/* * Generic VM initialization for x86-64 NUMA setups. * Copyright 2002,2003 Andi Kleen, SuSE Labs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct numa_memblk { u64 start; u64 end; int nid; }; struct numa_meminfo { int nr_blks; struct numa_memblk blk[NR_NODE_MEMBLKS]; }; struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; EXPORT_SYMBOL(node_data); nodemask_t cpu_nodes_parsed __initdata; nodemask_t mem_nodes_parsed __initdata; struct memnode memnode; static unsigned long __initdata nodemap_addr; static unsigned long __initdata nodemap_size; static struct numa_meminfo numa_meminfo __initdata; struct bootnode numa_nodes[MAX_NUMNODES] __initdata; /* * Given a shift value, try to populate memnodemap[] * Returns : * 1 if OK * 0 if memnodmap[] too small (of shift too small) * -1 if node overlap or lost ram (shift too big) */ static int __init populate_memnodemap(const struct numa_meminfo *mi, int shift) { unsigned long addr, end; int i, res = -1; memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize); for (i = 0; i < mi->nr_blks; i++) { addr = mi->blk[i].start; end = mi->blk[i].end; if (addr >= end) continue; if ((end >> shift) >= memnodemapsize) return 0; do { if (memnodemap[addr >> shift] != NUMA_NO_NODE) return -1; memnodemap[addr >> shift] = mi->blk[i].nid; addr += (1UL << shift); } while (addr < end); res = 1; } return res; } static int __init allocate_cachealigned_memnodemap(void) { unsigned long addr; memnodemap = memnode.embedded_map; if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map)) return 0; addr = 0x8000; nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES); nodemap_addr = memblock_find_in_range(addr, get_max_mapped(), nodemap_size, L1_CACHE_BYTES); if (nodemap_addr == MEMBLOCK_ERROR) { printk(KERN_ERR "NUMA: Unable to allocate Memory to Node hash map\n"); nodemap_addr = nodemap_size = 0; return -1; } memnodemap = phys_to_virt(nodemap_addr); memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP"); printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n", nodemap_addr, nodemap_addr + nodemap_size); return 0; } /* * The LSB of all start and end addresses in the node map is the value of the * maximum possible shift. */ static int __init extract_lsb_from_nodes(const struct numa_meminfo *mi) { int i, nodes_used = 0; unsigned long start, end; unsigned long bitfield = 0, memtop = 0; for (i = 0; i < mi->nr_blks; i++) { start = mi->blk[i].start; end = mi->blk[i].end; if (start >= end) continue; bitfield |= start; nodes_used++; if (end > memtop) memtop = end; } if (nodes_used <= 1) i = 63; else i = find_first_bit(&bitfield, sizeof(unsigned long)*8); memnodemapsize = (memtop >> i)+1; return i; } static int __init compute_hash_shift(const struct numa_meminfo *mi) { int shift; shift = extract_lsb_from_nodes(mi); if (allocate_cachealigned_memnodemap()) return -1; printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n", shift); if (populate_memnodemap(mi, shift) != 1) { printk(KERN_INFO "Your memory is not aligned you need to " "rebuild your kernel with a bigger NODEMAPSIZE " "shift=%d\n", shift); return -1; } return shift; } int __meminit __early_pfn_to_nid(unsigned long pfn) { return phys_to_nid(pfn << PAGE_SHIFT); } static void * __init early_node_mem(int nodeid, unsigned long start, unsigned long end, unsigned long size, unsigned long align) { unsigned long mem; /* * put it on high as possible * something will go with NODE_DATA */ if (start < (MAX_DMA_PFN< (MAX_DMA32_PFN< end || nid < 0 || nid >= MAX_NUMNODES) { pr_warning("NUMA: Warning: invalid memblk node %d (%Lx-%Lx)\n", nid, start, end); return 0; } if (mi->nr_blks >= NR_NODE_MEMBLKS) { pr_err("NUMA: too many memblk ranges\n"); return -EINVAL; } mi->blk[mi->nr_blks].start = start; mi->blk[mi->nr_blks].end = end; mi->blk[mi->nr_blks].nid = nid; mi->nr_blks++; return 0; } static void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) { mi->nr_blks--; memmove(&mi->blk[idx], &mi->blk[idx + 1], (mi->nr_blks - idx) * sizeof(mi->blk[0])); } /* Initialize bootmem allocator for a node */ void __init setup_node_bootmem(int nodeid, unsigned long start, unsigned long end) { unsigned long start_pfn, last_pfn, nodedata_phys; const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE); int nid; if (!end) return; /* * Don't confuse VM with a node that doesn't have the * minimum amount of memory: */ if (end && (end - start) < NODE_MIN_SIZE) return; start = roundup(start, ZONE_ALIGN); printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid, start, end); start_pfn = start >> PAGE_SHIFT; last_pfn = end >> PAGE_SHIFT; node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size, SMP_CACHE_BYTES); if (node_data[nodeid] == NULL) return; nodedata_phys = __pa(node_data[nodeid]); memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA"); printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys, nodedata_phys + pgdat_size - 1); nid = phys_to_nid(nodedata_phys); if (nid != nodeid) printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid); memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t)); NODE_DATA(nodeid)->node_id = nodeid; NODE_DATA(nodeid)->node_start_pfn = start_pfn; NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn; node_set_online(nodeid); } static int __init numa_cleanup_meminfo(struct numa_meminfo *mi) { const u64 low = 0; const u64 high = (u64)max_pfn << PAGE_SHIFT; int i, j, k; for (i = 0; i < mi->nr_blks; i++) { struct numa_memblk *bi = &mi->blk[i]; /* make sure all blocks are inside the limits */ bi->start = max(bi->start, low); bi->end = min(bi->end, high); /* and there's no empty block */ if (bi->start == bi->end) { numa_remove_memblk_from(i--, mi); continue; } for (j = i + 1; j < mi->nr_blks; j++) { struct numa_memblk *bj = &mi->blk[j]; unsigned long start, end; /* * See whether there are overlapping blocks. Whine * about but allow overlaps of the same nid. They * will be merged below. */ if (bi->end > bj->start && bi->start < bj->end) { if (bi->nid != bj->nid) { pr_err("NUMA: node %d (%Lx-%Lx) overlaps with node %d (%Lx-%Lx)\n", bi->nid, bi->start, bi->end, bj->nid, bj->start, bj->end); return -EINVAL; } pr_warning("NUMA: Warning: node %d (%Lx-%Lx) overlaps with itself (%Lx-%Lx)\n", bi->nid, bi->start, bi->end, bj->start, bj->end); } /* * Join together blocks on the same node, holes * between which don't overlap with memory on other * nodes. */ if (bi->nid != bj->nid) continue; start = max(min(bi->start, bj->start), low); end = min(max(bi->end, bj->end), high); for (k = 0; k < mi->nr_blks; k++) { struct numa_memblk *bk = &mi->blk[k]; if (bi->nid == bk->nid) continue; if (start < bk->end && end > bk->start) break; } if (k < mi->nr_blks) continue; printk(KERN_INFO "NUMA: Node %d [%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n", bi->nid, bi->start, bi->end, bj->start, bj->end, start, end); bi->start = start; bi->end = end; numa_remove_memblk_from(j--, mi); } } for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { mi->blk[i].start = mi->blk[i].end = 0; mi->blk[i].nid = NUMA_NO_NODE; } return 0; } /* * Sanity check to catch more bad NUMA configurations (they are amazingly * common). Make sure the nodes cover all memory. */ static int __init nodes_cover_memory(const struct bootnode *nodes) { unsigned long numaram, e820ram; int i; numaram = 0; for_each_node_mask(i, mem_nodes_parsed) { unsigned long s = nodes[i].start >> PAGE_SHIFT; unsigned long e = nodes[i].end >> PAGE_SHIFT; numaram += e - s; numaram -= __absent_pages_in_range(i, s, e); if ((long)numaram < 0) numaram = 0; } e820ram = max_pfn - (memblock_x86_hole_size(0, max_pfn << PAGE_SHIFT) >> PAGE_SHIFT); /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ if ((long)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { printk(KERN_ERR "NUMA: nodes only cover %luMB of your %luMB e820 RAM. Not used.\n", (numaram << PAGE_SHIFT) >> 20, (e820ram << PAGE_SHIFT) >> 20); return 0; } return 1; } static int __init numa_register_memblks(struct numa_meminfo *mi) { int i; /* Account for nodes with cpus and no memory */ nodes_or(node_possible_map, mem_nodes_parsed, cpu_nodes_parsed); if (WARN_ON(nodes_empty(node_possible_map))) return -EINVAL; memnode_shift = compute_hash_shift(mi); if (memnode_shift < 0) { printk(KERN_ERR "NUMA: No NUMA node hash function found. Contact maintainer\n"); return -EINVAL; } for (i = 0; i < mi->nr_blks; i++) memblock_x86_register_active_regions(mi->blk[i].nid, mi->blk[i].start >> PAGE_SHIFT, mi->blk[i].end >> PAGE_SHIFT); /* for out of order entries */ sort_node_map(); if (!nodes_cover_memory(numa_nodes)) return -EINVAL; init_memory_mapping_high(); /* Finally register nodes. */ for_each_node_mask(i, node_possible_map) setup_node_bootmem(i, numa_nodes[i].start, numa_nodes[i].end); /* * Try again in case setup_node_bootmem missed one due to missing * bootmem. */ for_each_node_mask(i, node_possible_map) if (!node_online(i)) setup_node_bootmem(i, numa_nodes[i].start, numa_nodes[i].end); return 0; } #ifdef CONFIG_NUMA_EMU /* Numa emulation */ static struct bootnode nodes[MAX_NUMNODES] __initdata; static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata; static char *cmdline __initdata; void __init numa_emu_cmdline(char *str) { cmdline = str; } int __init find_node_by_addr(unsigned long addr) { int ret = NUMA_NO_NODE; int i; for_each_node_mask(i, mem_nodes_parsed) { /* * Find the real node that this emulated node appears on. For * the sake of simplicity, we only use a real node's starting * address to determine which emulated node it appears on. */ if (addr >= numa_nodes[i].start && addr < numa_nodes[i].end) { ret = i; break; } } return ret; } static int __init setup_physnodes(unsigned long start, unsigned long end) { int ret = 0; int i; memset(physnodes, 0, sizeof(physnodes)); for_each_node_mask(i, mem_nodes_parsed) { physnodes[i].start = numa_nodes[i].start; physnodes[i].end = numa_nodes[i].end; } /* * Basic sanity checking on the physical node map: there may be errors * if the SRAT or AMD code incorrectly reported the topology or the mem= * kernel parameter is used. */ for (i = 0; i < MAX_NUMNODES; i++) { if (physnodes[i].start == physnodes[i].end) continue; if (physnodes[i].start > end) { physnodes[i].end = physnodes[i].start; continue; } if (physnodes[i].end < start) { physnodes[i].start = physnodes[i].end; continue; } if (physnodes[i].start < start) physnodes[i].start = start; if (physnodes[i].end > end) physnodes[i].end = end; ret++; } /* * If no physical topology was detected, a single node is faked to cover * the entire address space. */ if (!ret) { physnodes[ret].start = start; physnodes[ret].end = end; ret = 1; } return ret; } static void __init fake_physnodes(int acpi, int amd, int nr_nodes) { int i; BUG_ON(acpi && amd); #ifdef CONFIG_ACPI_NUMA if (acpi) acpi_fake_nodes(nodes, nr_nodes); #endif #ifdef CONFIG_AMD_NUMA if (amd) amd_fake_nodes(nodes, nr_nodes); #endif if (!acpi && !amd) for (i = 0; i < nr_cpu_ids; i++) numa_set_node(i, 0); } /* * Setups up nid to range from addr to addr + size. If the end * boundary is greater than max_addr, then max_addr is used instead. * The return value is 0 if there is additional memory left for * allocation past addr and -1 otherwise. addr is adjusted to be at * the end of the node. */ static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr) { int ret = 0; nodes[nid].start = *addr; *addr += size; if (*addr >= max_addr) { *addr = max_addr; ret = -1; } nodes[nid].end = *addr; node_set(nid, node_possible_map); printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid, nodes[nid].start, nodes[nid].end, (nodes[nid].end - nodes[nid].start) >> 20); return ret; } /* * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr * to max_addr. The return value is the number of nodes allocated. */ static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes) { nodemask_t physnode_mask = NODE_MASK_NONE; u64 size; int big; int ret = 0; int i; if (nr_nodes <= 0) return -1; if (nr_nodes > MAX_NUMNODES) { pr_info("numa=fake=%d too large, reducing to %d\n", nr_nodes, MAX_NUMNODES); nr_nodes = MAX_NUMNODES; } size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes; /* * Calculate the number of big nodes that can be allocated as a result * of consolidating the remainder. */ big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) / FAKE_NODE_MIN_SIZE; size &= FAKE_NODE_MIN_HASH_MASK; if (!size) { pr_err("Not enough memory for each node. " "NUMA emulation disabled.\n"); return -1; } for (i = 0; i < MAX_NUMNODES; i++) if (physnodes[i].start != physnodes[i].end) node_set(i, physnode_mask); /* * Continue to fill physical nodes with fake nodes until there is no * memory left on any of them. */ while (nodes_weight(physnode_mask)) { for_each_node_mask(i, physnode_mask) { u64 end = physnodes[i].start + size; u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN); if (ret < big) end += FAKE_NODE_MIN_SIZE; /* * Continue to add memory to this fake node if its * non-reserved memory is less than the per-node size. */ while (end - physnodes[i].start - memblock_x86_hole_size(physnodes[i].start, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > physnodes[i].end) { end = physnodes[i].end; break; } } /* * If there won't be at least FAKE_NODE_MIN_SIZE of * non-reserved memory in ZONE_DMA32 for the next node, * this one must extend to the boundary. */ if (end < dma32_end && dma32_end - end - memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) end = dma32_end; /* * If there won't be enough non-reserved memory for the * next node, this one must extend to the end of the * physical node. */ if (physnodes[i].end - end - memblock_x86_hole_size(end, physnodes[i].end) < size) end = physnodes[i].end; /* * Avoid allocating more nodes than requested, which can * happen as a result of rounding down each node's size * to FAKE_NODE_MIN_SIZE. */ if (nodes_weight(physnode_mask) + ret >= nr_nodes) end = physnodes[i].end; if (setup_node_range(ret++, &physnodes[i].start, end - physnodes[i].start, physnodes[i].end) < 0) node_clear(i, physnode_mask); } } return ret; } /* * Returns the end address of a node so that there is at least `size' amount of * non-reserved memory or `max_addr' is reached. */ static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size) { u64 end = start + size; while (end - start - memblock_x86_hole_size(start, end) < size) { end += FAKE_NODE_MIN_SIZE; if (end > max_addr) { end = max_addr; break; } } return end; } /* * Sets up fake nodes of `size' interleaved over physical nodes ranging from * `addr' to `max_addr'. The return value is the number of nodes allocated. */ static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size) { nodemask_t physnode_mask = NODE_MASK_NONE; u64 min_size; int ret = 0; int i; if (!size) return -1; /* * The limit on emulated nodes is MAX_NUMNODES, so the size per node is * increased accordingly if the requested size is too small. This * creates a uniform distribution of node sizes across the entire * machine (but not necessarily over physical nodes). */ min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / MAX_NUMNODES; min_size = max(min_size, FAKE_NODE_MIN_SIZE); if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size) min_size = (min_size + FAKE_NODE_MIN_SIZE) & FAKE_NODE_MIN_HASH_MASK; if (size < min_size) { pr_err("Fake node size %LuMB too small, increasing to %LuMB\n", size >> 20, min_size >> 20); size = min_size; } size &= FAKE_NODE_MIN_HASH_MASK; for (i = 0; i < MAX_NUMNODES; i++) if (physnodes[i].start != physnodes[i].end) node_set(i, physnode_mask); /* * Fill physical nodes with fake nodes of size until there is no memory * left on any of them. */ while (nodes_weight(physnode_mask)) { for_each_node_mask(i, physnode_mask) { u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT; u64 end; end = find_end_of_node(physnodes[i].start, physnodes[i].end, size); /* * If there won't be at least FAKE_NODE_MIN_SIZE of * non-reserved memory in ZONE_DMA32 for the next node, * this one must extend to the boundary. */ if (end < dma32_end && dma32_end - end - memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE) end = dma32_end; /* * If there won't be enough non-reserved memory for the * next node, this one must extend to the end of the * physical node. */ if (physnodes[i].end - end - memblock_x86_hole_size(end, physnodes[i].end) < size) end = physnodes[i].end; /* * Setup the fake node that will be allocated as bootmem * later. If setup_node_range() returns non-zero, there * is no more memory available on this physical node. */ if (setup_node_range(ret++, &physnodes[i].start, end - physnodes[i].start, physnodes[i].end) < 0) node_clear(i, physnode_mask); } } return ret; } /* * Sets up the system RAM area from start_pfn to last_pfn according to the * numa=fake command-line option. */ static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn, int acpi, int amd) { static struct numa_meminfo ei __initdata; u64 addr = start_pfn << PAGE_SHIFT; u64 max_addr = last_pfn << PAGE_SHIFT; int num_nodes; int i; /* * If the numa=fake command-line contains a 'M' or 'G', it represents * the fixed node size. Otherwise, if it is just a single number N, * split the system RAM into N fake nodes. */ if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) { u64 size; size = memparse(cmdline, &cmdline); num_nodes = split_nodes_size_interleave(addr, max_addr, size); } else { unsigned long n; n = simple_strtoul(cmdline, NULL, 0); num_nodes = split_nodes_interleave(addr, max_addr, n); } if (num_nodes < 0) return num_nodes; ei.nr_blks = num_nodes; for (i = 0; i < ei.nr_blks; i++) { ei.blk[i].start = nodes[i].start; ei.blk[i].end = nodes[i].end; ei.blk[i].nid = i; } memnode_shift = compute_hash_shift(&ei); if (memnode_shift < 0) { memnode_shift = 0; printk(KERN_ERR "No NUMA hash function found. NUMA emulation " "disabled.\n"); return -1; } /* * We need to vacate all active ranges that may have been registered for * the e820 memory map. */ remove_all_active_ranges(); for_each_node_mask(i, node_possible_map) memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT, nodes[i].end >> PAGE_SHIFT); init_memory_mapping_high(); for_each_node_mask(i, node_possible_map) setup_node_bootmem(i, nodes[i].start, nodes[i].end); setup_physnodes(addr, max_addr); fake_physnodes(acpi, amd, num_nodes); numa_init_array(); return 0; } #endif /* CONFIG_NUMA_EMU */ static int dummy_numa_init(void) { printk(KERN_INFO "%s\n", numa_off ? "NUMA turned off" : "No NUMA configuration found"); printk(KERN_INFO "Faking a node at %016lx-%016lx\n", 0LU, max_pfn << PAGE_SHIFT); node_set(0, cpu_nodes_parsed); node_set(0, mem_nodes_parsed); numa_add_memblk(0, 0, (u64)max_pfn << PAGE_SHIFT); numa_nodes[0].start = 0; numa_nodes[0].end = (u64)max_pfn << PAGE_SHIFT; return 0; } void __init initmem_init(void) { int (*numa_init[])(void) = { [2] = dummy_numa_init }; int i, j; if (!numa_off) { #ifdef CONFIG_ACPI_NUMA numa_init[0] = x86_acpi_numa_init; #endif #ifdef CONFIG_AMD_NUMA numa_init[1] = amd_numa_init; #endif } for (i = 0; i < ARRAY_SIZE(numa_init); i++) { if (!numa_init[i]) continue; for (j = 0; j < MAX_LOCAL_APIC; j++) set_apicid_to_node(j, NUMA_NO_NODE); nodes_clear(cpu_nodes_parsed); nodes_clear(mem_nodes_parsed); nodes_clear(node_possible_map); nodes_clear(node_online_map); memset(&numa_meminfo, 0, sizeof(numa_meminfo)); memset(numa_nodes, 0, sizeof(numa_nodes)); remove_all_active_ranges(); if (numa_init[i]() < 0) continue; if (numa_cleanup_meminfo(&numa_meminfo) < 0) continue; #ifdef CONFIG_NUMA_EMU setup_physnodes(0, max_pfn << PAGE_SHIFT); if (cmdline && !numa_emulation(0, max_pfn, i == 0, i == 1)) return; setup_physnodes(0, max_pfn << PAGE_SHIFT); nodes_clear(node_possible_map); nodes_clear(node_online_map); #endif if (numa_register_memblks(&numa_meminfo) < 0) continue; for (j = 0; j < nr_cpu_ids; j++) { int nid = early_cpu_to_node(j); if (nid == NUMA_NO_NODE) continue; if (!node_online(nid)) numa_clear_node(j); } numa_init_array(); return; } BUG(); } unsigned long __init numa_free_all_bootmem(void) { unsigned long pages = 0; int i; for_each_online_node(i) pages += free_all_bootmem_node(NODE_DATA(i)); pages += free_all_memory_core_early(MAX_NUMNODES); return pages; } int __cpuinit numa_cpu_node(int cpu) { int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); if (apicid != BAD_APICID) return __apicid_to_node[apicid]; return NUMA_NO_NODE; } /* * UGLINESS AHEAD: Currently, CONFIG_NUMA_EMU is 64bit only and makes use * of 64bit specific data structures. The distinction is artificial and * should be removed. numa_{add|remove}_cpu() are implemented in numa.c * for both 32 and 64bit when CONFIG_NUMA_EMU is disabled but here when * enabled. * * NUMA emulation is planned to be made generic and the following and other * related code should be moved to numa.c. */ #ifdef CONFIG_NUMA_EMU # ifndef CONFIG_DEBUG_PER_CPU_MAPS void __cpuinit numa_add_cpu(int cpu) { unsigned long addr; int physnid, nid; nid = numa_cpu_node(cpu); if (nid == NUMA_NO_NODE) nid = early_cpu_to_node(cpu); BUG_ON(nid == NUMA_NO_NODE || !node_online(nid)); /* * Use the starting address of the emulated node to find which physical * node it is allocated on. */ addr = node_start_pfn(nid) << PAGE_SHIFT; for (physnid = 0; physnid < MAX_NUMNODES; physnid++) if (addr >= physnodes[physnid].start && addr < physnodes[physnid].end) break; /* * Map the cpu to each emulated node that is allocated on the physical * node of the cpu's apic id. */ for_each_online_node(nid) { addr = node_start_pfn(nid) << PAGE_SHIFT; if (addr >= physnodes[physnid].start && addr < physnodes[physnid].end) cpumask_set_cpu(cpu, node_to_cpumask_map[nid]); } } void __cpuinit numa_remove_cpu(int cpu) { int i; for_each_online_node(i) cpumask_clear_cpu(cpu, node_to_cpumask_map[i]); } # else /* !CONFIG_DEBUG_PER_CPU_MAPS */ static void __cpuinit numa_set_cpumask(int cpu, int enable) { int node = early_cpu_to_node(cpu); struct cpumask *mask; int i; if (node == NUMA_NO_NODE) { /* early_cpu_to_node() already emits a warning and trace */ return; } for_each_online_node(i) { unsigned long addr; addr = node_start_pfn(i) << PAGE_SHIFT; if (addr < physnodes[node].start || addr >= physnodes[node].end) continue; mask = debug_cpumask_set_cpu(cpu, enable); if (!mask) return; if (enable) cpumask_set_cpu(cpu, mask); else cpumask_clear_cpu(cpu, mask); } } void __cpuinit numa_add_cpu(int cpu) { numa_set_cpumask(cpu, 1); } void __cpuinit numa_remove_cpu(int cpu) { numa_set_cpumask(cpu, 0); } # endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ #endif /* CONFIG_NUMA_EMU */