diff options
author | Arun Murthy <arun.murthy@stericsson.com> | 2011-05-26 16:49:55 +0530 |
---|---|---|
committer | Philippe Langlais <philippe.langlais@linaro.org> | 2011-07-22 15:51:55 +0200 |
commit | 5c6c4f22e09cf29951c056fb494fa7d39b32868d (patch) | |
tree | 3c8c0b575cfe2e3b48989786d2ef0db561bb26e7 /drivers | |
parent | 6135c183b11b96d430b54be6c593f7d068428c45 (diff) |
power: ab5500-fg: fuel gauge driver for ab5500
This is a low level ab5500 fuel gauge driver. A power supply class of
type fg is registered to display the battery parameters such as energy,
charge, capacity, voltage.
ST-Ericsson Linux next: Not Tested
ST-Ericsson ID: WP332221
ST-Ericsson FOSS-OUT ID: Trivial
Change-Id: Ibe508dd84836a9a4873539ce194b50788ea25cba
Signed-off-by: Arun Murthy <arun.murthy@stericsson.com>
Reviewed-on: http://gerrit.lud.stericsson.com/gerrit/23151
Reviewed-by: QATEST
Reviewed-by: Johan PALSSON <johan.palsson@stericsson.com>
Reviewed-by: Srinidhi KASAGAR <srinidhi.kasagar@stericsson.com>
Diffstat (limited to 'drivers')
-rw-r--r-- | drivers/power/ab5500_fg.c | 1830 |
1 files changed, 1830 insertions, 0 deletions
diff --git a/drivers/power/ab5500_fg.c b/drivers/power/ab5500_fg.c new file mode 100644 index 00000000000..1c866e8fec5 --- /dev/null +++ b/drivers/power/ab5500_fg.c @@ -0,0 +1,1830 @@ +/* + * Copyright (C) ST-Ericsson AB 2011 + * + * Main and Back-up battery management driver. + * + * Note: Backup battery management is required in case of Li-Ion battery and not + * for capacitive battery. HREF boards have capacitive battery and hence backup + * battery management is not used and the supported code is available in this + * driver. + * + * License Terms: GNU General Public License v2 + * Authors: + * Johan Palsson <johan.palsson@stericsson.com> + * Karl Komierowski <karl.komierowski@stericsson.com> + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/interrupt.h> +#include <linux/platform_device.h> +#include <linux/power_supply.h> +#include <linux/slab.h> +#include <linux/time.h> +#include <linux/delay.h> +#include <linux/mfd/abx500/ab5500-gpadc.h> +#include <linux/mfd/abx500/ab5500-bm.h> +#include <linux/mfd/abx500/ab5500.h> +#include <linux/mfd/abx500.h> + +static LIST_HEAD(ab5500_fg_list); + +/* U5500 Constants */ +#define FG_ON_MASK 0x04 +#define FG_ON 0x04 +#define FG_ACC_RESET_ON_READ_MASK 0x08 +#define FG_ACC_RESET_ON_READ 0x08 +#define EN_READOUT_MASK 0x01 +#define EN_READOUT 0x01 +#define RESET 0x00 +#define EOC_52_mA 0x04 +#define MILLI_TO_MICRO 1000 +#define FG_LSB_IN_MA 770 +#define QLSB_NANO_AMP_HOURS_X10 1129 +#define SEC_TO_SAMPLE(S) (S * 4) +#define NBR_AVG_SAMPLES 20 +#define LOW_BAT_CHECK_INTERVAL (2 * HZ) + +#define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */ + +#define interpolate(x, x1, y1, x2, y2) \ + ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1)))); + +#define to_ab5500_fg_device_info(x) container_of((x), \ + struct ab5500_fg, fg_psy); + +/** + * struct ab5500_fg_interrupts - ab5500 fg interupts + * @name: name of the interrupt + * @isr function pointer to the isr + */ +struct ab5500_fg_interrupts { + char *name; + irqreturn_t (*isr)(int irq, void *data); +}; + +enum ab5500_fg_discharge_state { + AB5500_FG_DISCHARGE_INIT, + AB5500_FG_DISCHARGE_INITMEASURING, + AB5500_FG_DISCHARGE_INIT_RECOVERY, + AB5500_FG_DISCHARGE_RECOVERY, + AB5500_FG_DISCHARGE_READOUT, + AB5500_FG_DISCHARGE_WAKEUP, +}; + +static char *discharge_state[] = { + "DISCHARGE_INIT", + "DISCHARGE_INITMEASURING", + "DISCHARGE_INIT_RECOVERY", + "DISCHARGE_RECOVERY", + "DISCHARGE_READOUT", + "DISCHARGE_WAKEUP", +}; + +enum ab5500_fg_charge_state { + AB5500_FG_CHARGE_INIT, + AB5500_FG_CHARGE_READOUT, +}; + +static char *charge_state[] = { + "CHARGE_INIT", + "CHARGE_READOUT", +}; + +enum ab5500_fg_calibration_state { + AB5500_FG_CALIB_INIT, + AB5500_FG_CALIB_WAIT, + AB5500_FG_CALIB_END, +}; + +struct ab5500_fg_avg_cap { + int avg; + int samples[NBR_AVG_SAMPLES]; + __kernel_time_t time_stamps[NBR_AVG_SAMPLES]; + int pos; + int nbr_samples; + int sum; +}; + +struct ab5500_fg_battery_capacity { + int max_mah_design; + int max_mah; + int mah; + int permille; + int level; + int prev_mah; + int prev_percent; + int prev_level; +}; + +struct ab5500_fg_flags { + bool fg_enabled; + bool conv_done; + bool charging; + bool fully_charged; + bool low_bat_delay; + bool low_bat; + bool bat_ovv; + bool batt_unknown; + bool calibrate; +}; + +/** + * struct ab5500_fg - ab5500 FG device information + * @dev: Pointer to the structure device + * @vbat: Battery voltage in mV + * @vbat_nom: Nominal battery voltage in mV + * @inst_curr: Instantenous battery current in mA + * @avg_curr: Average battery current in mA + * @fg_samples: Number of samples used in the FG accumulation + * @accu_charge: Accumulated charge from the last conversion + * @recovery_cnt: Counter for recovery mode + * @high_curr_cnt: Counter for high current mode + * @init_cnt: Counter for init mode + * @v_to_cap: capacity based on battery voltage + * @recovery_needed: Indicate if recovery is needed + * @high_curr_mode: Indicate if we're in high current mode + * @init_capacity: Indicate if initial capacity measuring should be done + * @calib_state State during offset calibration + * @discharge_state: Current discharge state + * @charge_state: Current charge state + * @flags: Structure for information about events triggered + * @bat_cap: Structure for battery capacity specific parameters + * @avg_cap: Average capacity filter + * @parent: Pointer to the struct ab5500 + * @gpadc: Pointer to the struct gpadc + * @gpadc_auto: Pointer tot he struct adc_auto_input + * @pdata: Pointer to the ab5500_fg platform data + * @bat: Pointer to the ab5500_bm platform data + * @fg_psy: Structure that holds the FG specific battery properties + * @fg_wq: Work queue for running the FG algorithm + * @fg_periodic_work: Work to run the FG algorithm periodically + * @fg_low_bat_work: Work to check low bat condition + * @fg_work: Work to run the FG algorithm instantly + * @fg_acc_cur_work: Work to read the FG accumulator + * @cc_lock: Mutex for locking the CC + * @node: struct of type list_head + */ +struct ab5500_fg { + struct device *dev; + int vbat; + int vbat_nom; + int inst_curr; + int avg_curr; + int fg_samples; + int accu_charge; + int recovery_cnt; + int high_curr_cnt; + int init_cnt; + int v_to_cap; + bool recovery_needed; + bool high_curr_mode; + bool init_capacity; + enum ab5500_fg_calibration_state calib_state; + enum ab5500_fg_discharge_state discharge_state; + enum ab5500_fg_charge_state charge_state; + struct ab5500_fg_flags flags; + struct ab5500_fg_battery_capacity bat_cap; + struct ab5500_fg_avg_cap avg_cap; + struct ab5500 *parent; + struct ab5500_gpadc *gpadc; + struct adc_auto_input *gpadc_auto; + struct abx500_fg_platform_data *pdata; + struct abx500_bm_data *bat; + struct power_supply fg_psy; + struct workqueue_struct *fg_wq; + struct delayed_work fg_periodic_work; + struct delayed_work fg_low_bat_work; + struct work_struct fg_work; + struct delayed_work fg_acc_cur_work; + struct mutex cc_lock; + struct list_head node; + struct timer_list avg_current_timer; +}; + +/* Main battery properties */ +static enum power_supply_property ab5500_fg_props[] = { + POWER_SUPPLY_PROP_VOLTAGE_NOW, + POWER_SUPPLY_PROP_CURRENT_NOW, + POWER_SUPPLY_PROP_CURRENT_AVG, + POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, + POWER_SUPPLY_PROP_ENERGY_FULL, + POWER_SUPPLY_PROP_ENERGY_NOW, + POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, + POWER_SUPPLY_PROP_CHARGE_FULL, + POWER_SUPPLY_PROP_CHARGE_NOW, + POWER_SUPPLY_PROP_CAPACITY, + POWER_SUPPLY_PROP_CAPACITY_LEVEL, +}; + +struct ab5500_fg *ab5500_fg_get(void) +{ + struct ab5500_fg *di; + di = list_first_entry(&ab5500_fg_list, struct ab5500_fg, node); + + return di; +} + +/** + * ab5500_fg_is_low_curr() - Low or high current mode + * @di: pointer to the ab5500_fg structure + * @curr: the current to base or our decision on + * + * Low current mode if the current consumption is below a certain threshold + */ +static int ab5500_fg_is_low_curr(struct ab5500_fg *di, int curr) +{ + /* + * We want to know if we're in low current mode + */ + if (curr > -di->bat->fg_params->high_curr_threshold) + return true; + else + return false; +} + +/** + * ab5500_fg_add_cap_sample() - Add capacity to average filter + * @di: pointer to the ab5500_fg structure + * @sample: the capacity in mAh to add to the filter + * + * A capacity is added to the filter and a new mean capacity is calculated and + * returned + */ +static int ab5500_fg_add_cap_sample(struct ab5500_fg *di, int sample) +{ + struct timespec ts; + struct ab5500_fg_avg_cap *avg = &di->avg_cap; + + getnstimeofday(&ts); + + do { + avg->sum += sample - avg->samples[avg->pos]; + avg->samples[avg->pos] = sample; + avg->time_stamps[avg->pos] = ts.tv_sec; + avg->pos++; + + if (avg->pos == NBR_AVG_SAMPLES) + avg->pos = 0; + + if (avg->nbr_samples < NBR_AVG_SAMPLES) + avg->nbr_samples++; + + /* + * Check the time stamp for each sample. If too old, + * replace with latest sample + */ + } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]); + + avg->avg = avg->sum / avg->nbr_samples; + + return avg->avg; +} + +/** + * ab5500_fg_fill_cap_sample() - Fill average filter + * @di: pointer to the ab5500_fg structure + * @sample: the capacity in mAh to fill the filter with + * + * The capacity filter is filled with a capacity in mAh + */ +static void ab5500_fg_fill_cap_sample(struct ab5500_fg *di, int sample) +{ + int i; + struct timespec ts; + struct ab5500_fg_avg_cap *avg = &di->avg_cap; + + getnstimeofday(&ts); + + for (i = 0; i < NBR_AVG_SAMPLES; i++) { + avg->samples[i] = sample; + avg->time_stamps[i] = ts.tv_sec; + } + + avg->pos = 0; + avg->nbr_samples = NBR_AVG_SAMPLES; + avg->sum = sample * NBR_AVG_SAMPLES; + avg->avg = sample; +} + +/** + * ab5500_fg_coulomb_counter() - enable coulomb counter + * @di: pointer to the ab5500_fg structure + * @enable: enable/disable + * + * Enable/Disable coulomb counter. + * On failure returns negative value. + */ +static int ab5500_fg_coulomb_counter(struct ab5500_fg *di, bool enable) +{ + int ret = 0; + mutex_lock(&di->cc_lock); + if (enable) { + /* Power-up the CC */ + ret = abx500_set_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, AB5500_FG_CONTROL_A, + (FG_ON | FG_ACC_RESET_ON_READ)); + if (ret) + goto cc_err; + + di->flags.fg_enabled = true; + } else { + /* Stop the CC */ + ret = abx500_mask_and_set_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, AB5500_FG_CONTROL_A, + FG_ON_MASK, RESET); + if (ret) + goto cc_err; + + di->flags.fg_enabled = false; + + } + dev_dbg(di->dev, " CC enabled: %d Samples: %d\n", + enable, di->fg_samples); + + mutex_unlock(&di->cc_lock); + + return ret; +cc_err: + dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__); + mutex_unlock(&di->cc_lock); + return ret; +} + +/** + * ab5500_fg_inst_curr() - battery instantaneous current + * @di: pointer to the ab5500_fg structure + * + * Returns battery instantenous current(on success) else error code + */ +static int ab5500_fg_inst_curr(struct ab5500_fg *di) +{ + u8 low, high, value; + static int val; + int ret = 0; + bool fg_off = false; + + if (!di->flags.fg_enabled) { + fg_off = true; + /* Power-up the CC */ + ab5500_fg_coulomb_counter(di, true); + msleep(250); + } + + mutex_lock(&di->cc_lock); + /* + * Since there is no interrupt for this, just wait for 250ms + * 250ms is one sample conversion time with 32.768 Khz RTC clock + */ + msleep(250); + + /* Enable read request */ + ret = abx500_mask_and_set_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, AB5500_FG_CONTROL_B, + EN_READOUT_MASK, EN_READOUT); + if (ret) + goto inst_curr_err; + + /* Read CC Sample conversion value Low and high */ + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FGDIR_READ0, &low); + if (ret < 0) + goto inst_curr_err; + + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FGDIR_READ1, &high); + if (ret < 0) + goto inst_curr_err; + + /* + * negative value for Discharging + * convert 2's compliment into decimal + */ + if (high & 0x10) + val = (low | (high << 8) | 0xFFFFE000); + else + val = (low | (high << 8)); + + /* + * Convert to unit value in mA + * R(FGSENSE) = 20 mOhm + * Scaling of LSB: This corresponds fro R(FGSENSE) to a current of + * I = Q/t = 192.7 uC * 4 Hz = 0.77mA + */ + val = (val * 770) / 1000; + + mutex_unlock(&di->cc_lock); + + if (fg_off) { + dev_dbg(di->dev, "%s Disable FG\n", __func__); + /* Power-off the CC */ + ab5500_fg_coulomb_counter(di, false); + } + + return val; + +inst_curr_err: + dev_err(di->dev, "%s Get instanst current failed\n", __func__); + mutex_unlock(&di->cc_lock); + return ret; +} + +static void ab5500_fg_acc_cur_timer_expired(unsigned long data) +{ + struct ab5500_fg *di = (struct ab5500_fg *) data; + dev_dbg(di->dev, "Avg current timer expired\n"); + + /* Trigger execution of the algorithm instantly */ + queue_delayed_work(di->fg_wq, &di->fg_acc_cur_work, 0); +} + +/** + * ab5500_fg_acc_cur_work() - average battery current + * @work: pointer to the work_struct structure + * + * Updated the average battery current obtained from the + * coulomb counter. + */ +static void ab5500_fg_acc_cur_work(struct work_struct *work) +{ + int val; + int ret; + u8 low, med, high, cnt_low, cnt_high; + + struct ab5500_fg *di = container_of(work, + struct ab5500_fg, fg_acc_cur_work.work); + + if (!di->flags.fg_enabled) { + /* Power-up the CC */ + ab5500_fg_coulomb_counter(di, true); + msleep(250); + } + mutex_lock(&di->cc_lock); + ret = abx500_mask_and_set_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, AB5500_FG_CONTROL_C, + EN_READOUT_MASK, EN_READOUT); + if (ret < 0) + goto exit; + /* If charging read charging registers for accumulated values */ + if (di->flags.charging) { + /* Read CC Sample conversion value Low and high */ + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_CH0, &low); + if (ret < 0) + goto exit; + + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_CH1, &med); + if (ret < 0) + goto exit; + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_CH2, &high); + if (ret < 0) + goto exit; + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_VAL_COUNT0, &cnt_low); + if (ret < 0) + goto exit; + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_VAL_COUNT1, &cnt_high); + if (ret < 0) + goto exit; + queue_delayed_work(di->fg_wq, &di->fg_acc_cur_work, + di->bat->interval_charging * HZ); + } else { /* discharging */ + /* Read CC Sample conversion value Low and high */ + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_DIS_CH0, &low); + if (ret < 0) + goto exit; + + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_DIS_CH1, &med); + if (ret < 0) + goto exit; + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_DIS_CH2, &high); + if (ret < 0) + goto exit; + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_VAL_COUNT0, &cnt_low); + if (ret < 0) + goto exit; + ret = abx500_get_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, + AB5500_FG_VAL_COUNT1, &cnt_high); + if (ret < 0) + goto exit; + queue_delayed_work(di->fg_wq, &di->fg_acc_cur_work, + di->bat->interval_not_charging * HZ); + } + di->fg_samples = (cnt_low | (cnt_high << 8)); + val = (low | (med << 8) | (high << 16)); + + di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10)/10000; + di->avg_curr = (val * FG_LSB_IN_MA) / (di->fg_samples * 1000); + di->flags.conv_done = true; + + mutex_unlock(&di->cc_lock); + + queue_work(di->fg_wq, &di->fg_work); + + return; +exit: + dev_err(di->dev, + "Failed to read or write gas gauge registers\n"); + mutex_unlock(&di->cc_lock); + queue_work(di->fg_wq, &di->fg_work); +} + +/** + * ab5500_fg_bat_voltage() - get battery voltage + * @di: pointer to the ab5500_fg structure + * + * Returns battery voltage(on success) else error code + */ +static int ab5500_fg_bat_voltage(struct ab5500_fg *di) +{ + int vbat; + static int prev; + + vbat = ab5500_gpadc_convert(di->gpadc, MAIN_BAT_V); + if (vbat < 0) { + dev_err(di->dev, + "%s gpadc conversion failed, using previous value\n", + __func__); + return prev; + } + + prev = vbat; + return vbat; +} + +/** + * ab5500_fg_volt_to_capacity() - Voltage based capacity + * @di: pointer to the ab5500_fg structure + * @voltage: The voltage to convert to a capacity + * + * Returns battery capacity in per mille based on voltage + */ +static int ab5500_fg_volt_to_capacity(struct ab5500_fg *di, int voltage) +{ + int i, tbl_size; + struct abx500_v_to_cap *tbl; + int cap = 0; + + tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl, + tbl_size = di->bat->bat_type[di->bat->batt_id].n_v_cap_tbl_elements; + + for (i = 0; i < tbl_size; ++i) { + if (di->vbat < tbl[i].voltage && di->vbat > tbl[i+1].voltage) + di->v_to_cap = tbl[i].capacity; + } + + for (i = 0; i < tbl_size; ++i) { + if (voltage > tbl[i].voltage) + break; + } + + if ((i > 0) && (i < tbl_size)) { + cap = interpolate(voltage, + tbl[i].voltage, + tbl[i].capacity * 10, + tbl[i-1].voltage, + tbl[i-1].capacity * 10); + } else if (i == 0) { + cap = 1000; + } else { + cap = 0; + } + + dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille", + __func__, voltage, cap); + + return cap; +} + +/** + * ab5500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity + * @di: pointer to the ab5500_fg structure + * + * Returns battery capacity based on battery voltage that is not compensated + * for the voltage drop due to the load + */ +static int ab5500_fg_uncomp_volt_to_capacity(struct ab5500_fg *di) +{ + di->vbat = ab5500_fg_bat_voltage(di); + return ab5500_fg_volt_to_capacity(di, di->vbat); +} + +/** + * ab5500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity + * @di: pointer to the ab5500_fg structure + * + * Returns battery capacity based on battery voltage that is load compensated + * for the voltage drop + */ +static int ab5500_fg_load_comp_volt_to_capacity(struct ab5500_fg *di) +{ + int vbat_comp; + + di->inst_curr = ab5500_fg_inst_curr(di); + di->vbat = ab5500_fg_bat_voltage(di); + + /* Use Ohms law to get the load compensated voltage */ + vbat_comp = di->vbat - (di->inst_curr * + di->bat->bat_type[di->bat->batt_id].battery_resistance) / 1000; + + dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, " + "R: %dmOhm, Current: %dmA\n", + __func__, + di->vbat, + vbat_comp, + di->bat->bat_type[di->bat->batt_id].battery_resistance, + di->inst_curr); + + return ab5500_fg_volt_to_capacity(di, vbat_comp); +} + +/** + * ab5500_fg_convert_mah_to_permille() - Capacity in mAh to permille + * @di: pointer to the ab5500_fg structure + * @cap_mah: capacity in mAh + * + * Converts capacity in mAh to capacity in permille + */ +static int ab5500_fg_convert_mah_to_permille(struct ab5500_fg *di, int cap_mah) +{ + return (cap_mah * 1000) / di->bat_cap.max_mah_design; +} + +/** + * ab5500_fg_convert_permille_to_mah() - Capacity in permille to mAh + * @di: pointer to the ab5500_fg structure + * @cap_pm: capacity in permille + * + * Converts capacity in permille to capacity in mAh + */ +static int ab5500_fg_convert_permille_to_mah(struct ab5500_fg *di, int cap_pm) +{ + return cap_pm * di->bat_cap.max_mah_design / 1000; +} + +/** + * ab5500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh + * @di: pointer to the ab5500_fg structure + * @cap_mah: capacity in mAh + * + * Converts capacity in mAh to capacity in uWh + */ +static int ab5500_fg_convert_mah_to_uwh(struct ab5500_fg *di, int cap_mah) +{ + u64 div_res; + u32 div_rem; + + div_res = ((u64) cap_mah) * ((u64) di->vbat_nom); + div_rem = do_div(div_res, 1000); + + /* Make sure to round upwards if necessary */ + if (div_rem >= 1000 / 2) + div_res++; + + return (int) div_res; +} + +/** + * ab5500_fg_calc_cap_charging() - Calculate remaining capacity while charging + * @di: pointer to the ab5500_fg structure + * + * Return the capacity in mAh based on previous calculated capcity and the FG + * accumulator register value. The filter is filled with this capacity + */ +static int ab5500_fg_calc_cap_charging(struct ab5500_fg *di) +{ + dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", + __func__, + di->bat_cap.mah, + di->accu_charge); + + /* Capacity should not be less than 0 */ + if (di->bat_cap.mah + di->accu_charge > 0) + di->bat_cap.mah += di->accu_charge; + else + di->bat_cap.mah = 0; + + /* + * We force capacity to 100% as long as the algorithm + * reports that it's full. + */ + if (di->bat_cap.mah >= di->bat_cap.max_mah_design || + di->flags.fully_charged) + di->bat_cap.mah = di->bat_cap.max_mah_design; + + ab5500_fg_fill_cap_sample(di, di->bat_cap.mah); + di->bat_cap.permille = + ab5500_fg_convert_mah_to_permille(di, di->bat_cap.mah); + + /* We need to update battery voltage and inst current when charging */ + di->vbat = ab5500_fg_bat_voltage(di); + di->inst_curr = ab5500_fg_inst_curr(di); + + return di->bat_cap.mah; +} + +/** + * ab5500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage + * @di: pointer to the ab5500_fg structure + * @comp: if voltage should be load compensated before capacity calc + * + * Return the capacity in mAh based on the battery voltage. The voltage can + * either be load compensated or not. This value is added to the filter and a + * new mean value is calculated and returned. + */ +static int ab5500_fg_calc_cap_discharge_voltage(struct ab5500_fg *di, bool comp) +{ + int permille, mah; + + if (comp) + permille = ab5500_fg_load_comp_volt_to_capacity(di); + else + permille = ab5500_fg_uncomp_volt_to_capacity(di); + + mah = ab5500_fg_convert_permille_to_mah(di, permille); + + di->bat_cap.mah = ab5500_fg_add_cap_sample(di, mah); + di->bat_cap.permille = + ab5500_fg_convert_mah_to_permille(di, di->bat_cap.mah); + + return di->bat_cap.mah; +} + +/** + * ab5500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG + * @di: pointer to the ab5500_fg structure + * + * Return the capacity in mAh based on previous calculated capcity and the FG + * accumulator register value. This value is added to the filter and a + * new mean value is calculated and returned. + */ +static int ab5500_fg_calc_cap_discharge_fg(struct ab5500_fg *di) +{ + int permille_volt, permille; + + dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", + __func__, + di->bat_cap.mah, + di->accu_charge); + + /* Capacity should not be less than 0 */ + if (di->bat_cap.mah + di->accu_charge > 0) + di->bat_cap.mah += di->accu_charge; + else + di->bat_cap.mah = 0; + + if (di->bat_cap.mah >= di->bat_cap.max_mah_design) + di->bat_cap.mah = di->bat_cap.max_mah_design; + + /* + * Check against voltage based capacity. It can not be lower + * than what the uncompensated voltage says + */ + permille = ab5500_fg_convert_mah_to_permille(di, di->bat_cap.mah); + permille_volt = ab5500_fg_uncomp_volt_to_capacity(di); + + if (permille < permille_volt) { + di->bat_cap.permille = permille_volt; + di->bat_cap.mah = ab5500_fg_convert_permille_to_mah(di, + di->bat_cap.permille); + + dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n", + __func__, + permille, + permille_volt); + + ab5500_fg_fill_cap_sample(di, di->bat_cap.mah); + } else { + ab5500_fg_fill_cap_sample(di, di->bat_cap.mah); + di->bat_cap.permille = + ab5500_fg_convert_mah_to_permille(di, di->bat_cap.mah); + } + + return di->bat_cap.mah; +} + +/** + * ab5500_fg_capacity_level() - Get the battery capacity level + * @di: pointer to the ab5500_fg structure + * + * Get the battery capacity level based on the capacity in percent + */ +static int ab5500_fg_capacity_level(struct ab5500_fg *di) +{ + int ret, percent; + + percent = di->bat_cap.permille / 10; + + if (percent <= di->bat->cap_levels->critical || + di->flags.low_bat) + ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; + else if (percent <= di->bat->cap_levels->low) + ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW; + else if (percent <= di->bat->cap_levels->normal) + ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; + else if (percent <= di->bat->cap_levels->high) + ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; + else + ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL; + + return ret; +} + +/** + * ab5500_fg_check_capacity_limits() - Check if capacity has changed + * @di: pointer to the ab5500_fg structure + * @init: capacity is allowed to go up in init mode + * + * Check if capacity or capacity limit has changed and notify the system + * about it using the power_supply framework + */ +static void ab5500_fg_check_capacity_limits(struct ab5500_fg *di, bool init) +{ + bool changed = false; + + di->bat_cap.level = ab5500_fg_capacity_level(di); + + if (di->bat_cap.level != di->bat_cap.prev_level) { + /* + * We do not allow reported capacity level to go up + * unless we're charging or if we're in init + */ + if (!(!di->flags.charging && di->bat_cap.level > + di->bat_cap.prev_level) || init) { + dev_dbg(di->dev, "level changed from %d to %d\n", + di->bat_cap.prev_level, + di->bat_cap.level); + di->bat_cap.prev_level = di->bat_cap.level; + changed = true; + } else { + dev_dbg(di->dev, "level not allowed to go up " + "since no charger is connected: %d to %d\n", + di->bat_cap.prev_level, + di->bat_cap.level); + } + } + + /* + * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate + * shutdown + */ + if (di->flags.low_bat) { + dev_dbg(di->dev, "Battery low, set capacity to 0\n"); + di->bat_cap.prev_percent = 0; + di->bat_cap.permille = 0; + di->bat_cap.prev_mah = 0; + di->bat_cap.mah = 0; + changed = true; + } else if (di->bat_cap.prev_percent != di->bat_cap.permille / 10) { + if (di->bat_cap.permille / 10 == 0) { + /* + * We will not report 0% unless we've got + * the LOW_BAT IRQ, no matter what the FG + * algorithm says. + */ + di->bat_cap.prev_percent = 1; + di->bat_cap.permille = 1; + di->bat_cap.prev_mah = 1; + di->bat_cap.mah = 1; + + changed = true; + } else if (!(!di->flags.charging && + (di->bat_cap.permille / 10) > + di->bat_cap.prev_percent) || init) { + /* + * We do not allow reported capacity to go up + * unless we're charging or if we're in init + */ + dev_dbg(di->dev, + "capacity changed from %d to %d (%d)\n", + di->bat_cap.prev_percent, + di->bat_cap.permille / 10, + di->bat_cap.permille); + di->bat_cap.prev_percent = di->bat_cap.permille / 10; + di->bat_cap.prev_mah = di->bat_cap.mah; + + changed = true; + } else { + dev_dbg(di->dev, "capacity not allowed to go up since " + "no charger is connected: %d to %d (%d)\n", + di->bat_cap.prev_percent, + di->bat_cap.permille / 10, + di->bat_cap.permille); + } + } + + if (changed) + power_supply_changed(&di->fg_psy); + +} + +static void ab5500_fg_charge_state_to(struct ab5500_fg *di, + enum ab5500_fg_charge_state new_state) +{ + dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n", + di->charge_state, + charge_state[di->charge_state], + new_state, + charge_state[new_state]); + + di->charge_state = new_state; +} + +static void ab5500_fg_discharge_state_to(struct ab5500_fg *di, + enum ab5500_fg_charge_state new_state) +{ + dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n", + di->discharge_state, + discharge_state[di->discharge_state], + new_state, + discharge_state[new_state]); + + di->discharge_state = new_state; +} + +/** + * ab5500_fg_algorithm_charging() - FG algorithm for when charging + * @di: pointer to the ab5500_fg structure + * + * Battery capacity calculation state machine for when we're charging + */ +static void ab5500_fg_algorithm_charging(struct ab5500_fg *di) +{ + /* + * If we change to discharge mode + * we should start with recovery + */ + if (di->discharge_state != AB5500_FG_DISCHARGE_INIT_RECOVERY) + ab5500_fg_discharge_state_to(di, + AB5500_FG_DISCHARGE_INIT_RECOVERY); + + switch (di->charge_state) { + case AB5500_FG_CHARGE_INIT: + di->fg_samples = SEC_TO_SAMPLE( + di->bat->fg_params->accu_charging); + + ab5500_fg_coulomb_counter(di, true); + ab5500_fg_charge_state_to(di, AB5500_FG_CHARGE_READOUT); + + break; + + case AB5500_FG_CHARGE_READOUT: + /* + * Read the FG and calculate the new capacity + */ + mutex_lock(&di->cc_lock); + if (!di->flags.conv_done) { + /* Wasn't the CC IRQ that got us here */ + mutex_unlock(&di->cc_lock); + dev_dbg(di->dev, "%s CC conv not done\n", + __func__); + + break; + } + di->flags.conv_done = false; + mutex_unlock(&di->cc_lock); + + ab5500_fg_calc_cap_charging(di); + + break; + + default: + break; + } + + /* Check capacity limits */ + ab5500_fg_check_capacity_limits(di, false); +} + +/** + * ab5500_fg_algorithm_discharging() - FG algorithm for when discharging + * @di: pointer to the ab5500_fg structure + * + * Battery capacity calculation state machine for when we're discharging + */ +static void ab5500_fg_algorithm_discharging(struct ab5500_fg *di) +{ + int sleep_time; + + /* If we change to charge mode we should start with init */ + if (di->charge_state != AB5500_FG_CHARGE_INIT) + ab5500_fg_charge_state_to(di, AB5500_FG_CHARGE_INIT); + + switch (di->discharge_state) { + case AB5500_FG_DISCHARGE_INIT: + /* We use the FG IRQ to work on */ + di->init_cnt = 0; + di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer); + ab5500_fg_coulomb_counter(di, true); + ab5500_fg_discharge_state_to(di, + AB5500_FG_DISCHARGE_INITMEASURING); + + /* Intentional fallthrough */ + case AB5500_FG_DISCHARGE_INITMEASURING: + /* + * Discard a number of samples during startup. + * After that, use compensated voltage for a few + * samples to get an initial capacity. + * Then go to READOUT + */ + sleep_time = di->bat->fg_params->init_timer; + + /* Discard the first [x] seconds */ + if (di->init_cnt > + di->bat->fg_params->init_discard_time) { + + ab5500_fg_calc_cap_discharge_voltage(di, true); + + ab5500_fg_check_capacity_limits(di, true); + } + + di->init_cnt += sleep_time; + if (di->init_cnt > + di->bat->fg_params->init_total_time) { + di->fg_samples = SEC_TO_SAMPLE( + di->bat->fg_params->accu_high_curr); + + ab5500_fg_coulomb_counter(di, true); + ab5500_fg_discharge_state_to(di, + AB5500_FG_DISCHARGE_READOUT); + } + + break; + + case AB5500_FG_DISCHARGE_INIT_RECOVERY: + di->recovery_cnt = 0; + di->recovery_needed = true; + ab5500_fg_discharge_state_to(di, + AB5500_FG_DISCHARGE_RECOVERY); + + /* Intentional fallthrough */ + + case AB5500_FG_DISCHARGE_RECOVERY: + sleep_time = di->bat->fg_params->recovery_sleep_timer; + + /* + * We should check the power consumption + * If low, go to READOUT (after x min) or + * RECOVERY_SLEEP if time left. + * If high, go to READOUT + */ + di->inst_curr = ab5500_fg_inst_curr(di); + + if (ab5500_fg_is_low_curr(di, di->inst_curr)) { + if (di->recovery_cnt > + di->bat->fg_params->recovery_total_time) { + di->fg_samples = SEC_TO_SAMPLE( + di->bat->fg_params->accu_high_curr); + ab5500_fg_coulomb_counter(di, true); + ab5500_fg_discharge_state_to(di, + AB5500_FG_DISCHARGE_READOUT); + di->recovery_needed = false; + } else { + queue_delayed_work(di->fg_wq, + &di->fg_periodic_work, + sleep_time * HZ); + } + di->recovery_cnt += sleep_time; + } else { + di->fg_samples = SEC_TO_SAMPLE( + di->bat->fg_params->accu_high_curr); + ab5500_fg_coulomb_counter(di, true); + ab5500_fg_discharge_state_to(di, + AB5500_FG_DISCHARGE_READOUT); + } + + break; + + case AB5500_FG_DISCHARGE_READOUT: + di->inst_curr = ab5500_fg_inst_curr(di); + + if (ab5500_fg_is_low_curr(di, di->inst_curr)) { + /* Detect mode change */ + if (di->high_curr_mode) { + di->high_curr_mode = false; + di->high_curr_cnt = 0; + } + + if (di->recovery_needed) { + ab5500_fg_discharge_state_to(di, + AB5500_FG_DISCHARGE_RECOVERY); + + queue_delayed_work(di->fg_wq, + &di->fg_periodic_work, + 0); + + break; + } + + ab5500_fg_calc_cap_discharge_voltage(di, true); + } else { + mutex_lock(&di->cc_lock); + if (!di->flags.conv_done) { + /* Wasn't the CC IRQ that got us here */ + mutex_unlock(&di->cc_lock); + dev_dbg(di->dev, "%s CC conv not done\n", + __func__); + + break; + } + di->flags.conv_done = false; + mutex_unlock(&di->cc_lock); + + /* Detect mode change */ + if (!di->high_curr_mode) { + di->high_curr_mode = true; + di->high_curr_cnt = 0; + } + + di->high_curr_cnt += + di->bat->fg_params->accu_high_curr; + if (di->high_curr_cnt > + di->bat->fg_params->high_curr_time) + di->recovery_needed = true; + + ab5500_fg_calc_cap_discharge_fg(di); + } + + ab5500_fg_check_capacity_limits(di, false); + + break; + + case AB5500_FG_DISCHARGE_WAKEUP: + ab5500_fg_coulomb_counter(di, true); + di->inst_curr = ab5500_fg_inst_curr(di); + + ab5500_fg_calc_cap_discharge_voltage(di, true); + + di->fg_samples = SEC_TO_SAMPLE( + di->bat->fg_params->accu_high_curr); + /* Re-program number of samples set above */ + ab5500_fg_coulomb_counter(di, true); + ab5500_fg_discharge_state_to(di, AB5500_FG_DISCHARGE_READOUT); + + ab5500_fg_check_capacity_limits(di, false); + + break; + + default: + break; + } +} + +/** + * ab5500_fg_algorithm_calibrate() - Internal columb counter offset calibration + * @di: pointer to the ab5500_fg structure + * + */ +static void ab5500_fg_algorithm_calibrate(struct ab5500_fg *di) +{ + int ret; + + switch (di->calib_state) { + case AB5500_FG_CALIB_INIT: + dev_dbg(di->dev, "Calibration ongoing...\n"); + /* TODO: For Cut 1.1 no calibration */ + ret = abx500_mask_and_set_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, AB5500_FG_CONTROL_A, + FG_ACC_RESET_ON_READ_MASK, FG_ACC_RESET_ON_READ); + if (ret) + goto err; + di->calib_state = AB5500_FG_CALIB_WAIT; + break; + case AB5500_FG_CALIB_END: + di->flags.calibrate = false; + dev_dbg(di->dev, "Calibration done...\n"); + queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); + break; + case AB5500_FG_CALIB_WAIT: + dev_dbg(di->dev, "Calibration WFI\n"); + default: + break; + } + return; +err: + /* Something went wrong, don't calibrate then */ + dev_err(di->dev, "failed to calibrate the CC\n"); + di->flags.calibrate = false; + di->calib_state = AB5500_FG_CALIB_INIT; + queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); +} + +/** + * ab5500_fg_algorithm() - Entry point for the FG algorithm + * @di: pointer to the ab5500_fg structure + * + * Entry point for the battery capacity calculation state machine + */ +static void ab5500_fg_algorithm(struct ab5500_fg *di) +{ + if (di->flags.calibrate) + ab5500_fg_algorithm_calibrate(di); + else { + if (di->flags.charging) + ab5500_fg_algorithm_charging(di); + else + ab5500_fg_algorithm_discharging(di); + } + + dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d " + "%d %d %d %d %d %d %d\n", + di->bat_cap.max_mah_design, + di->bat_cap.mah, + di->bat_cap.permille, + di->bat_cap.level, + di->bat_cap.prev_mah, + di->bat_cap.prev_percent, + di->bat_cap.prev_level, + di->vbat, + di->inst_curr, + di->avg_curr, + di->accu_charge, + di->flags.charging, + di->charge_state, + di->discharge_state, + di->high_curr_mode, + di->recovery_needed); +} + +/** + * ab5500_fg_periodic_work() - Run the FG state machine periodically + * @work: pointer to the work_struct structure + * + * Work queue function for periodic work + */ +static void ab5500_fg_periodic_work(struct work_struct *work) +{ + struct ab5500_fg *di = container_of(work, struct ab5500_fg, + fg_periodic_work.work); + + if (di->init_capacity) { + /* A dummy read that will return 0 */ + di->inst_curr = ab5500_fg_inst_curr(di); + /* Get an initial capacity calculation */ + ab5500_fg_calc_cap_discharge_voltage(di, true); + ab5500_fg_check_capacity_limits(di, true); + di->init_capacity = false; + queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); + } else + ab5500_fg_algorithm(di); +} + +/** + * ab5500_fg_low_bat_work() - Check LOW_BAT condition + * @work: pointer to the work_struct structure + * + * Work queue function for checking the LOW_BAT condition + */ +static void ab5500_fg_low_bat_work(struct work_struct *work) +{ + int vbat; + + struct ab5500_fg *di = container_of(work, struct ab5500_fg, + fg_low_bat_work.work); + + vbat = ab5500_fg_bat_voltage(di); + + /* Check if LOW_BAT still fulfilled */ + if (vbat < di->bat->fg_params->lowbat_threshold) { + di->flags.low_bat = true; + dev_warn(di->dev, "Battery voltage still LOW\n"); + + /* + * We need to re-schedule this check to be able to detect + * if the voltage increases again during charging + */ + queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, + round_jiffies(LOW_BAT_CHECK_INTERVAL)); + } else { + di->flags.low_bat = false; + dev_warn(di->dev, "Battery voltage OK again\n"); + } + + /* This is needed to dispatch LOW_BAT */ + ab5500_fg_check_capacity_limits(di, false); + + /* Set this flag to check if LOW_BAT IRQ still occurs */ + di->flags.low_bat_delay = false; +} + +/** + * ab5500_fg_instant_work() - Run the FG state machine instantly + * @work: pointer to the work_struct structure + * + * Work queue function for instant work + */ +static void ab5500_fg_instant_work(struct work_struct *work) +{ + struct ab5500_fg *di = container_of(work, struct ab5500_fg, fg_work); + + ab5500_fg_algorithm(di); +} + +/** + * ab5500_fg_get_property() - get the fg properties + * @psy: pointer to the power_supply structure + * @psp: pointer to the power_supply_property structure + * @val: pointer to the power_supply_propval union + * + * This function gets called when an application tries to get the + * fg properties by reading the sysfs files. + * voltage_now: battery voltage + * current_now: battery instant current + * current_avg: battery average current + * charge_full_design: capacity where battery is considered full + * charge_now: battery capacity in nAh + * capacity: capacity in percent + * capacity_level: capacity level + * + * Returns error code in case of failure else 0 on success + */ +static int ab5500_fg_get_property(struct power_supply *psy, + enum power_supply_property psp, + union power_supply_propval *val) +{ + struct ab5500_fg *di; + int i, tbl_size; + struct abx500_v_to_cap *tbl; + + di = to_ab5500_fg_device_info(psy); + + /* + * If battery is identified as unknown and charging of unknown + * batteries is disabled, we always report 100% capacity and + * capacity level UNKNOWN, since we can't calculate + * remaining capacity + */ + + switch (psp) { + case POWER_SUPPLY_PROP_VOLTAGE_NOW: + if (di->flags.bat_ovv) + val->intval = 47500000; + else + val->intval = ab5500_gpadc_convert + (di->gpadc, MAIN_BAT_V) * 1000; + break; + case POWER_SUPPLY_PROP_CURRENT_NOW: + di->inst_curr = ab5500_fg_inst_curr(di); + val->intval = di->inst_curr * 1000; + break; + case POWER_SUPPLY_PROP_CURRENT_AVG: + val->intval = di->avg_curr * 1000; + break; + case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: + val->intval = ab5500_fg_convert_mah_to_uwh(di, + di->bat_cap.max_mah_design); + break; + case POWER_SUPPLY_PROP_ENERGY_FULL: + val->intval = ab5500_fg_convert_mah_to_uwh(di, + di->bat_cap.max_mah); + break; + case POWER_SUPPLY_PROP_ENERGY_NOW: + if (di->flags.batt_unknown && !di->bat->chg_unknown_bat) + val->intval = ab5500_fg_convert_mah_to_uwh(di, + di->bat_cap.max_mah); + else + val->intval = ab5500_fg_convert_mah_to_uwh(di, + di->bat_cap.prev_mah); + break; + case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: + val->intval = di->bat_cap.max_mah_design; + break; + case POWER_SUPPLY_PROP_CHARGE_FULL: + val->intval = di->bat_cap.max_mah; + break; + case POWER_SUPPLY_PROP_CHARGE_NOW: + if (di->flags.batt_unknown && !di->bat->chg_unknown_bat) + val->intval = di->bat_cap.max_mah; + else + val->intval = di->bat_cap.prev_mah; + break; + case POWER_SUPPLY_PROP_CAPACITY: + if (di->flags.batt_unknown && !di->bat->chg_unknown_bat) + val->intval = 100; + else if (di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl) { + tbl = di->bat->bat_type[di->bat->batt_id].v_to_cap_tbl, + tbl_size = di->bat->bat_type[ + di->bat->batt_id].n_v_cap_tbl_elements; + + for (i = 0; i < tbl_size; ++i) { + if (di->vbat < tbl[i].voltage && + di->vbat > tbl[i+1].voltage) { + di->v_to_cap = tbl[i].capacity; + break; + } + } + val->intval = di->v_to_cap; + } else + val->intval = di->bat_cap.prev_percent; + break; + case POWER_SUPPLY_PROP_CAPACITY_LEVEL: + if (di->flags.batt_unknown && !di->bat->chg_unknown_bat) + val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; + else + val->intval = di->bat_cap.prev_level; + break; + default: + return -EINVAL; + } + return 0; +} + +static int ab5500_fg_get_ext_psy_data(struct device *dev, void *data) +{ + struct power_supply *psy; + struct power_supply *ext; + struct ab5500_fg *di; + union power_supply_propval ret; + int i, j; + bool psy_found = false; + + psy = (struct power_supply *)data; + ext = dev_get_drvdata(dev); + di = to_ab5500_fg_device_info(psy); + + /* + * For all psy where the name of your driver + * appears in any supplied_to + */ + for (i = 0; i < ext->num_supplicants; i++) { + if (!strcmp(ext->supplied_to[i], psy->name)) + psy_found = true; + } + + if (!psy_found) + return 0; + + /* Go through all properties for the psy */ + for (j = 0; j < ext->num_properties; j++) { + enum power_supply_property prop; + prop = ext->properties[j]; + + if (ext->get_property(ext, prop, &ret)) + continue; + + switch (prop) { + case POWER_SUPPLY_PROP_STATUS: + switch (ext->type) { + case POWER_SUPPLY_TYPE_BATTERY: + switch (ret.intval) { + case POWER_SUPPLY_STATUS_UNKNOWN: + case POWER_SUPPLY_STATUS_DISCHARGING: + case POWER_SUPPLY_STATUS_NOT_CHARGING: + if (!di->flags.charging) + break; + di->flags.charging = false; + di->flags.fully_charged = false; + queue_work(di->fg_wq, &di->fg_work); + break; + case POWER_SUPPLY_STATUS_FULL: + if (di->flags.fully_charged) + break; + di->flags.fully_charged = true; + /* Save current capacity as maximum */ + di->bat_cap.max_mah = di->bat_cap.mah; + queue_work(di->fg_wq, &di->fg_work); + break; + case POWER_SUPPLY_STATUS_CHARGING: + if (di->flags.charging) + break; + di->flags.charging = true; + di->flags.fully_charged = false; + queue_work(di->fg_wq, &di->fg_work); + break; + }; + default: + break; + }; + break; + case POWER_SUPPLY_PROP_TECHNOLOGY: + switch (ext->type) { + case POWER_SUPPLY_TYPE_BATTERY: + if (ret.intval) + di->flags.batt_unknown = false; + else + di->flags.batt_unknown = true; + break; + default: + break; + } + break; + default: + break; + } + } + return 0; +} + +static int ab5500_fg_bat_v_trig(int mux) +{ + struct ab5500_fg *di = ab5500_fg_get(); + + /* check if the battery voltage is below low threshold */ + if (di->vbat < 2700) { + dev_warn(di->dev, "Battery voltage is below LOW threshold\n"); + di->flags.low_bat_delay = true; + /* + * Start a timer to check LOW_BAT again after some time + * This is done to avoid shutdown on single voltage dips + */ + queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, + round_jiffies(LOW_BAT_CHECK_INTERVAL)); + } + /* check if battery votlage is above OVV */ + else if (di->vbat > 4200) { + dev_dbg(di->dev, "Battery OVV\n"); + di->flags.bat_ovv = true; + + power_supply_changed(&di->fg_psy); + } else + return -EINVAL; + + return 0; +} + +/** + * ab5500_fg_init_hw_registers() - Set up FG related registers + * @di: pointer to the ab5500_fg structure + * + * Set up battery OVV, low battery voltage registers + */ +static int ab5500_fg_init_hw_registers(struct ab5500_fg *di) +{ + int ret; + struct adc_auto_input *auto_ip; + + auto_ip = kzalloc(sizeof(struct adc_auto_input), GFP_KERNEL); + if (!auto_ip) { + dev_err(di->dev, "failed to allocate memory\n"); + return -ENOMEM; + } + + auto_ip->mux = MAIN_BAT_V; + auto_ip->freq = MS500; + auto_ip->min = 2700; + auto_ip->max = 4200; + auto_ip->auto_adc_callback = ab5500_fg_bat_v_trig; + di->gpadc_auto = auto_ip; + ret = ab5500_gpadc_convert_auto(di->gpadc, di->gpadc_auto); + if (ret) + dev_err(di->dev, + "failed to set auto trigger for battery votlage\n"); + /* set End Of Charge current to 247mA */ + ret = abx500_set_register_interruptible(di->dev, + AB5500_BANK_FG_BATTCOM_ACC, AB5500_FG_EOC, EOC_52_mA); + return ret; +} + +/** + * ab5500_fg_external_power_changed() - callback for power supply changes + * @psy: pointer to the structure power_supply + * + * This function is the entry point of the pointer external_power_changed + * of the structure power_supply. + * This function gets executed when there is a change in any external power + * supply that this driver needs to be notified of. + */ +static void ab5500_fg_external_power_changed(struct power_supply *psy) +{ + struct ab5500_fg *di = to_ab5500_fg_device_info(psy); + + class_for_each_device(power_supply_class, NULL, + &di->fg_psy, ab5500_fg_get_ext_psy_data); +} + +#if defined(CONFIG_PM) +static int ab5500_fg_resume(struct platform_device *pdev) +{ + struct ab5500_fg *di = platform_get_drvdata(pdev); + + /* + * Change state if we're not charging. If we're charging we will wake + * up on the FG IRQ + */ + if (!di->flags.charging) { + ab5500_fg_discharge_state_to(di, AB5500_FG_DISCHARGE_WAKEUP); + queue_work(di->fg_wq, &di->fg_work); + } + + return 0; +} + +static int ab5500_fg_suspend(struct platform_device *pdev, + pm_message_t state) +{ + struct ab5500_fg *di = platform_get_drvdata(pdev); + + flush_delayed_work(&di->fg_periodic_work); + + /* + * If the FG is enabled we will disable it before going to suspend + * only if we're not charging + */ + if (di->flags.fg_enabled && !di->flags.charging) + ab5500_fg_coulomb_counter(di, false); + + return 0; +} +#else +#define ab5500_fg_suspend NULL +#define ab5500_fg_resume NULL +#endif + +static int __devexit ab5500_fg_remove(struct platform_device *pdev) +{ + int ret = 0; + struct ab5500_fg *di = platform_get_drvdata(pdev); + + /* Disable coulomb counter */ + ret = ab5500_fg_coulomb_counter(di, false); + if (ret) + dev_err(di->dev, "failed to disable coulomb counter\n"); + + destroy_workqueue(di->fg_wq); + + flush_scheduled_work(); + power_supply_unregister(&di->fg_psy); + platform_set_drvdata(pdev, NULL); + kfree(di->gpadc_auto); + kfree(di); + return ret; +} + +static int __devinit ab5500_fg_probe(struct platform_device *pdev) +{ + struct abx500_bm_plat_data *plat_data; + int ret = 0; + + struct ab5500_fg *di = + kzalloc(sizeof(struct ab5500_fg), GFP_KERNEL); + if (!di) + return -ENOMEM; + + mutex_init(&di->cc_lock); + + /* get parent data */ + di->dev = &pdev->dev; + di->parent = dev_get_drvdata(pdev->dev.parent); + di->gpadc = ab5500_gpadc_get("ab5500-adc.0"); + + plat_data = pdev->dev.platform_data; + di->pdata = plat_data->fg; + di->bat = plat_data->battery; + + /* get fg specific platform data */ + if (!di->pdata) { + dev_err(di->dev, "no fg platform data supplied\n"); + ret = -EINVAL; + goto free_device_info; + } + + /* get battery specific platform data */ + if (!di->bat) { + dev_err(di->dev, "no battery platform data supplied\n"); + ret = -EINVAL; + goto free_device_info; + } + + di->fg_psy.name = "ab5500_fg"; + di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY; + di->fg_psy.properties = ab5500_fg_props; + di->fg_psy.num_properties = ARRAY_SIZE(ab5500_fg_props); + di->fg_psy.get_property = ab5500_fg_get_property; + di->fg_psy.supplied_to = di->pdata->supplied_to; + di->fg_psy.num_supplicants = di->pdata->num_supplicants; + di->fg_psy.external_power_changed = ab5500_fg_external_power_changed; + + di->bat_cap.max_mah_design = MILLI_TO_MICRO * + di->bat->bat_type[di->bat->batt_id].charge_full_design; + + di->bat_cap.max_mah = di->bat_cap.max_mah_design; + + di->vbat_nom = di->bat->bat_type[di->bat->batt_id].nominal_voltage; + + di->init_capacity = true; + + ab5500_fg_charge_state_to(di, AB5500_FG_CHARGE_INIT); + ab5500_fg_discharge_state_to(di, AB5500_FG_DISCHARGE_INIT); + + /* Create a work queue for running the FG algorithm */ + di->fg_wq = create_singlethread_workqueue("ab5500_fg_wq"); + if (di->fg_wq == NULL) { + dev_err(di->dev, "failed to create work queue\n"); + goto free_device_info; + } + + /* Init work for running the fg algorithm instantly */ + INIT_WORK(&di->fg_work, ab5500_fg_instant_work); + + /* Init work for getting the battery accumulated current */ + INIT_DELAYED_WORK_DEFERRABLE(&di->fg_acc_cur_work, + ab5500_fg_acc_cur_work); + + /* Work delayed Queue to run the state machine */ + INIT_DELAYED_WORK_DEFERRABLE(&di->fg_periodic_work, + ab5500_fg_periodic_work); + + /* Work to check low battery condition */ + INIT_DELAYED_WORK_DEFERRABLE(&di->fg_low_bat_work, + ab5500_fg_low_bat_work); + + list_add_tail(&di->node, &ab5500_fg_list); + + /* Initialize OVV, and other registers */ + ret = ab5500_fg_init_hw_registers(di); + if (ret) { + dev_err(di->dev, "failed to initialize registers\n"); + goto free_fg_wq; + } + + /* Consider battery unknown until we're informed otherwise */ + di->flags.batt_unknown = true; + + /* Register FG power supply class */ + ret = power_supply_register(di->dev, &di->fg_psy); + if (ret) { + dev_err(di->dev, "failed to register FG psy\n"); + goto free_fg_wq; + } + + di->fg_samples = SEC_TO_SAMPLE(di->bat->fg_params->init_timer); + ab5500_fg_coulomb_counter(di, true); + + /* Initilialize avg current timer */ + init_timer(&di->avg_current_timer); + di->avg_current_timer.function = ab5500_fg_acc_cur_timer_expired; + di->avg_current_timer.data = (unsigned long) di; + di->avg_current_timer.expires = 60 * HZ;; + if (!timer_pending(&di->avg_current_timer)) + add_timer(&di->avg_current_timer); + else + mod_timer(&di->avg_current_timer, 60 * HZ); + + platform_set_drvdata(pdev, di); + + /* Calibrate the fg first time */ + di->flags.calibrate = true; + di->calib_state = AB5500_FG_CALIB_INIT; + /* Run the FG algorithm */ + queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); + queue_delayed_work(di->fg_wq, &di->fg_acc_cur_work, 0); + + dev_info(di->dev, "probe success\n"); + return ret; + +free_fg_wq: + destroy_workqueue(di->fg_wq); +free_device_info: + kfree(di); + + return ret; +} + +static struct platform_driver ab5500_fg_driver = { + .probe = ab5500_fg_probe, + .remove = __devexit_p(ab5500_fg_remove), + .suspend = ab5500_fg_suspend, + .resume = ab5500_fg_resume, + .driver = { + .name = "ab5500-fg", + .owner = THIS_MODULE, + }, +}; + +static int __init ab5500_fg_init(void) +{ + return platform_driver_register(&ab5500_fg_driver); +} + +static void __exit ab5500_fg_exit(void) +{ + platform_driver_unregister(&ab5500_fg_driver); +} + +subsys_initcall_sync(ab5500_fg_init); +module_exit(ab5500_fg_exit); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Johan Palsson, Karl Komierowski"); +MODULE_ALIAS("platform:ab5500-fg"); +MODULE_DESCRIPTION("AB5500 Fuel Gauge driver"); |