summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@g5.osdl.org>2006-06-27 18:22:13 -0700
committerLinus Torvalds <torvalds@g5.osdl.org>2006-06-27 18:22:13 -0700
commit12e56b601f66a415f88e7d60f6b6707a19c430c9 (patch)
treec294adb1c5c1f80bbb2de82e6e41da97b3f5800f /Documentation
parentca6f8792bd5281ebaf04bf23a43ed486e5e453a9 (diff)
parentc78059f0a948404fb515db6be4bca5ec93eecd2a (diff)
Merge master.kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb
* master.kernel.org:/pub/scm/linux/kernel/git/mchehab/v4l-dvb: (26 commits) V4L/DVB (4263): Fix warning when compiling on 64 bit machines V4L/DVB (4261): Included required header for in-kernel compilation V4L/DVB (4260): Stradis.c: make 2 functions static V4L/DVB (4259): Pass an explicit log prefix to cx2341x_log_status V4L/DVB (4257): Fix 64-bit compile warnings. V4L/DVB (4255): Tda9887 default TOP value is 0x10 V4L/DVB (4254): Remove obsoleted tuner_debug option. V4L/DVB (4253): IVTV VBI format description too long. V4L/DVB (4252): Remove duplicate 'tda9887' in info messages. V4L/DVB (4245): Reduce the amount of pvrusb2-sourced noise going into the system log V4L/DVB (4244): Implement use of cx2341x module in pvrusb2 driver V4L/DVB (4243): Exploit new V4L control features in pvrusb2 V4L/DVB (4242): Don't suspend encoder when changing its attributes (in pvrusb2) V4L/DVB (4241): Fix faulty encoder error recovery in pvrusb2 V4L/DVB (4240): Various V4L control enhancements in pvrusb2 V4L/DVB (4239): Handle boolean controls in pvrusb2 V4L/DVB (4238): Make sure flags field is initialized when quering a control in pvrusb2 V4L/DVB (4237): Move LOG_STATUS bracketing to a different part of the pvrusb2 driver V4L/DVB (4236): Rearrange things in pvrusb2 driver in preparation for using cx2341x module V4L/DVB (4235): Increase the maximum number of controls that pvrusb2-sysfs.c can handle. ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/video4linux/README.pvrusb2212
1 files changed, 212 insertions, 0 deletions
diff --git a/Documentation/video4linux/README.pvrusb2 b/Documentation/video4linux/README.pvrusb2
new file mode 100644
index 00000000000..c73a32c3452
--- /dev/null
+++ b/Documentation/video4linux/README.pvrusb2
@@ -0,0 +1,212 @@
+
+$Id$
+Mike Isely <isely@pobox.com>
+
+ pvrusb2 driver
+
+Background:
+
+ This driver is intended for the "Hauppauge WinTV PVR USB 2.0", which
+ is a USB 2.0 hosted TV Tuner. This driver is a work in progress.
+ Its history started with the reverse-engineering effort by Björn
+ Danielsson <pvrusb2@dax.nu> whose web page can be found here:
+
+ http://pvrusb2.dax.nu/
+
+ From there Aurelien Alleaume <slts@free.fr> began an effort to
+ create a video4linux compatible driver. I began with Aurelien's
+ last known snapshot and evolved the driver to the state it is in
+ here.
+
+ More information on this driver can be found at:
+
+ http://www.isely.net/pvrusb2.html
+
+
+ This driver has a strong separation of layers. They are very
+ roughly:
+
+ 1a. Low level wire-protocol implementation with the device.
+
+ 1b. I2C adaptor implementation and corresponding I2C client drivers
+ implemented elsewhere in V4L.
+
+ 1c. High level hardware driver implementation which coordinates all
+ activities that ensure correct operation of the device.
+
+ 2. A "context" layer which manages instancing of driver, setup,
+ tear-down, arbitration, and interaction with high level
+ interfaces appropriately as devices are hotplugged in the
+ system.
+
+ 3. High level interfaces which glue the driver to various published
+ Linux APIs (V4L, sysfs, maybe DVB in the future).
+
+ The most important shearing layer is between the top 2 layers. A
+ lot of work went into the driver to ensure that any kind of
+ conceivable API can be laid on top of the core driver. (Yes, the
+ driver internally leverages V4L to do its work but that really has
+ nothing to do with the API published by the driver to the outside
+ world.) The architecture allows for different APIs to
+ simultaneously access the driver. I have a strong sense of fairness
+ about APIs and also feel that it is a good design principle to keep
+ implementation and interface isolated from each other. Thus while
+ right now the V4L high level interface is the most complete, the
+ sysfs high level interface will work equally well for similar
+ functions, and there's no reason I see right now why it shouldn't be
+ possible to produce a DVB high level interface that can sit right
+ alongside V4L.
+
+ NOTE: Complete documentation on the pvrusb2 driver is contained in
+ the html files within the doc directory; these are exactly the same
+ as what is on the web site at the time. Browse those files
+ (especially the FAQ) before asking questions.
+
+
+Building
+
+ To build these modules essentially amounts to just running "Make",
+ but you need the kernel source tree nearby and you will likely also
+ want to set a few controlling environment variables first in order
+ to link things up with that source tree. Please see the Makefile
+ here for comments that explain how to do that.
+
+
+Source file list / functional overview:
+
+ (Note: The term "module" used below generally refers to loosely
+ defined functional units within the pvrusb2 driver and bears no
+ relation to the Linux kernel's concept of a loadable module.)
+
+ pvrusb2-audio.[ch] - This is glue logic that resides between this
+ driver and the msp3400.ko I2C client driver (which is found
+ elsewhere in V4L).
+
+ pvrusb2-context.[ch] - This module implements the context for an
+ instance of the driver. Everything else eventually ties back to
+ or is otherwise instanced within the data structures implemented
+ here. Hotplugging is ultimately coordinated here. All high level
+ interfaces tie into the driver through this module. This module
+ helps arbitrate each interface's access to the actual driver core,
+ and is designed to allow concurrent access through multiple
+ instances of multiple interfaces (thus you can for example change
+ the tuner's frequency through sysfs while simultaneously streaming
+ video through V4L out to an instance of mplayer).
+
+ pvrusb2-debug.h - This header defines a printk() wrapper and a mask
+ of debugging bit definitions for the various kinds of debug
+ messages that can be enabled within the driver.
+
+ pvrusb2-debugifc.[ch] - This module implements a crude command line
+ oriented debug interface into the driver. Aside from being part
+ of the process for implementing manual firmware extraction (see
+ the pvrusb2 web site mentioned earlier), probably I'm the only one
+ who has ever used this. It is mainly a debugging aid.
+
+ pvrusb2-eeprom.[ch] - This is glue logic that resides between this
+ driver the tveeprom.ko module, which is itself implemented
+ elsewhere in V4L.
+
+ pvrusb2-encoder.[ch] - This module implements all protocol needed to
+ interact with the Conexant mpeg2 encoder chip within the pvrusb2
+ device. It is a crude echo of corresponding logic in ivtv,
+ however the design goals (strict isolation) and physical layer
+ (proxy through USB instead of PCI) are enough different that this
+ implementation had to be completely different.
+
+ pvrusb2-hdw-internal.h - This header defines the core data structure
+ in the driver used to track ALL internal state related to control
+ of the hardware. Nobody outside of the core hardware-handling
+ modules should have any business using this header. All external
+ access to the driver should be through one of the high level
+ interfaces (e.g. V4L, sysfs, etc), and in fact even those high
+ level interfaces are restricted to the API defined in
+ pvrusb2-hdw.h and NOT this header.
+
+ pvrusb2-hdw.h - This header defines the full internal API for
+ controlling the hardware. High level interfaces (e.g. V4L, sysfs)
+ will work through here.
+
+ pvrusb2-hdw.c - This module implements all the various bits of logic
+ that handle overall control of a specific pvrusb2 device.
+ (Policy, instantiation, and arbitration of pvrusb2 devices fall
+ within the jurisdiction of pvrusb-context not here).
+
+ pvrusb2-i2c-chips-*.c - These modules implement the glue logic to
+ tie together and configure various I2C modules as they attach to
+ the I2C bus. There are two versions of this file. The "v4l2"
+ version is intended to be used in-tree alongside V4L, where we
+ implement just the logic that makes sense for a pure V4L
+ environment. The "all" version is intended for use outside of
+ V4L, where we might encounter other possibly "challenging" modules
+ from ivtv or older kernel snapshots (or even the support modules
+ in the standalone snapshot).
+
+ pvrusb2-i2c-cmd-v4l1.[ch] - This module implements generic V4L1
+ compatible commands to the I2C modules. It is here where state
+ changes inside the pvrusb2 driver are translated into V4L1
+ commands that are in turn send to the various I2C modules.
+
+ pvrusb2-i2c-cmd-v4l2.[ch] - This module implements generic V4L2
+ compatible commands to the I2C modules. It is here where state
+ changes inside the pvrusb2 driver are translated into V4L2
+ commands that are in turn send to the various I2C modules.
+
+ pvrusb2-i2c-core.[ch] - This module provides an implementation of a
+ kernel-friendly I2C adaptor driver, through which other external
+ I2C client drivers (e.g. msp3400, tuner, lirc) may connect and
+ operate corresponding chips within the the pvrusb2 device. It is
+ through here that other V4L modules can reach into this driver to
+ operate specific pieces (and those modules are in turn driven by
+ glue logic which is coordinated by pvrusb2-hdw, doled out by
+ pvrusb2-context, and then ultimately made available to users
+ through one of the high level interfaces).
+
+ pvrusb2-io.[ch] - This module implements a very low level ring of
+ transfer buffers, required in order to stream data from the
+ device. This module is *very* low level. It only operates the
+ buffers and makes no attempt to define any policy or mechanism for
+ how such buffers might be used.
+
+ pvrusb2-ioread.[ch] - This module layers on top of pvrusb2-io.[ch]
+ to provide a streaming API usable by a read() system call style of
+ I/O. Right now this is the only layer on top of pvrusb2-io.[ch],
+ however the underlying architecture here was intended to allow for
+ other styles of I/O to be implemented with additonal modules, like
+ mmap()'ed buffers or something even more exotic.
+
+ pvrusb2-main.c - This is the top level of the driver. Module level
+ and USB core entry points are here. This is our "main".
+
+ pvrusb2-sysfs.[ch] - This is the high level interface which ties the
+ pvrusb2 driver into sysfs. Through this interface you can do
+ everything with the driver except actually stream data.
+
+ pvrusb2-tuner.[ch] - This is glue logic that resides between this
+ driver and the tuner.ko I2C client driver (which is found
+ elsewhere in V4L).
+
+ pvrusb2-util.h - This header defines some common macros used
+ throughout the driver. These macros are not really specific to
+ the driver, but they had to go somewhere.
+
+ pvrusb2-v4l2.[ch] - This is the high level interface which ties the
+ pvrusb2 driver into video4linux. It is through here that V4L
+ applications can open and operate the driver in the usual V4L
+ ways. Note that **ALL** V4L functionality is published only
+ through here and nowhere else.
+
+ pvrusb2-video-*.[ch] - This is glue logic that resides between this
+ driver and the saa711x.ko I2C client driver (which is found
+ elsewhere in V4L). Note that saa711x.ko used to be known as
+ saa7115.ko in ivtv. There are two versions of this; one is
+ selected depending on the particular saa711[5x].ko that is found.
+
+ pvrusb2.h - This header contains compile time tunable parameters
+ (and at the moment the driver has very little that needs to be
+ tuned).
+
+
+ -Mike Isely
+ isely@pobox.com
+