * A lot of time can be spent trying to figure out the perfect breakpoints but
+ * for now I've chosen the following simple way.
+ *
+ * breakpoint = best_case + (worst_case - best_case) * 0.666
+ * The breakpoint is moved slightly towards the worst case because a full
+ * clean/flush affects the entire system so we should be a bit careful.
+ *
+ * BEST CASE:
+ * Best case is that the cache is empty and the system is idling. The case
+ * where the cache contains only targeted data could be better in some cases
+ * but it's hard to do measurements and calculate on that case so I choose the
+ * easier alternative.
+ *
+ * inner_clean_breakpoint = time_2_range_clean_on_empty_cache(
+ * complete_clean_on_empty_cache_time)
+ * inner_flush_breakpoint = time_2_range_flush_on_empty_cache(
+ * complete_flush_on_empty_cache_time)
+ *
+ * outer_clean_breakpoint = time_2_range_clean_on_empty_cache(
+ * complete_clean_on_empty_cache_time)
+ * outer_flush_breakpoint = time_2_range_flush_on_empty_cache(
+ * complete_flush_on_empty_cache_time)
+ *
+ * WORST CASE:
+ * Worst case is that the cache is filled with dirty non targeted data that
+ * will be used after the synchronization and the system is under heavy load.
+ *
+ * inner_clean_breakpoint = time_2_range_clean_on_empty_cache(
+ * complete_clean_on_full_cache_time * 1.5)
+ * Times 1.5 because it runs on both cores half the time.
+ * inner_flush_breakpoint = time_2_range_flush_on_empty_cache(
+ * complete_flush_on_full_cache_time * 1.5 +
+ * complete_flush_on_full_cache_time / 2)
+ * Plus "complete_flush_on_full_cache_time / 2" because all data has to be read
+ * back, here we assume that both cores can fill their cache simultaneously
+ * (seems to be the case as operations on full and empty inner cache takes
+ * roughly the same amount of time ie the bus to outer is not the bottle neck).
+ *
+ * outer_clean_breakpoint = time_2_range_clean_on_empty_cache(
+ * complete_clean_on_full_cache_time +
+ * (complete_clean_on_full_cache_time -
+ * complete_clean_on_empty_cache_time))
+ * Plus "(complete_flush_on_full_cache_time -
+ * complete_flush_on_empty_cache_time)" because no one else can work when we
+ * hog the bus with our unecessary transfer.
+ * outer_flush_breakpoint = time_2_range_flush_on_empty_cache(
+ * complete_flush_on_full_cache_time * 2 +
+ * (complete_flush_on_full_cache_time -
+ * complete_flush_on_empty_cache_time) * 2)
+ *
+ * These values might have to be updated if changes are made to the CPU, L2$,
+ * memory bus or memory.
+ */
+/* 28930 */
+static const u32 inner_clean_breakpoint = 21324 + (32744 - 21324) * 0.666;
+/* 36224 */
+static const u32 inner_flush_breakpoint = 21324 + (43697 - 21324) * 0.666;
+/* 254069 */
+static const u32 outer_clean_breakpoint = 68041 + (347363 - 68041) * 0.666;
+/* 485414 */
+static const u32 outer_flush_breakpoint = 68041 + (694727 - 68041) * 0.666;
+
+static bool is_wt(enum hwmem_alloc_flags cache_settings);
+
+static void __clean_inner_dcache_all(void *param);
+static void clean_inner_dcache_all(void);
+
+static void __flush_inner_dcache_all(void *param);
+static void flush_inner_dcache_all(void);
+
+static bool is_cache_exclusive(void);
+
+enum hwmem_alloc_flags cachi_get_cache_settings(
+ enum hwmem_alloc_flags requested_cache_settings)
+{
+ enum hwmem_alloc_flags cache_settings =
+ requested_cache_settings & ~HWMEM_ALLOC_CACHE_HINT_MASK;
+
+ if ((cache_settings & HWMEM_ALLOC_CACHED) == HWMEM_ALLOC_CACHED) {
+ if (is_wt(requested_cache_settings))
+ cache_settings |= HWMEM_ALLOC_CACHE_HINT_WT;
+ else
+ cache_settings |= HWMEM_ALLOC_CACHE_HINT_WB;
+ }
+
+ return cache_settings;
+}
+
+void cachi_set_pgprot_cache_options(enum hwmem_alloc_flags cache_settings,
+ pgprot_t *pgprot)
+{
+ if ((cache_settings & HWMEM_ALLOC_CACHED) == HWMEM_ALLOC_CACHED) {
+ if (is_wt(cache_settings))
+ *pgprot = __pgprot_modify(*pgprot, L_PTE_MT_MASK,
+ L_PTE_MT_WRITETHROUGH);
+ else
+ *pgprot = __pgprot_modify(*pgprot, L_PTE_MT_MASK,
+ L_PTE_MT_WRITEBACK);
+ } else if (cache_settings & HWMEM_ALLOC_BUFFERED)
+ *pgprot = pgprot_writecombine(*pgprot);
+ else
+ *pgprot = pgprot_noncached(*pgprot);
+}
+
+void drain_cpu_write_buf(void)
+{
+ dsb();
+ outer_cache.sync();
+}
+
+void clean_cpu_dcache(void *vaddr, u32 paddr, u32 length, bool inner_only,
+ bool *cleaned_everything)
+{
+ /*
+ * There is no problem with exclusive caches here as the Cortex-A9
+ * documentation (8.1.4. Exclusive L2 cache) says that when a dirty
+ * line is moved from L2 to L1 it is first written to mem. Because
+ * of this there is no way a line can avoid the clean by jumping
+ * between the cache levels.
+ */
+ *cleaned_everything = true;
+
+ if (length < inner_clean_breakpoint) {
+ /* Inner clean range */
+ dmac_map_area(vaddr, length, DMA_TO_DEVICE);
+ *cleaned_everything = false;
+ } else
+ clean_inner_dcache_all();
+
+ if (!inner_only) {
+ /*
+ * There is currently no outer_cache.clean_all() so we use
+ * flush instead, which is ok as clean is a subset of flush.
+ * Clean range and flush range take the same amount of time
+ * so we can use outer_flush_breakpoint here.
+ */
+ if (length < outer_flush_breakpoint) {
+ outer_cache.clean_range(paddr, paddr + length);
+ *cleaned_everything = false;
+ } else
+ outer_cache.flush_all();
+ }
+}
+
+void flush_cpu_dcache(void *vaddr, u32 paddr, u32 length, bool inner_only,
+ bool *flushed_everything)
+{
+ /*
+ * There might still be stale data in the caches after this call if the
+ * cache levels are exclusive. The follwing can happen.
+ * 1. Clean L1 moves the data to L2.
+ * 2. Speculative prefetch, preemption or loads on the other core moves
+ * all the data back to L1, any dirty data will be written to mem as a
+ * result of this.
+ * 3. Flush L2 does nothing as there is no targeted data in L2.
+ * 4. Flush L1 moves the data to L2. Notice that this does not happen
+ * when the cache levels are non-exclusive as clean pages are not
+ * written to L2 in that case.
+ * 5. Stale data is still present in L2!
+ * I see two possible solutions, don't use exclusive caches or
+ * (temporarily) disable prefetching to L1, preeemption and the other
+ * core.
+ *
+ * A situation can occur where the operation does not seem atomic from
+ * the other core's point of view, even on a non-exclusive cache setup.
+ * Replace step 2 in the previous scenarion with a write from the other
+ * core. The other core will write on top of the old data but the
+ * result will not be written to memory. One would expect either that
+ * the write was performed on top of the old data and was written to
+ * memory (the write occured before the flush) or that the write was
+ * performed on top of the new data and was not written to memory (the
+ * write occured after the flush). The same problem can occur with one
+ * core if kernel preemption is enabled. The solution is to
+ * (temporarily) disable the other core and preemption. I can't think
+ * of any situation where this would be a problem and disabling the
+ * other core for the duration of this call is mighty expensive so for
+ * now I just ignore the problem.
+ */
+
+ *flushed_everything = true;
+
+ if (!inner_only) {
+ /*
+ * Beautiful solution for the exclusive problems :)
+ */
+ if (is_cache_exclusive())
+ panic("%s can't handle exclusive CPU caches\n",
+ __func__);
+
+ if (length < inner_clean_breakpoint) {
+ /* Inner clean range */
+ dmac_map_area(vaddr, length, DMA_TO_DEVICE);
+ *flushed_everything = false;
+ } else
+ clean_inner_dcache_all();
+
+ if (length < outer_flush_breakpoint) {
+ outer_cache.flush_range(paddr, paddr + length);
+ *flushed_everything = false;
+ } else
+ outer_cache.flush_all();
+ }
+
+ if (length < inner_flush_breakpoint) {
+ /* Inner flush range */
+ dmac_flush_range(vaddr, (void *)((u32)vaddr + length));
+ *flushed_everything = false;
+ } else
+ flush_inner_dcache_all();
+}
+
+bool speculative_data_prefetch(void)
+{
+ return true;
+}
+
+u32 get_dcache_granularity(void)
+{
+ return 32;
+}
+
+/*
+ * Local functions
+ */
+
+static bool is_wt(enum hwmem_alloc_flags cache_settings)
+{
+ u32 cache_hints = cache_settings & HWMEM_ALLOC_CACHE_HINT_MASK;
+ if (cache_hints == HWMEM_ALLOC_CACHE_HINT_WT ||
+ cache_hints == HWMEM_ALLOC_CACHE_HINT_WT_INNER)
+ return true;
+ else
+ return false;
+}
+
+static void __clean_inner_dcache_all(void *param)
+{
+ __cpuc_clean_dcache_all();
+}
+
+static void clean_inner_dcache_all(void)
+{
+ on_each_cpu(__clean_inner_dcache_all, NULL, 1);
+}
+
+static void __flush_inner_dcache_all(void *param)
+{
+ __cpuc_flush_dcache_all();
+}
+
+static void flush_inner_dcache_all(void)
+{
+ on_each_cpu(__flush_inner_dcache_all, NULL, 1);
+}
+
+static bool is_cache_exclusive(void)
+{
+ static const u32 CA9_ACTLR_EXCL = 0x80;
+
+ u32 armv7_actlr;
+
+ asm (
+ "mrc p15, 0, %0, c1, c0, 1"
+ : "=r" (armv7_actlr)
+ );
+
+ if (armv7_actlr & CA9_ACTLR_EXCL)
+ return true;
+ else
+ return false;
+}
diff --git a/arch/arm/mach-ux500/include/mach/dcache.h b/arch/arm/mach-ux500/include/mach/dcache.h
new file mode 100644
index 00000000000..83fe618b04f
--- /dev/null
+++ b/arch/arm/mach-ux500/include/mach/dcache.h
@@ -0,0 +1,26 @@
+/*
+ * Copyright (C) ST-Ericsson SA 2011
+ *
+ * Data cache helpers
+ *
+ * Author: Johan Mossberg <johan.xx.mossberg@stericsson.com>
+ * for ST-Ericsson.
+ *
+ * License terms: GNU General Public License (GPL), version 2.
+ */
+
+#ifndef _MACH_UX500_DCACHE_H_
+#define _MACH_UX500_DCACHE_H_
+
+#include <linux/types.h>
+
+void drain_cpu_write_buf(void);
+void clean_cpu_dcache(void *vaddr, u32 paddr, u32 length, bool inner_only,
+ bool *cleaned_everything);
+void flush_cpu_dcache(void *vaddr, u32 paddr, u32 length, bool inner_only,
+ bool *flushed_everything);
+bool speculative_data_prefetch(void);
+/* Returns 1 if no cache is present */
+u32 get_dcache_granularity(void);
+
+#endif /* _MACH_UX500_DCACHE_H_ */