/* * Authors: * Copyright 2001, 2002 by Robert Olsson * Uppsala University and * Swedish University of Agricultural Sciences * * Alexey Kuznetsov * Ben Greear * Jens Låås * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * * A tool for loading the network with preconfigurated packets. * The tool is implemented as a linux module. Parameters are output * device, delay (to hard_xmit), number of packets, and whether * to use multiple SKBs or just the same one. * pktgen uses the installed interface's output routine. * * Additional hacking by: * * Jens.Laas@data.slu.se * Improved by ANK. 010120. * Improved by ANK even more. 010212. * MAC address typo fixed. 010417 --ro * Integrated. 020301 --DaveM * Added multiskb option 020301 --DaveM * Scaling of results. 020417--sigurdur@linpro.no * Significant re-work of the module: * * Convert to threaded model to more efficiently be able to transmit * and receive on multiple interfaces at once. * * Converted many counters to __u64 to allow longer runs. * * Allow configuration of ranges, like min/max IP address, MACs, * and UDP-ports, for both source and destination, and can * set to use a random distribution or sequentially walk the range. * * Can now change most values after starting. * * Place 12-byte packet in UDP payload with magic number, * sequence number, and timestamp. * * Add receiver code that detects dropped pkts, re-ordered pkts, and * latencies (with micro-second) precision. * * Add IOCTL interface to easily get counters & configuration. * --Ben Greear * * Renamed multiskb to clone_skb and cleaned up sending core for two distinct * skb modes. A clone_skb=0 mode for Ben "ranges" work and a clone_skb != 0 * as a "fastpath" with a configurable number of clones after alloc's. * clone_skb=0 means all packets are allocated this also means ranges time * stamps etc can be used. clone_skb=100 means 1 malloc is followed by 100 * clones. * * Also moved to /proc/net/pktgen/ * --ro * * Sept 10: Fixed threading/locking. Lots of bone-headed and more clever * mistakes. Also merged in DaveM's patch in the -pre6 patch. * --Ben Greear * * Integrated to 2.5.x 021029 --Lucio Maciel (luciomaciel@zipmail.com.br) * * * 021124 Finished major redesign and rewrite for new functionality. * See Documentation/networking/pktgen.txt for how to use this. * * The new operation: * For each CPU one thread/process is created at start. This process checks * for running devices in the if_list and sends packets until count is 0 it * also the thread checks the thread->control which is used for inter-process * communication. controlling process "posts" operations to the threads this * way. The if_lock should be possible to remove when add/rem_device is merged * into this too. * * By design there should only be *one* "controlling" process. In practice * multiple write accesses gives unpredictable result. Understood by "write" * to /proc gives result code thats should be read be the "writer". * For pratical use this should be no problem. * * Note when adding devices to a specific CPU there good idea to also assign * /proc/irq/XX/smp_affinity so TX-interrupts gets bound to the same CPU. * --ro * * Fix refcount off by one if first packet fails, potential null deref, * memleak 030710- KJP * * First "ranges" functionality for ipv6 030726 --ro * * Included flow support. 030802 ANK. * * Fixed unaligned access on IA-64 Grant Grundler * * Remove if fix from added Harald Welte 040419 * ia64 compilation fix from Aron Griffis 040604 * * New xmit() return, do_div and misc clean up by Stephen Hemminger * 040923 * * Rany Dunlap fixed u64 printk compiler waring * * Remove FCS from BW calculation. Lennert Buytenhek * New time handling. Lennert Buytenhek 041213 * * Corrections from Nikolai Malykh (nmalykh@bilim.com) * Removed unused flags F_SET_SRCMAC & F_SET_SRCIP 041230 * * interruptible_sleep_on_timeout() replaced Nishanth Aravamudan * 050103 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* do_div */ #include #define VERSION "pktgen v2.62: Packet Generator for packet performance testing.\n" /* #define PG_DEBUG(a) a */ #define PG_DEBUG(a) /* The buckets are exponential in 'width' */ #define LAT_BUCKETS_MAX 32 #define IP_NAME_SZ 32 /* Device flag bits */ #define F_IPSRC_RND (1<<0) /* IP-Src Random */ #define F_IPDST_RND (1<<1) /* IP-Dst Random */ #define F_UDPSRC_RND (1<<2) /* UDP-Src Random */ #define F_UDPDST_RND (1<<3) /* UDP-Dst Random */ #define F_MACSRC_RND (1<<4) /* MAC-Src Random */ #define F_MACDST_RND (1<<5) /* MAC-Dst Random */ #define F_TXSIZE_RND (1<<6) /* Transmit size is random */ #define F_IPV6 (1<<7) /* Interface in IPV6 Mode */ /* Thread control flag bits */ #define T_TERMINATE (1<<0) #define T_STOP (1<<1) /* Stop run */ #define T_RUN (1<<2) /* Start run */ #define T_REMDEV (1<<3) /* Remove all devs */ /* Locks */ #define thread_lock() spin_lock(&_thread_lock) #define thread_unlock() spin_unlock(&_thread_lock) /* If lock -- can be removed after some work */ #define if_lock(t) spin_lock(&(t->if_lock)); #define if_unlock(t) spin_unlock(&(t->if_lock)); /* Used to help with determining the pkts on receive */ #define PKTGEN_MAGIC 0xbe9be955 #define PG_PROC_DIR "net/pktgen" #define MAX_CFLOWS 65536 struct flow_state { __u32 cur_daddr; int count; }; struct pktgen_dev { /* * Try to keep frequent/infrequent used vars. separated. */ char ifname[32]; struct proc_dir_entry *proc_ent; char result[512]; /* proc file names */ char fname[80]; struct pktgen_thread* pg_thread; /* the owner */ struct pktgen_dev *next; /* Used for chaining in the thread's run-queue */ int running; /* if this changes to false, the test will stop */ /* If min != max, then we will either do a linear iteration, or * we will do a random selection from within the range. */ __u32 flags; int min_pkt_size; /* = ETH_ZLEN; */ int max_pkt_size; /* = ETH_ZLEN; */ int nfrags; __u32 delay_us; /* Default delay */ __u32 delay_ns; __u64 count; /* Default No packets to send */ __u64 sofar; /* How many pkts we've sent so far */ __u64 tx_bytes; /* How many bytes we've transmitted */ __u64 errors; /* Errors when trying to transmit, pkts will be re-sent */ /* runtime counters relating to clone_skb */ __u64 next_tx_us; /* timestamp of when to tx next */ __u32 next_tx_ns; __u64 allocated_skbs; __u32 clone_count; int last_ok; /* Was last skb sent? * Or a failed transmit of some sort? This will keep * sequence numbers in order, for example. */ __u64 started_at; /* micro-seconds */ __u64 stopped_at; /* micro-seconds */ __u64 idle_acc; /* micro-seconds */ __u32 seq_num; int clone_skb; /* Use multiple SKBs during packet gen. If this number * is greater than 1, then that many coppies of the same * packet will be sent before a new packet is allocated. * For instance, if you want to send 1024 identical packets * before creating a new packet, set clone_skb to 1024. */ char dst_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ char dst_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ char src_min[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ char src_max[IP_NAME_SZ]; /* IP, ie 1.2.3.4 */ struct in6_addr in6_saddr; struct in6_addr in6_daddr; struct in6_addr cur_in6_daddr; struct in6_addr cur_in6_saddr; /* For ranges */ struct in6_addr min_in6_daddr; struct in6_addr max_in6_daddr; struct in6_addr min_in6_saddr; struct in6_addr max_in6_saddr; /* If we're doing ranges, random or incremental, then this * defines the min/max for those ranges. */ __u32 saddr_min; /* inclusive, source IP address */ __u32 saddr_max; /* exclusive, source IP address */ __u32 daddr_min; /* inclusive, dest IP address */ __u32 daddr_max; /* exclusive, dest IP address */ __u16 udp_src_min; /* inclusive, source UDP port */ __u16 udp_src_max; /* exclusive, source UDP port */ __u16 udp_dst_min; /* inclusive, dest UDP port */ __u16 udp_dst_max; /* exclusive, dest UDP port */ __u32 src_mac_count; /* How many MACs to iterate through */ __u32 dst_mac_count; /* How many MACs to iterate through */ unsigned char dst_mac[6]; unsigned char src_mac[6]; __u32 cur_dst_mac_offset; __u32 cur_src_mac_offset; __u32 cur_saddr; __u32 cur_daddr; __u16 cur_udp_dst; __u16 cur_udp_src; __u32 cur_pkt_size; __u8 hh[14]; /* = { 0x00, 0x80, 0xC8, 0x79, 0xB3, 0xCB, We fill in SRC address later 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00 }; */ __u16 pad; /* pad out the hh struct to an even 16 bytes */ struct sk_buff* skb; /* skb we are to transmit next, mainly used for when we * are transmitting the same one multiple times */ struct net_device* odev; /* The out-going device. Note that the device should * have it's pg_info pointer pointing back to this * device. This will be set when the user specifies * the out-going device name (not when the inject is * started as it used to do.) */ struct flow_state *flows; unsigned cflows; /* Concurrent flows (config) */ unsigned lflow; /* Flow length (config) */ unsigned nflows; /* accumulated flows (stats) */ }; struct pktgen_hdr { __u32 pgh_magic; __u32 seq_num; __u32 tv_sec; __u32 tv_usec; }; struct pktgen_thread { spinlock_t if_lock; struct pktgen_dev *if_list; /* All device here */ struct pktgen_thread* next; char name[32]; char fname[128]; /* name of proc file */ struct proc_dir_entry *proc_ent; char result[512]; u32 max_before_softirq; /* We'll call do_softirq to prevent starvation. */ /* Field for thread to receive "posted" events terminate, stop ifs etc.*/ u32 control; int pid; int cpu; wait_queue_head_t queue; }; #define REMOVE 1 #define FIND 0 /* This code works around the fact that do_div cannot handle two 64-bit numbers, and regular 64-bit division doesn't work on x86 kernels. --Ben */ #define PG_DIV 0 /* This was emailed to LMKL by: Chris Caputo * Function copied/adapted/optimized from: * * nemesis.sourceforge.net/browse/lib/static/intmath/ix86/intmath.c.html * * Copyright 1994, University of Cambridge Computer Laboratory * All Rights Reserved. * */ static inline s64 divremdi3(s64 x, s64 y, int type) { u64 a = (x < 0) ? -x : x; u64 b = (y < 0) ? -y : y; u64 res = 0, d = 1; if (b > 0) { while (b < a) { b <<= 1; d <<= 1; } } do { if ( a >= b ) { a -= b; res += d; } b >>= 1; d >>= 1; } while (d); if (PG_DIV == type) { return (((x ^ y) & (1ll<<63)) == 0) ? res : -(s64)res; } else { return ((x & (1ll<<63)) == 0) ? a : -(s64)a; } } /* End of hacks to deal with 64-bit math on x86 */ /** Convert to miliseconds */ static inline __u64 tv_to_ms(const struct timeval* tv) { __u64 ms = tv->tv_usec / 1000; ms += (__u64)tv->tv_sec * (__u64)1000; return ms; } /** Convert to micro-seconds */ static inline __u64 tv_to_us(const struct timeval* tv) { __u64 us = tv->tv_usec; us += (__u64)tv->tv_sec * (__u64)1000000; return us; } static inline __u64 pg_div(__u64 n, __u32 base) { __u64 tmp = n; do_div(tmp, base); /* printk("pktgen: pg_div, n: %llu base: %d rv: %llu\n", n, base, tmp); */ return tmp; } static inline __u64 pg_div64(__u64 n, __u64 base) { __u64 tmp = n; /* * How do we know if the architectrure we are running on * supports division with 64 bit base? * */ #if defined(__sparc_v9__) || defined(__powerpc64__) || defined(__alpha__) || defined(__x86_64__) || defined(__ia64__) do_div(tmp, base); #else tmp = divremdi3(n, base, PG_DIV); #endif return tmp; } static inline u32 pktgen_random(void) { #if 0 __u32 n; get_random_bytes(&n, 4); return n; #else return net_random(); #endif } static inline __u64 getCurMs(void) { struct timeval tv; do_gettimeofday(&tv); return tv_to_ms(&tv); } static inline __u64 getCurUs(void) { struct timeval tv; do_gettimeofday(&tv); return tv_to_us(&tv); } static inline __u64 tv_diff(const struct timeval* a, const struct timeval* b) { return tv_to_us(a) - tv_to_us(b); } /* old include end */ static char version[] __initdata = VERSION; static ssize_t proc_pgctrl_read(struct file* file, char __user * buf, size_t count, loff_t *ppos); static ssize_t proc_pgctrl_write(struct file* file, const char __user * buf, size_t count, loff_t *ppos); static int proc_if_read(char *buf , char **start, off_t offset, int len, int *eof, void *data); static int proc_thread_read(char *buf , char **start, off_t offset, int len, int *eof, void *data); static int proc_if_write(struct file *file, const char __user *user_buffer, unsigned long count, void *data); static int proc_thread_write(struct file *file, const char __user *user_buffer, unsigned long count, void *data); static int create_proc_dir(void); static int remove_proc_dir(void); static int pktgen_remove_device(struct pktgen_thread* t, struct pktgen_dev *i); static int pktgen_add_device(struct pktgen_thread* t, const char* ifname); static struct pktgen_thread* pktgen_find_thread(const char* name); static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread* t, const char* ifname); static int pktgen_device_event(struct notifier_block *, unsigned long, void *); static void pktgen_run_all_threads(void); static void pktgen_stop_all_threads_ifs(void); static int pktgen_stop_device(struct pktgen_dev *pkt_dev); static void pktgen_stop(struct pktgen_thread* t); static void pktgen_clear_counters(struct pktgen_dev *pkt_dev); static struct pktgen_dev *pktgen_NN_threads(const char* dev_name, int remove); static unsigned int scan_ip6(const char *s,char ip[16]); static unsigned int fmt_ip6(char *s,const char ip[16]); /* Module parameters, defaults. */ static int pg_count_d = 1000; /* 1000 pkts by default */ static int pg_delay_d = 0; static int pg_clone_skb_d = 0; static int debug = 0; static DEFINE_SPINLOCK(_thread_lock); static struct pktgen_thread *pktgen_threads = NULL; static char module_fname[128]; static struct proc_dir_entry *module_proc_ent = NULL; static struct notifier_block pktgen_notifier_block = { .notifier_call = pktgen_device_event, }; static struct file_operations pktgen_fops = { .read = proc_pgctrl_read, .write = proc_pgctrl_write, /* .ioctl = pktgen_ioctl, later maybe */ }; /* * /proc handling functions * */ static struct proc_dir_entry *pg_proc_dir = NULL; static int proc_pgctrl_read_eof=0; static ssize_t proc_pgctrl_read(struct file* file, char __user * buf, size_t count, loff_t *ppos) { char data[200]; int len = 0; if(proc_pgctrl_read_eof) { proc_pgctrl_read_eof=0; len = 0; goto out; } sprintf(data, "%s", VERSION); len = strlen(data); if(len > count) { len =-EFAULT; goto out; } if (copy_to_user(buf, data, len)) { len =-EFAULT; goto out; } *ppos += len; proc_pgctrl_read_eof=1; /* EOF next call */ out: return len; } static ssize_t proc_pgctrl_write(struct file* file,const char __user * buf, size_t count, loff_t *ppos) { char *data = NULL; int err = 0; if (!capable(CAP_NET_ADMIN)){ err = -EPERM; goto out; } data = (void*)vmalloc ((unsigned int)count); if(!data) { err = -ENOMEM; goto out; } if (copy_from_user(data, buf, count)) { err =-EFAULT; goto out_free; } data[count-1] = 0; /* Make string */ if (!strcmp(data, "stop")) pktgen_stop_all_threads_ifs(); else if (!strcmp(data, "start")) pktgen_run_all_threads(); else printk("pktgen: Unknown command: %s\n", data); err = count; out_free: vfree (data); out: return err; } static int proc_if_read(char *buf , char **start, off_t offset, int len, int *eof, void *data) { char *p; int i; struct pktgen_dev *pkt_dev = (struct pktgen_dev*)(data); __u64 sa; __u64 stopped; __u64 now = getCurUs(); p = buf; p += sprintf(p, "Params: count %llu min_pkt_size: %u max_pkt_size: %u\n", (unsigned long long) pkt_dev->count, pkt_dev->min_pkt_size, pkt_dev->max_pkt_size); p += sprintf(p, " frags: %d delay: %u clone_skb: %d ifname: %s\n", pkt_dev->nfrags, 1000*pkt_dev->delay_us+pkt_dev->delay_ns, pkt_dev->clone_skb, pkt_dev->ifname); p += sprintf(p, " flows: %u flowlen: %u\n", pkt_dev->cflows, pkt_dev->lflow); if(pkt_dev->flags & F_IPV6) { char b1[128], b2[128], b3[128]; fmt_ip6(b1, pkt_dev->in6_saddr.s6_addr); fmt_ip6(b2, pkt_dev->min_in6_saddr.s6_addr); fmt_ip6(b3, pkt_dev->max_in6_saddr.s6_addr); p += sprintf(p, " saddr: %s min_saddr: %s max_saddr: %s\n", b1, b2, b3); fmt_ip6(b1, pkt_dev->in6_daddr.s6_addr); fmt_ip6(b2, pkt_dev->min_in6_daddr.s6_addr); fmt_ip6(b3, pkt_dev->max_in6_daddr.s6_addr); p += sprintf(p, " daddr: %s min_daddr: %s max_daddr: %s\n", b1, b2, b3); } else p += sprintf(p, " dst_min: %s dst_max: %s\n src_min: %s src_max: %s\n", pkt_dev->dst_min, pkt_dev->dst_max, pkt_dev->src_min, pkt_dev->src_max); p += sprintf(p, " src_mac: "); if ((pkt_dev->src_mac[0] == 0) && (pkt_dev->src_mac[1] == 0) && (pkt_dev->src_mac[2] == 0) && (pkt_dev->src_mac[3] == 0) && (pkt_dev->src_mac[4] == 0) && (pkt_dev->src_mac[5] == 0)) for (i = 0; i < 6; i++) p += sprintf(p, "%02X%s", pkt_dev->odev->dev_addr[i], i == 5 ? " " : ":"); else for (i = 0; i < 6; i++) p += sprintf(p, "%02X%s", pkt_dev->src_mac[i], i == 5 ? " " : ":"); p += sprintf(p, "dst_mac: "); for (i = 0; i < 6; i++) p += sprintf(p, "%02X%s", pkt_dev->dst_mac[i], i == 5 ? "\n" : ":"); p += sprintf(p, " udp_src_min: %d udp_src_max: %d udp_dst_min: %d udp_dst_max: %d\n", pkt_dev->udp_src_min, pkt_dev->udp_src_max, pkt_dev->udp_dst_min, pkt_dev->udp_dst_max); p += sprintf(p, " src_mac_count: %d dst_mac_count: %d \n Flags: ", pkt_dev->src_mac_count, pkt_dev->dst_mac_count); if (pkt_dev->flags & F_IPV6) p += sprintf(p, "IPV6 "); if (pkt_dev->flags & F_IPSRC_RND) p += sprintf(p, "IPSRC_RND "); if (pkt_dev->flags & F_IPDST_RND) p += sprintf(p, "IPDST_RND "); if (pkt_dev->flags & F_TXSIZE_RND) p += sprintf(p, "TXSIZE_RND "); if (pkt_dev->flags & F_UDPSRC_RND) p += sprintf(p, "UDPSRC_RND "); if (pkt_dev->flags & F_UDPDST_RND) p += sprintf(p, "UDPDST_RND "); if (pkt_dev->flags & F_MACSRC_RND) p += sprintf(p, "MACSRC_RND "); if (pkt_dev->flags & F_MACDST_RND) p += sprintf(p, "MACDST_RND "); p += sprintf(p, "\n"); sa = pkt_dev->started_at; stopped = pkt_dev->stopped_at; if (pkt_dev->running) stopped = now; /* not really stopped, more like last-running-at */ p += sprintf(p, "Current:\n pkts-sofar: %llu errors: %llu\n started: %lluus stopped: %lluus idle: %lluus\n", (unsigned long long) pkt_dev->sofar, (unsigned long long) pkt_dev->errors, (unsigned long long) sa, (unsigned long long) stopped, (unsigned long long) pkt_dev->idle_acc); p += sprintf(p, " seq_num: %d cur_dst_mac_offset: %d cur_src_mac_offset: %d\n", pkt_dev->seq_num, pkt_dev->cur_dst_mac_offset, pkt_dev->cur_src_mac_offset); if(pkt_dev->flags & F_IPV6) { char b1[128], b2[128]; fmt_ip6(b1, pkt_dev->cur_in6_daddr.s6_addr); fmt_ip6(b2, pkt_dev->cur_in6_saddr.s6_addr); p += sprintf(p, " cur_saddr: %s cur_daddr: %s\n", b2, b1); } else p += sprintf(p, " cur_saddr: 0x%x cur_daddr: 0x%x\n", pkt_dev->cur_saddr, pkt_dev->cur_daddr); p += sprintf(p, " cur_udp_dst: %d cur_udp_src: %d\n", pkt_dev->cur_udp_dst, pkt_dev->cur_udp_src); p += sprintf(p, " flows: %u\n", pkt_dev->nflows); if (pkt_dev->result[0]) p += sprintf(p, "Result: %s\n", pkt_dev->result); else p += sprintf(p, "Result: Idle\n"); *eof = 1; return p - buf; } static int count_trail_chars(const char __user *user_buffer, unsigned int maxlen) { int i; for (i = 0; i < maxlen; i++) { char c; if (get_user(c, &user_buffer[i])) return -EFAULT; switch (c) { case '\"': case '\n': case '\r': case '\t': case ' ': case '=': break; default: goto done; }; } done: return i; } static unsigned long num_arg(const char __user *user_buffer, unsigned long maxlen, unsigned long *num) { int i = 0; *num = 0; for(; i < maxlen; i++) { char c; if (get_user(c, &user_buffer[i])) return -EFAULT; if ((c >= '0') && (c <= '9')) { *num *= 10; *num += c -'0'; } else break; } return i; } static int strn_len(const char __user *user_buffer, unsigned int maxlen) { int i = 0; for(; i < maxlen; i++) { char c; if (get_user(c, &user_buffer[i])) return -EFAULT; switch (c) { case '\"': case '\n': case '\r': case '\t': case ' ': goto done_str; break; default: break; }; } done_str: return i; } static int proc_if_write(struct file *file, const char __user *user_buffer, unsigned long count, void *data) { int i = 0, max, len; char name[16], valstr[32]; unsigned long value = 0; struct pktgen_dev *pkt_dev = (struct pktgen_dev*)(data); char* pg_result = NULL; int tmp = 0; char buf[128]; pg_result = &(pkt_dev->result[0]); if (count < 1) { printk("pktgen: wrong command format\n"); return -EINVAL; } max = count - i; tmp = count_trail_chars(&user_buffer[i], max); if (tmp < 0) { printk("pktgen: illegal format\n"); return tmp; } i += tmp; /* Read variable name */ len = strn_len(&user_buffer[i], sizeof(name) - 1); if (len < 0) { return len; } memset(name, 0, sizeof(name)); if (copy_from_user(name, &user_buffer[i], len) ) return -EFAULT; i += len; max = count -i; len = count_trail_chars(&user_buffer[i], max); if (len < 0) return len; i += len; if (debug) { char tb[count + 1]; if (copy_from_user(tb, user_buffer, count)) return -EFAULT; tb[count] = 0; printk("pktgen: %s,%lu buffer -:%s:-\n", name, count, tb); } if (!strcmp(name, "min_pkt_size")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value < 14+20+8) value = 14+20+8; if (value != pkt_dev->min_pkt_size) { pkt_dev->min_pkt_size = value; pkt_dev->cur_pkt_size = value; } sprintf(pg_result, "OK: min_pkt_size=%u", pkt_dev->min_pkt_size); return count; } if (!strcmp(name, "max_pkt_size")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value < 14+20+8) value = 14+20+8; if (value != pkt_dev->max_pkt_size) { pkt_dev->max_pkt_size = value; pkt_dev->cur_pkt_size = value; } sprintf(pg_result, "OK: max_pkt_size=%u", pkt_dev->max_pkt_size); return count; } /* Shortcut for min = max */ if (!strcmp(name, "pkt_size")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value < 14+20+8) value = 14+20+8; if (value != pkt_dev->min_pkt_size) { pkt_dev->min_pkt_size = value; pkt_dev->max_pkt_size = value; pkt_dev->cur_pkt_size = value; } sprintf(pg_result, "OK: pkt_size=%u", pkt_dev->min_pkt_size); return count; } if (!strcmp(name, "debug")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; debug = value; sprintf(pg_result, "OK: debug=%u", debug); return count; } if (!strcmp(name, "frags")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; pkt_dev->nfrags = value; sprintf(pg_result, "OK: frags=%u", pkt_dev->nfrags); return count; } if (!strcmp(name, "delay")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value == 0x7FFFFFFF) { pkt_dev->delay_us = 0x7FFFFFFF; pkt_dev->delay_ns = 0; } else { pkt_dev->delay_us = value / 1000; pkt_dev->delay_ns = value % 1000; } sprintf(pg_result, "OK: delay=%u", 1000*pkt_dev->delay_us+pkt_dev->delay_ns); return count; } if (!strcmp(name, "udp_src_min")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value != pkt_dev->udp_src_min) { pkt_dev->udp_src_min = value; pkt_dev->cur_udp_src = value; } sprintf(pg_result, "OK: udp_src_min=%u", pkt_dev->udp_src_min); return count; } if (!strcmp(name, "udp_dst_min")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value != pkt_dev->udp_dst_min) { pkt_dev->udp_dst_min = value; pkt_dev->cur_udp_dst = value; } sprintf(pg_result, "OK: udp_dst_min=%u", pkt_dev->udp_dst_min); return count; } if (!strcmp(name, "udp_src_max")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value != pkt_dev->udp_src_max) { pkt_dev->udp_src_max = value; pkt_dev->cur_udp_src = value; } sprintf(pg_result, "OK: udp_src_max=%u", pkt_dev->udp_src_max); return count; } if (!strcmp(name, "udp_dst_max")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value != pkt_dev->udp_dst_max) { pkt_dev->udp_dst_max = value; pkt_dev->cur_udp_dst = value; } sprintf(pg_result, "OK: udp_dst_max=%u", pkt_dev->udp_dst_max); return count; } if (!strcmp(name, "clone_skb")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; pkt_dev->clone_skb = value; sprintf(pg_result, "OK: clone_skb=%d", pkt_dev->clone_skb); return count; } if (!strcmp(name, "count")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; pkt_dev->count = value; sprintf(pg_result, "OK: count=%llu", (unsigned long long) pkt_dev->count); return count; } if (!strcmp(name, "src_mac_count")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (pkt_dev->src_mac_count != value) { pkt_dev->src_mac_count = value; pkt_dev->cur_src_mac_offset = 0; } sprintf(pg_result, "OK: src_mac_count=%d", pkt_dev->src_mac_count); return count; } if (!strcmp(name, "dst_mac_count")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (pkt_dev->dst_mac_count != value) { pkt_dev->dst_mac_count = value; pkt_dev->cur_dst_mac_offset = 0; } sprintf(pg_result, "OK: dst_mac_count=%d", pkt_dev->dst_mac_count); return count; } if (!strcmp(name, "flag")) { char f[32]; memset(f, 0, 32); len = strn_len(&user_buffer[i], sizeof(f) - 1); if (len < 0) { return len; } if (copy_from_user(f, &user_buffer[i], len)) return -EFAULT; i += len; if (strcmp(f, "IPSRC_RND") == 0) pkt_dev->flags |= F_IPSRC_RND; else if (strcmp(f, "!IPSRC_RND") == 0) pkt_dev->flags &= ~F_IPSRC_RND; else if (strcmp(f, "TXSIZE_RND") == 0) pkt_dev->flags |= F_TXSIZE_RND; else if (strcmp(f, "!TXSIZE_RND") == 0) pkt_dev->flags &= ~F_TXSIZE_RND; else if (strcmp(f, "IPDST_RND") == 0) pkt_dev->flags |= F_IPDST_RND; else if (strcmp(f, "!IPDST_RND") == 0) pkt_dev->flags &= ~F_IPDST_RND; else if (strcmp(f, "UDPSRC_RND") == 0) pkt_dev->flags |= F_UDPSRC_RND; else if (strcmp(f, "!UDPSRC_RND") == 0) pkt_dev->flags &= ~F_UDPSRC_RND; else if (strcmp(f, "UDPDST_RND") == 0) pkt_dev->flags |= F_UDPDST_RND; else if (strcmp(f, "!UDPDST_RND") == 0) pkt_dev->flags &= ~F_UDPDST_RND; else if (strcmp(f, "MACSRC_RND") == 0) pkt_dev->flags |= F_MACSRC_RND; else if (strcmp(f, "!MACSRC_RND") == 0) pkt_dev->flags &= ~F_MACSRC_RND; else if (strcmp(f, "MACDST_RND") == 0) pkt_dev->flags |= F_MACDST_RND; else if (strcmp(f, "!MACDST_RND") == 0) pkt_dev->flags &= ~F_MACDST_RND; else { sprintf(pg_result, "Flag -:%s:- unknown\nAvailable flags, (prepend ! to un-set flag):\n%s", f, "IPSRC_RND, IPDST_RND, TXSIZE_RND, UDPSRC_RND, UDPDST_RND, MACSRC_RND, MACDST_RND\n"); return count; } sprintf(pg_result, "OK: flags=0x%x", pkt_dev->flags); return count; } if (!strcmp(name, "dst_min") || !strcmp(name, "dst")) { len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_min) - 1); if (len < 0) { return len; } if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; if (strcmp(buf, pkt_dev->dst_min) != 0) { memset(pkt_dev->dst_min, 0, sizeof(pkt_dev->dst_min)); strncpy(pkt_dev->dst_min, buf, len); pkt_dev->daddr_min = in_aton(pkt_dev->dst_min); pkt_dev->cur_daddr = pkt_dev->daddr_min; } if(debug) printk("pktgen: dst_min set to: %s\n", pkt_dev->dst_min); i += len; sprintf(pg_result, "OK: dst_min=%s", pkt_dev->dst_min); return count; } if (!strcmp(name, "dst_max")) { len = strn_len(&user_buffer[i], sizeof(pkt_dev->dst_max) - 1); if (len < 0) { return len; } if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; if (strcmp(buf, pkt_dev->dst_max) != 0) { memset(pkt_dev->dst_max, 0, sizeof(pkt_dev->dst_max)); strncpy(pkt_dev->dst_max, buf, len); pkt_dev->daddr_max = in_aton(pkt_dev->dst_max); pkt_dev->cur_daddr = pkt_dev->daddr_max; } if(debug) printk("pktgen: dst_max set to: %s\n", pkt_dev->dst_max); i += len; sprintf(pg_result, "OK: dst_max=%s", pkt_dev->dst_max); return count; } if (!strcmp(name, "dst6")) { len = strn_len(&user_buffer[i], sizeof(buf) - 1); if (len < 0) return len; pkt_dev->flags |= F_IPV6; if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; scan_ip6(buf, pkt_dev->in6_daddr.s6_addr); fmt_ip6(buf, pkt_dev->in6_daddr.s6_addr); ipv6_addr_copy(&pkt_dev->cur_in6_daddr, &pkt_dev->in6_daddr); if(debug) printk("pktgen: dst6 set to: %s\n", buf); i += len; sprintf(pg_result, "OK: dst6=%s", buf); return count; } if (!strcmp(name, "dst6_min")) { len = strn_len(&user_buffer[i], sizeof(buf) - 1); if (len < 0) return len; pkt_dev->flags |= F_IPV6; if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; scan_ip6(buf, pkt_dev->min_in6_daddr.s6_addr); fmt_ip6(buf, pkt_dev->min_in6_daddr.s6_addr); ipv6_addr_copy(&pkt_dev->cur_in6_daddr, &pkt_dev->min_in6_daddr); if(debug) printk("pktgen: dst6_min set to: %s\n", buf); i += len; sprintf(pg_result, "OK: dst6_min=%s", buf); return count; } if (!strcmp(name, "dst6_max")) { len = strn_len(&user_buffer[i], sizeof(buf) - 1); if (len < 0) return len; pkt_dev->flags |= F_IPV6; if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; scan_ip6(buf, pkt_dev->max_in6_daddr.s6_addr); fmt_ip6(buf, pkt_dev->max_in6_daddr.s6_addr); if(debug) printk("pktgen: dst6_max set to: %s\n", buf); i += len; sprintf(pg_result, "OK: dst6_max=%s", buf); return count; } if (!strcmp(name, "src6")) { len = strn_len(&user_buffer[i], sizeof(buf) - 1); if (len < 0) return len; pkt_dev->flags |= F_IPV6; if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; scan_ip6(buf, pkt_dev->in6_saddr.s6_addr); fmt_ip6(buf, pkt_dev->in6_saddr.s6_addr); ipv6_addr_copy(&pkt_dev->cur_in6_saddr, &pkt_dev->in6_saddr); if(debug) printk("pktgen: src6 set to: %s\n", buf); i += len; sprintf(pg_result, "OK: src6=%s", buf); return count; } if (!strcmp(name, "src_min")) { len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_min) - 1); if (len < 0) { return len; } if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; if (strcmp(buf, pkt_dev->src_min) != 0) { memset(pkt_dev->src_min, 0, sizeof(pkt_dev->src_min)); strncpy(pkt_dev->src_min, buf, len); pkt_dev->saddr_min = in_aton(pkt_dev->src_min); pkt_dev->cur_saddr = pkt_dev->saddr_min; } if(debug) printk("pktgen: src_min set to: %s\n", pkt_dev->src_min); i += len; sprintf(pg_result, "OK: src_min=%s", pkt_dev->src_min); return count; } if (!strcmp(name, "src_max")) { len = strn_len(&user_buffer[i], sizeof(pkt_dev->src_max) - 1); if (len < 0) { return len; } if (copy_from_user(buf, &user_buffer[i], len)) return -EFAULT; buf[len] = 0; if (strcmp(buf, pkt_dev->src_max) != 0) { memset(pkt_dev->src_max, 0, sizeof(pkt_dev->src_max)); strncpy(pkt_dev->src_max, buf, len); pkt_dev->saddr_max = in_aton(pkt_dev->src_max); pkt_dev->cur_saddr = pkt_dev->saddr_max; } if(debug) printk("pktgen: src_max set to: %s\n", pkt_dev->src_max); i += len; sprintf(pg_result, "OK: src_max=%s", pkt_dev->src_max); return count; } if (!strcmp(name, "dst_mac")) { char *v = valstr; unsigned char old_dmac[6]; unsigned char *m = pkt_dev->dst_mac; memcpy(old_dmac, pkt_dev->dst_mac, 6); len = strn_len(&user_buffer[i], sizeof(valstr) - 1); if (len < 0) { return len; } memset(valstr, 0, sizeof(valstr)); if( copy_from_user(valstr, &user_buffer[i], len)) return -EFAULT; i += len; for(*m = 0;*v && m < pkt_dev->dst_mac + 6; v++) { if (*v >= '0' && *v <= '9') { *m *= 16; *m += *v - '0'; } if (*v >= 'A' && *v <= 'F') { *m *= 16; *m += *v - 'A' + 10; } if (*v >= 'a' && *v <= 'f') { *m *= 16; *m += *v - 'a' + 10; } if (*v == ':') { m++; *m = 0; } } /* Set up Dest MAC */ if (memcmp(old_dmac, pkt_dev->dst_mac, 6) != 0) memcpy(&(pkt_dev->hh[0]), pkt_dev->dst_mac, 6); sprintf(pg_result, "OK: dstmac"); return count; } if (!strcmp(name, "src_mac")) { char *v = valstr; unsigned char *m = pkt_dev->src_mac; len = strn_len(&user_buffer[i], sizeof(valstr) - 1); if (len < 0) { return len; } memset(valstr, 0, sizeof(valstr)); if( copy_from_user(valstr, &user_buffer[i], len)) return -EFAULT; i += len; for(*m = 0;*v && m < pkt_dev->src_mac + 6; v++) { if (*v >= '0' && *v <= '9') { *m *= 16; *m += *v - '0'; } if (*v >= 'A' && *v <= 'F') { *m *= 16; *m += *v - 'A' + 10; } if (*v >= 'a' && *v <= 'f') { *m *= 16; *m += *v - 'a' + 10; } if (*v == ':') { m++; *m = 0; } } sprintf(pg_result, "OK: srcmac"); return count; } if (!strcmp(name, "clear_counters")) { pktgen_clear_counters(pkt_dev); sprintf(pg_result, "OK: Clearing counters.\n"); return count; } if (!strcmp(name, "flows")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; if (value > MAX_CFLOWS) value = MAX_CFLOWS; pkt_dev->cflows = value; sprintf(pg_result, "OK: flows=%u", pkt_dev->cflows); return count; } if (!strcmp(name, "flowlen")) { len = num_arg(&user_buffer[i], 10, &value); if (len < 0) { return len; } i += len; pkt_dev->lflow = value; sprintf(pg_result, "OK: flowlen=%u", pkt_dev->lflow); return count; } sprintf(pkt_dev->result, "No such parameter \"%s\"", name); return -EINVAL; } static int proc_thread_read(char *buf , char **start, off_t offset, int len, int *eof, void *data) { char *p; struct pktgen_thread *t = (struct pktgen_thread*)(data); struct pktgen_dev *pkt_dev = NULL; if (!t) { printk("pktgen: ERROR: could not find thread in proc_thread_read\n"); return -EINVAL; } p = buf; p += sprintf(p, "Name: %s max_before_softirq: %d\n", t->name, t->max_before_softirq); p += sprintf(p, "Running: "); if_lock(t); for(pkt_dev = t->if_list;pkt_dev; pkt_dev = pkt_dev->next) if(pkt_dev->running) p += sprintf(p, "%s ", pkt_dev->ifname); p += sprintf(p, "\nStopped: "); for(pkt_dev = t->if_list;pkt_dev; pkt_dev = pkt_dev->next) if(!pkt_dev->running) p += sprintf(p, "%s ", pkt_dev->ifname); if (t->result[0]) p += sprintf(p, "\nResult: %s\n", t->result); else p += sprintf(p, "\nResult: NA\n"); *eof = 1; if_unlock(t); return p - buf; } static int proc_thread_write(struct file *file, const char __user *user_buffer, unsigned long count, void *data) { int i = 0, max, len, ret; char name[40]; struct pktgen_thread *t; char *pg_result; unsigned long value = 0; if (count < 1) { // sprintf(pg_result, "Wrong command format"); return -EINVAL; } max = count - i; len = count_trail_chars(&user_buffer[i], max); if (len < 0) return len; i += len; /* Read variable name */ len = strn_len(&user_buffer[i], sizeof(name) - 1); if (len < 0) return len; memset(name, 0, sizeof(name)); if (copy_from_user(name, &user_buffer[i], len)) return -EFAULT; i += len; max = count -i; len = count_trail_chars(&user_buffer[i], max); if (len < 0) return len; i += len; if (debug) printk("pktgen: t=%s, count=%lu\n", name, count); t = (struct pktgen_thread*)(data); if(!t) { printk("pktgen: ERROR: No thread\n"); ret = -EINVAL; goto out; } pg_result = &(t->result[0]); if (!strcmp(name, "add_device")) { char f[32]; memset(f, 0, 32); len = strn_len(&user_buffer[i], sizeof(f) - 1); if (len < 0) { ret = len; goto out; } if( copy_from_user(f, &user_buffer[i], len) ) return -EFAULT; i += len; thread_lock(); pktgen_add_device(t, f); thread_unlock(); ret = count; sprintf(pg_result, "OK: add_device=%s", f); goto out; } if (!strcmp(name, "rem_device_all")) { thread_lock(); t->control |= T_REMDEV; thread_unlock(); schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */ ret = count; sprintf(pg_result, "OK: rem_device_all"); goto out; } if (!strcmp(name, "max_before_softirq")) { len = num_arg(&user_buffer[i], 10, &value); thread_lock(); t->max_before_softirq = value; thread_unlock(); ret = count; sprintf(pg_result, "OK: max_before_softirq=%lu", value); goto out; } ret = -EINVAL; out: return ret; } static int create_proc_dir(void) { pg_proc_dir = proc_mkdir(PG_PROC_DIR, NULL); if (!pg_proc_dir) return -ENODEV; return 0; } static int remove_proc_dir(void) { remove_proc_entry(PG_PROC_DIR, NULL); return 0; } /* Think find or remove for NN */ static struct pktgen_dev *__pktgen_NN_threads(const char* ifname, int remove) { struct pktgen_thread *t; struct pktgen_dev *pkt_dev = NULL; t = pktgen_threads; while (t) { pkt_dev = pktgen_find_dev(t, ifname); if (pkt_dev) { if(remove) { if_lock(t); pktgen_remove_device(t, pkt_dev); if_unlock(t); } break; } t = t->next; } return pkt_dev; } static struct pktgen_dev *pktgen_NN_threads(const char* ifname, int remove) { struct pktgen_dev *pkt_dev = NULL; thread_lock(); pkt_dev = __pktgen_NN_threads(ifname, remove); thread_unlock(); return pkt_dev; } static int pktgen_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = (struct net_device *)(ptr); /* It is OK that we do not hold the group lock right now, * as we run under the RTNL lock. */ switch (event) { case NETDEV_CHANGEADDR: case NETDEV_GOING_DOWN: case NETDEV_DOWN: case NETDEV_UP: /* Ignore for now */ break; case NETDEV_UNREGISTER: pktgen_NN_threads(dev->name, REMOVE); break; }; return NOTIFY_DONE; } /* Associate pktgen_dev with a device. */ static struct net_device* pktgen_setup_dev(struct pktgen_dev *pkt_dev) { struct net_device *odev; /* Clean old setups */ if (pkt_dev->odev) { dev_put(pkt_dev->odev); pkt_dev->odev = NULL; } odev = dev_get_by_name(pkt_dev->ifname); if (!odev) { printk("pktgen: no such netdevice: \"%s\"\n", pkt_dev->ifname); goto out; } if (odev->type != ARPHRD_ETHER) { printk("pktgen: not an ethernet device: \"%s\"\n", pkt_dev->ifname); goto out_put; } if (!netif_running(odev)) { printk("pktgen: device is down: \"%s\"\n", pkt_dev->ifname); goto out_put; } pkt_dev->odev = odev; return pkt_dev->odev; out_put: dev_put(odev); out: return NULL; } /* Read pkt_dev from the interface and set up internal pktgen_dev * structure to have the right information to create/send packets */ static void pktgen_setup_inject(struct pktgen_dev *pkt_dev) { /* Try once more, just in case it works now. */ if (!pkt_dev->odev) pktgen_setup_dev(pkt_dev); if (!pkt_dev->odev) { printk("pktgen: ERROR: pkt_dev->odev == NULL in setup_inject.\n"); sprintf(pkt_dev->result, "ERROR: pkt_dev->odev == NULL in setup_inject.\n"); return; } /* Default to the interface's mac if not explicitly set. */ if ((pkt_dev->src_mac[0] == 0) && (pkt_dev->src_mac[1] == 0) && (pkt_dev->src_mac[2] == 0) && (pkt_dev->src_mac[3] == 0) && (pkt_dev->src_mac[4] == 0) && (pkt_dev->src_mac[5] == 0)) { memcpy(&(pkt_dev->hh[6]), pkt_dev->odev->dev_addr, 6); } /* Set up Dest MAC */ memcpy(&(pkt_dev->hh[0]), pkt_dev->dst_mac, 6); /* Set up pkt size */ pkt_dev->cur_pkt_size = pkt_dev->min_pkt_size; if(pkt_dev->flags & F_IPV6) { /* * Skip this automatic address setting until locks or functions * gets exported */ #ifdef NOTNOW int i, set = 0, err=1; struct inet6_dev *idev; for(i=0; i< IN6_ADDR_HSIZE; i++) if(pkt_dev->cur_in6_saddr.s6_addr[i]) { set = 1; break; } if(!set) { /* * Use linklevel address if unconfigured. * * use ipv6_get_lladdr if/when it's get exported */ read_lock(&addrconf_lock); if ((idev = __in6_dev_get(pkt_dev->odev)) != NULL) { struct inet6_ifaddr *ifp; read_lock_bh(&idev->lock); for (ifp=idev->addr_list; ifp; ifp=ifp->if_next) { if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) { ipv6_addr_copy(&pkt_dev->cur_in6_saddr, &ifp->addr); err = 0; break; } } read_unlock_bh(&idev->lock); } read_unlock(&addrconf_lock); if(err) printk("pktgen: ERROR: IPv6 link address not availble.\n"); } #endif } else { pkt_dev->saddr_min = 0; pkt_dev->saddr_max = 0; if (strlen(pkt_dev->src_min) == 0) { struct in_device *in_dev; rcu_read_lock(); in_dev = __in_dev_get_rcu(pkt_dev->odev); if (in_dev) { if (in_dev->ifa_list) { pkt_dev->saddr_min = in_dev->ifa_list->ifa_address; pkt_dev->saddr_max = pkt_dev->saddr_min; } __in_dev_put(in_dev); } rcu_read_unlock(); } else { pkt_dev->saddr_min = in_aton(pkt_dev->src_min); pkt_dev->saddr_max = in_aton(pkt_dev->src_max); } pkt_dev->daddr_min = in_aton(pkt_dev->dst_min); pkt_dev->daddr_max = in_aton(pkt_dev->dst_max); } /* Initialize current values. */ pkt_dev->cur_dst_mac_offset = 0; pkt_dev->cur_src_mac_offset = 0; pkt_dev->cur_saddr = pkt_dev->saddr_min; pkt_dev->cur_daddr = pkt_dev->daddr_min; pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min; pkt_dev->cur_udp_src = pkt_dev->udp_src_min; pkt_dev->nflows = 0; } static void spin(struct pktgen_dev *pkt_dev, __u64 spin_until_us) { __u64 start; __u64 now; start = now = getCurUs(); printk(KERN_INFO "sleeping for %d\n", (int)(spin_until_us - now)); while (now < spin_until_us) { /* TODO: optimise sleeping behavior */ if (spin_until_us - now > jiffies_to_usecs(1)+1) schedule_timeout_interruptible(1); else if (spin_until_us - now > 100) { do_softirq(); if (!pkt_dev->running) return; if (need_resched()) schedule(); } now = getCurUs(); } pkt_dev->idle_acc += now - start; } /* Increment/randomize headers according to flags and current values * for IP src/dest, UDP src/dst port, MAC-Addr src/dst */ static void mod_cur_headers(struct pktgen_dev *pkt_dev) { __u32 imn; __u32 imx; int flow = 0; if(pkt_dev->cflows) { flow = pktgen_random() % pkt_dev->cflows; if (pkt_dev->flows[flow].count > pkt_dev->lflow) pkt_dev->flows[flow].count = 0; } /* Deal with source MAC */ if (pkt_dev->src_mac_count > 1) { __u32 mc; __u32 tmp; if (pkt_dev->flags & F_MACSRC_RND) mc = pktgen_random() % (pkt_dev->src_mac_count); else { mc = pkt_dev->cur_src_mac_offset++; if (pkt_dev->cur_src_mac_offset > pkt_dev->src_mac_count) pkt_dev->cur_src_mac_offset = 0; } tmp = pkt_dev->src_mac[5] + (mc & 0xFF); pkt_dev->hh[11] = tmp; tmp = (pkt_dev->src_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8)); pkt_dev->hh[10] = tmp; tmp = (pkt_dev->src_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8)); pkt_dev->hh[9] = tmp; tmp = (pkt_dev->src_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8)); pkt_dev->hh[8] = tmp; tmp = (pkt_dev->src_mac[1] + (tmp >> 8)); pkt_dev->hh[7] = tmp; } /* Deal with Destination MAC */ if (pkt_dev->dst_mac_count > 1) { __u32 mc; __u32 tmp; if (pkt_dev->flags & F_MACDST_RND) mc = pktgen_random() % (pkt_dev->dst_mac_count); else { mc = pkt_dev->cur_dst_mac_offset++; if (pkt_dev->cur_dst_mac_offset > pkt_dev->dst_mac_count) { pkt_dev->cur_dst_mac_offset = 0; } } tmp = pkt_dev->dst_mac[5] + (mc & 0xFF); pkt_dev->hh[5] = tmp; tmp = (pkt_dev->dst_mac[4] + ((mc >> 8) & 0xFF) + (tmp >> 8)); pkt_dev->hh[4] = tmp; tmp = (pkt_dev->dst_mac[3] + ((mc >> 16) & 0xFF) + (tmp >> 8)); pkt_dev->hh[3] = tmp; tmp = (pkt_dev->dst_mac[2] + ((mc >> 24) & 0xFF) + (tmp >> 8)); pkt_dev->hh[2] = tmp; tmp = (pkt_dev->dst_mac[1] + (tmp >> 8)); pkt_dev->hh[1] = tmp; } if (pkt_dev->udp_src_min < pkt_dev->udp_src_max) { if (pkt_dev->flags & F_UDPSRC_RND) pkt_dev->cur_udp_src = ((pktgen_random() % (pkt_dev->udp_src_max - pkt_dev->udp_src_min)) + pkt_dev->udp_src_min); else { pkt_dev->cur_udp_src++; if (pkt_dev->cur_udp_src >= pkt_dev->udp_src_max) pkt_dev->cur_udp_src = pkt_dev->udp_src_min; } } if (pkt_dev->udp_dst_min < pkt_dev->udp_dst_max) { if (pkt_dev->flags & F_UDPDST_RND) { pkt_dev->cur_udp_dst = ((pktgen_random() % (pkt_dev->udp_dst_max - pkt_dev->udp_dst_min)) + pkt_dev->udp_dst_min); } else { pkt_dev->cur_udp_dst++; if (pkt_dev->cur_udp_dst >= pkt_dev->udp_dst_max) pkt_dev->cur_udp_dst = pkt_dev->udp_dst_min; } } if (!(pkt_dev->flags & F_IPV6)) { if ((imn = ntohl(pkt_dev->saddr_min)) < (imx = ntohl(pkt_dev->saddr_max))) { __u32 t; if (pkt_dev->flags & F_IPSRC_RND) t = ((pktgen_random() % (imx - imn)) + imn); else { t = ntohl(pkt_dev->cur_saddr); t++; if (t > imx) { t = imn; } } pkt_dev->cur_saddr = htonl(t); } if (pkt_dev->cflows && pkt_dev->flows[flow].count != 0) { pkt_dev->cur_daddr = pkt_dev->flows[flow].cur_daddr; } else { if ((imn = ntohl(pkt_dev->daddr_min)) < (imx = ntohl(pkt_dev->daddr_max))) { __u32 t; if (pkt_dev->flags & F_IPDST_RND) { t = ((pktgen_random() % (imx - imn)) + imn); t = htonl(t); while( LOOPBACK(t) || MULTICAST(t) || BADCLASS(t) || ZERONET(t) || LOCAL_MCAST(t) ) { t = ((pktgen_random() % (imx - imn)) + imn); t = htonl(t); } pkt_dev->cur_daddr = t; } else { t = ntohl(pkt_dev->cur_daddr); t++; if (t > imx) { t = imn; } pkt_dev->cur_daddr = htonl(t); } } if(pkt_dev->cflows) { pkt_dev->flows[flow].cur_daddr = pkt_dev->cur_daddr; pkt_dev->nflows++; } } } else /* IPV6 * */ { if(pkt_dev->min_in6_daddr.s6_addr32[0] == 0 && pkt_dev->min_in6_daddr.s6_addr32[1] == 0 && pkt_dev->min_in6_daddr.s6_addr32[2] == 0 && pkt_dev->min_in6_daddr.s6_addr32[3] == 0); else { int i; /* Only random destinations yet */ for(i=0; i < 4; i++) { pkt_dev->cur_in6_daddr.s6_addr32[i] = ((pktgen_random() | pkt_dev->min_in6_daddr.s6_addr32[i]) & pkt_dev->max_in6_daddr.s6_addr32[i]); } } } if (pkt_dev->min_pkt_size < pkt_dev->max_pkt_size) { __u32 t; if (pkt_dev->flags & F_TXSIZE_RND) { t = ((pktgen_random() % (pkt_dev->max_pkt_size - pkt_dev->min_pkt_size)) + pkt_dev->min_pkt_size); } else { t = pkt_dev->cur_pkt_size + 1; if (t > pkt_dev->max_pkt_size) t = pkt_dev->min_pkt_size; } pkt_dev->cur_pkt_size = t; } pkt_dev->flows[flow].count++; } static struct sk_buff *fill_packet_ipv4(struct net_device *odev, struct pktgen_dev *pkt_dev) { struct sk_buff *skb = NULL; __u8 *eth; struct udphdr *udph; int datalen, iplen; struct iphdr *iph; struct pktgen_hdr *pgh = NULL; /* Update any of the values, used when we're incrementing various * fields. */ mod_cur_headers(pkt_dev); skb = alloc_skb(pkt_dev->cur_pkt_size + 64 + 16, GFP_ATOMIC); if (!skb) { sprintf(pkt_dev->result, "No memory"); return NULL; } skb_reserve(skb, 16); /* Reserve for ethernet and IP header */ eth = (__u8 *) skb_push(skb, 14); iph = (struct iphdr *)skb_put(skb, sizeof(struct iphdr)); udph = (struct udphdr *)skb_put(skb, sizeof(struct udphdr)); memcpy(eth, pkt_dev->hh, 12); *(u16*)ð[12] = __constant_htons(ETH_P_IP); datalen = pkt_dev->cur_pkt_size - 14 - 20 - 8; /* Eth + IPh + UDPh */ if (datalen < sizeof(struct pktgen_hdr)) datalen = sizeof(struct pktgen_hdr); udph->source = htons(pkt_dev->cur_udp_src); udph->dest = htons(pkt_dev->cur_udp_dst); udph->len = htons(datalen + 8); /* DATA + udphdr */ udph->check = 0; /* No checksum */ iph->ihl = 5; iph->version = 4; iph->ttl = 32; iph->tos = 0; iph->protocol = IPPROTO_UDP; /* UDP */ iph->saddr = pkt_dev->cur_saddr; iph->daddr = pkt_dev->cur_daddr; iph->frag_off = 0; iplen = 20 + 8 + datalen; iph->tot_len = htons(iplen); iph->check = 0; iph->check = ip_fast_csum((void *) iph, iph->ihl); skb->protocol = __constant_htons(ETH_P_IP); skb->mac.raw = ((u8 *)iph) - 14; skb->dev = odev; skb->pkt_type = PACKET_HOST; if (pkt_dev->nfrags <= 0) pgh = (struct pktgen_hdr *)skb_put(skb, datalen); else { int frags = pkt_dev->nfrags; int i; pgh = (struct pktgen_hdr*)(((char*)(udph)) + 8); if (frags > MAX_SKB_FRAGS) frags = MAX_SKB_FRAGS; if (datalen > frags*PAGE_SIZE) { skb_put(skb, datalen-frags*PAGE_SIZE); datalen = frags*PAGE_SIZE; } i = 0; while (datalen > 0) { struct page *page = alloc_pages(GFP_KERNEL, 0); skb_shinfo(skb)->frags[i].page = page; skb_shinfo(skb)->frags[i].page_offset = 0; skb_shinfo(skb)->frags[i].size = (datalen < PAGE_SIZE ? datalen : PAGE_SIZE); datalen -= skb_shinfo(skb)->frags[i].size; skb->len += skb_shinfo(skb)->frags[i].size; skb->data_len += skb_shinfo(skb)->frags[i].size; i++; skb_shinfo(skb)->nr_frags = i; } while (i < frags) { int rem; if (i == 0) break; rem = skb_shinfo(skb)->frags[i - 1].size / 2; if (rem == 0) break; skb_shinfo(skb)->frags[i - 1].size -= rem; skb_shinfo(skb)->frags[i] = skb_shinfo(skb)->frags[i - 1]; get_page(skb_shinfo(skb)->frags[i].page); skb_shinfo(skb)->frags[i].page = skb_shinfo(skb)->frags[i - 1].page; skb_shinfo(skb)->frags[i].page_offset += skb_shinfo(skb)->frags[i - 1].size; skb_shinfo(skb)->frags[i].size = rem; i++; skb_shinfo(skb)->nr_frags = i; } } /* Stamp the time, and sequence number, convert them to network byte order */ if (pgh) { struct timeval timestamp; pgh->pgh_magic = htonl(PKTGEN_MAGIC); pgh->seq_num = htonl(pkt_dev->seq_num); do_gettimeofday(×tamp); pgh->tv_sec = htonl(timestamp.tv_sec); pgh->tv_usec = htonl(timestamp.tv_usec); } pkt_dev->seq_num++; return skb; } /* * scan_ip6, fmt_ip taken from dietlibc-0.21 * Author Felix von Leitner * * Slightly modified for kernel. * Should be candidate for net/ipv4/utils.c * --ro */ static unsigned int scan_ip6(const char *s,char ip[16]) { unsigned int i; unsigned int len=0; unsigned long u; char suffix[16]; unsigned int prefixlen=0; unsigned int suffixlen=0; __u32 tmp; for (i=0; i<16; i++) ip[i]=0; for (;;) { if (*s == ':') { len++; if (s[1] == ':') { /* Found "::", skip to part 2 */ s+=2; len++; break; } s++; } { char *tmp; u=simple_strtoul(s,&tmp,16); i=tmp-s; } if (!i) return 0; if (prefixlen==12 && s[i]=='.') { /* the last 4 bytes may be written as IPv4 address */ tmp = in_aton(s); memcpy((struct in_addr*)(ip+12), &tmp, sizeof(tmp)); return i+len; } ip[prefixlen++] = (u >> 8); ip[prefixlen++] = (u & 255); s += i; len += i; if (prefixlen==16) return len; } /* part 2, after "::" */ for (;;) { if (*s == ':') { if (suffixlen==0) break; s++; len++; } else if (suffixlen!=0) break; { char *tmp; u=simple_strtol(s,&tmp,16); i=tmp-s; } if (!i) { if (*s) len--; break; } if (suffixlen+prefixlen<=12 && s[i]=='.') { tmp = in_aton(s); memcpy((struct in_addr*)(suffix+suffixlen), &tmp, sizeof(tmp)); suffixlen+=4; len+=strlen(s); break; } suffix[suffixlen++] = (u >> 8); suffix[suffixlen++] = (u & 255); s += i; len += i; if (prefixlen+suffixlen==16) break; } for (i=0; i9?hexdigit+'a'-10:hexdigit+'0'; } static int fmt_xlong(char* s,unsigned int i) { char* bak=s; *s=tohex((i>>12)&0xf); if (s!=bak || *s!='0') ++s; *s=tohex((i>>8)&0xf); if (s!=bak || *s!='0') ++s; *s=tohex((i>>4)&0xf); if (s!=bak || *s!='0') ++s; *s=tohex(i&0xf); return s-bak+1; } static unsigned int fmt_ip6(char *s,const char ip[16]) { unsigned int len; unsigned int i; unsigned int temp; unsigned int compressing; int j; len = 0; compressing = 0; for (j=0; j<16; j+=2) { #ifdef V4MAPPEDPREFIX if (j==12 && !memcmp(ip,V4mappedprefix,12)) { inet_ntoa_r(*(struct in_addr*)(ip+12),s); temp=strlen(s); return len+temp; } #endif temp = ((unsigned long) (unsigned char) ip[j] << 8) + (unsigned long) (unsigned char) ip[j+1]; if (temp == 0) { if (!compressing) { compressing=1; if (j==0) { *s++=':'; ++len; } } } else { if (compressing) { compressing=0; *s++=':'; ++len; } i = fmt_xlong(s,temp); len += i; s += i; if (j<14) { *s++ = ':'; ++len; } } } if (compressing) { *s++=':'; ++len; } *s=0; return len; } static struct sk_buff *fill_packet_ipv6(struct net_device *odev, struct pktgen_dev *pkt_dev) { struct sk_buff *skb = NULL; __u8 *eth; struct udphdr *udph; int datalen; struct ipv6hdr *iph; struct pktgen_hdr *pgh = NULL; /* Update any of the values, used when we're incrementing various * fields. */ mod_cur_headers(pkt_dev); skb = alloc_skb(pkt_dev->cur_pkt_size + 64 + 16, GFP_ATOMIC); if (!skb) { sprintf(pkt_dev->result, "No memory"); return NULL; } skb_reserve(skb, 16); /* Reserve for ethernet and IP header */ eth = (__u8 *) skb_push(skb, 14); iph = (struct ipv6hdr *)skb_put(skb, sizeof(struct ipv6hdr)); udph = (struct udphdr *)skb_put(skb, sizeof(struct udphdr)); memcpy(eth, pkt_dev->hh, 12); *(u16*)ð[12] = __constant_htons(ETH_P_IPV6); datalen = pkt_dev->cur_pkt_size-14- sizeof(struct ipv6hdr)-sizeof(struct udphdr); /* Eth + IPh + UDPh */ if (datalen < sizeof(struct pktgen_hdr)) { datalen = sizeof(struct pktgen_hdr); if (net_ratelimit()) printk(KERN_INFO "pktgen: increased datalen to %d\n", datalen); } udph->source = htons(pkt_dev->cur_udp_src); udph->dest = htons(pkt_dev->cur_udp_dst); udph->len = htons(datalen + sizeof(struct udphdr)); udph->check = 0; /* No checksum */ *(u32*)iph = __constant_htonl(0x60000000); /* Version + flow */ iph->hop_limit = 32; iph->payload_len = htons(sizeof(struct udphdr) + datalen); iph->nexthdr = IPPROTO_UDP; ipv6_addr_copy(&iph->daddr, &pkt_dev->cur_in6_daddr); ipv6_addr_copy(&iph->saddr, &pkt_dev->cur_in6_saddr); skb->mac.raw = ((u8 *)iph) - 14; skb->protocol = __constant_htons(ETH_P_IPV6); skb->dev = odev; skb->pkt_type = PACKET_HOST; if (pkt_dev->nfrags <= 0) pgh = (struct pktgen_hdr *)skb_put(skb, datalen); else { int frags = pkt_dev->nfrags; int i; pgh = (struct pktgen_hdr*)(((char*)(udph)) + 8); if (frags > MAX_SKB_FRAGS) frags = MAX_SKB_FRAGS; if (datalen > frags*PAGE_SIZE) { skb_put(skb, datalen-frags*PAGE_SIZE); datalen = frags*PAGE_SIZE; } i = 0; while (datalen > 0) { struct page *page = alloc_pages(GFP_KERNEL, 0); skb_shinfo(skb)->frags[i].page = page; skb_shinfo(skb)->frags[i].page_offset = 0; skb_shinfo(skb)->frags[i].size = (datalen < PAGE_SIZE ? datalen : PAGE_SIZE); datalen -= skb_shinfo(skb)->frags[i].size; skb->len += skb_shinfo(skb)->frags[i].size; skb->data_len += skb_shinfo(skb)->frags[i].size; i++; skb_shinfo(skb)->nr_frags = i; } while (i < frags) { int rem; if (i == 0) break; rem = skb_shinfo(skb)->frags[i - 1].size / 2; if (rem == 0) break; skb_shinfo(skb)->frags[i - 1].size -= rem; skb_shinfo(skb)->frags[i] = skb_shinfo(skb)->frags[i - 1]; get_page(skb_shinfo(skb)->frags[i].page); skb_shinfo(skb)->frags[i].page = skb_shinfo(skb)->frags[i - 1].page; skb_shinfo(skb)->frags[i].page_offset += skb_shinfo(skb)->frags[i - 1].size; skb_shinfo(skb)->frags[i].size = rem; i++; skb_shinfo(skb)->nr_frags = i; } } /* Stamp the time, and sequence number, convert them to network byte order */ /* should we update cloned packets too ? */ if (pgh) { struct timeval timestamp; pgh->pgh_magic = htonl(PKTGEN_MAGIC); pgh->seq_num = htonl(pkt_dev->seq_num); do_gettimeofday(×tamp); pgh->tv_sec = htonl(timestamp.tv_sec); pgh->tv_usec = htonl(timestamp.tv_usec); } pkt_dev->seq_num++; return skb; } static inline struct sk_buff *fill_packet(struct net_device *odev, struct pktgen_dev *pkt_dev) { if(pkt_dev->flags & F_IPV6) return fill_packet_ipv6(odev, pkt_dev); else return fill_packet_ipv4(odev, pkt_dev); } static void pktgen_clear_counters(struct pktgen_dev *pkt_dev) { pkt_dev->seq_num = 1; pkt_dev->idle_acc = 0; pkt_dev->sofar = 0; pkt_dev->tx_bytes = 0; pkt_dev->errors = 0; } /* Set up structure for sending pkts, clear counters */ static void pktgen_run(struct pktgen_thread *t) { struct pktgen_dev *pkt_dev = NULL; int started = 0; PG_DEBUG(printk("pktgen: entering pktgen_run. %p\n", t)); if_lock(t); for (pkt_dev = t->if_list; pkt_dev; pkt_dev = pkt_dev->next ) { /* * setup odev and create initial packet. */ pktgen_setup_inject(pkt_dev); if(pkt_dev->odev) { pktgen_clear_counters(pkt_dev); pkt_dev->running = 1; /* Cranke yeself! */ pkt_dev->skb = NULL; pkt_dev->started_at = getCurUs(); pkt_dev->next_tx_us = getCurUs(); /* Transmit immediately */ pkt_dev->next_tx_ns = 0; strcpy(pkt_dev->result, "Starting"); started++; } else strcpy(pkt_dev->result, "Error starting"); } if_unlock(t); if(started) t->control &= ~(T_STOP); } static void pktgen_stop_all_threads_ifs(void) { struct pktgen_thread *t = pktgen_threads; PG_DEBUG(printk("pktgen: entering pktgen_stop_all_threads.\n")); thread_lock(); while(t) { pktgen_stop(t); t = t->next; } thread_unlock(); } static int thread_is_running(struct pktgen_thread *t ) { struct pktgen_dev *next; int res = 0; for(next=t->if_list; next; next=next->next) { if(next->running) { res = 1; break; } } return res; } static int pktgen_wait_thread_run(struct pktgen_thread *t ) { if_lock(t); while(thread_is_running(t)) { if_unlock(t); msleep_interruptible(100); if (signal_pending(current)) goto signal; if_lock(t); } if_unlock(t); return 1; signal: return 0; } static int pktgen_wait_all_threads_run(void) { struct pktgen_thread *t = pktgen_threads; int sig = 1; while (t) { sig = pktgen_wait_thread_run(t); if( sig == 0 ) break; thread_lock(); t=t->next; thread_unlock(); } if(sig == 0) { thread_lock(); while (t) { t->control |= (T_STOP); t=t->next; } thread_unlock(); } return sig; } static void pktgen_run_all_threads(void) { struct pktgen_thread *t = pktgen_threads; PG_DEBUG(printk("pktgen: entering pktgen_run_all_threads.\n")); thread_lock(); while(t) { t->control |= (T_RUN); t = t->next; } thread_unlock(); schedule_timeout_interruptible(msecs_to_jiffies(125)); /* Propagate thread->control */ pktgen_wait_all_threads_run(); } static void show_results(struct pktgen_dev *pkt_dev, int nr_frags) { __u64 total_us, bps, mbps, pps, idle; char *p = pkt_dev->result; total_us = pkt_dev->stopped_at - pkt_dev->started_at; idle = pkt_dev->idle_acc; p += sprintf(p, "OK: %llu(c%llu+d%llu) usec, %llu (%dbyte,%dfrags)\n", (unsigned long long) total_us, (unsigned long long)(total_us - idle), (unsigned long long) idle, (unsigned long long) pkt_dev->sofar, pkt_dev->cur_pkt_size, nr_frags); pps = pkt_dev->sofar * USEC_PER_SEC; while ((total_us >> 32) != 0) { pps >>= 1; total_us >>= 1; } do_div(pps, total_us); bps = pps * 8 * pkt_dev->cur_pkt_size; mbps = bps; do_div(mbps, 1000000); p += sprintf(p, " %llupps %lluMb/sec (%llubps) errors: %llu", (unsigned long long) pps, (unsigned long long) mbps, (unsigned long long) bps, (unsigned long long) pkt_dev->errors); } /* Set stopped-at timer, remove from running list, do counters & statistics */ static int pktgen_stop_device(struct pktgen_dev *pkt_dev) { if (!pkt_dev->running) { printk("pktgen: interface: %s is already stopped\n", pkt_dev->ifname); return -EINVAL; } pkt_dev->stopped_at = getCurUs(); pkt_dev->running = 0; show_results(pkt_dev, skb_shinfo(pkt_dev->skb)->nr_frags); if (pkt_dev->skb) kfree_skb(pkt_dev->skb); pkt_dev->skb = NULL; return 0; } static struct pktgen_dev *next_to_run(struct pktgen_thread *t ) { struct pktgen_dev *next, *best = NULL; if_lock(t); for(next=t->if_list; next ; next=next->next) { if(!next->running) continue; if(best == NULL) best=next; else if ( next->next_tx_us < best->next_tx_us) best = next; } if_unlock(t); return best; } static void pktgen_stop(struct pktgen_thread *t) { struct pktgen_dev *next = NULL; PG_DEBUG(printk("pktgen: entering pktgen_stop.\n")); if_lock(t); for(next=t->if_list; next; next=next->next) pktgen_stop_device(next); if_unlock(t); } static void pktgen_rem_all_ifs(struct pktgen_thread *t) { struct pktgen_dev *cur, *next = NULL; /* Remove all devices, free mem */ if_lock(t); for(cur=t->if_list; cur; cur=next) { next = cur->next; pktgen_remove_device(t, cur); } if_unlock(t); } static void pktgen_rem_thread(struct pktgen_thread *t) { /* Remove from the thread list */ struct pktgen_thread *tmp = pktgen_threads; if (strlen(t->fname)) remove_proc_entry(t->fname, NULL); thread_lock(); if (tmp == t) pktgen_threads = tmp->next; else { while (tmp) { if (tmp->next == t) { tmp->next = t->next; t->next = NULL; break; } tmp = tmp->next; } } thread_unlock(); } static __inline__ void pktgen_xmit(struct pktgen_dev *pkt_dev) { struct net_device *odev = NULL; __u64 idle_start = 0; int ret; odev = pkt_dev->odev; if (pkt_dev->delay_us || pkt_dev->delay_ns) { u64 now; now = getCurUs(); if (now < pkt_dev->next_tx_us) spin(pkt_dev, pkt_dev->next_tx_us); /* This is max DELAY, this has special meaning of * "never transmit" */ if (pkt_dev->delay_us == 0x7FFFFFFF) { pkt_dev->next_tx_us = getCurUs() + pkt_dev->delay_us; pkt_dev->next_tx_ns = pkt_dev->delay_ns; goto out; } } if (netif_queue_stopped(odev) || need_resched()) { idle_start = getCurUs(); if (!netif_running(odev)) { pktgen_stop_device(pkt_dev); goto out; } if (need_resched()) schedule(); pkt_dev->idle_acc += getCurUs() - idle_start; if (netif_queue_stopped(odev)) { pkt_dev->next_tx_us = getCurUs(); /* TODO */ pkt_dev->next_tx_ns = 0; goto out; /* Try the next interface */ } } if (pkt_dev->last_ok || !pkt_dev->skb) { if ((++pkt_dev->clone_count >= pkt_dev->clone_skb ) || (!pkt_dev->skb)) { /* build a new pkt */ if (pkt_dev->skb) kfree_skb(pkt_dev->skb); pkt_dev->skb = fill_packet(odev, pkt_dev); if (pkt_dev->skb == NULL) { printk("pktgen: ERROR: couldn't allocate skb in fill_packet.\n"); schedule(); pkt_dev->clone_count--; /* back out increment, OOM */ goto out; } pkt_dev->allocated_skbs++; pkt_dev->clone_count = 0; /* reset counter */ } } spin_lock_bh(&odev->xmit_lock); if (!netif_queue_stopped(odev)) { atomic_inc(&(pkt_dev->skb->users)); retry_now: ret = odev->hard_start_xmit(pkt_dev->skb, odev); if (likely(ret == NETDEV_TX_OK)) { pkt_dev->last_ok = 1; pkt_dev->sofar++; pkt_dev->seq_num++; pkt_dev->tx_bytes += pkt_dev->cur_pkt_size; } else if (ret == NETDEV_TX_LOCKED && (odev->features & NETIF_F_LLTX)) { cpu_relax(); goto retry_now; } else { /* Retry it next time */ atomic_dec(&(pkt_dev->skb->users)); if (debug && net_ratelimit()) printk(KERN_INFO "pktgen: Hard xmit error\n"); pkt_dev->errors++; pkt_dev->last_ok = 0; } pkt_dev->next_tx_us = getCurUs(); pkt_dev->next_tx_ns = 0; pkt_dev->next_tx_us += pkt_dev->delay_us; pkt_dev->next_tx_ns += pkt_dev->delay_ns; if (pkt_dev->next_tx_ns > 1000) { pkt_dev->next_tx_us++; pkt_dev->next_tx_ns -= 1000; } } else { /* Retry it next time */ pkt_dev->last_ok = 0; pkt_dev->next_tx_us = getCurUs(); /* TODO */ pkt_dev->next_tx_ns = 0; } spin_unlock_bh(&odev->xmit_lock); /* If pkt_dev->count is zero, then run forever */ if ((pkt_dev->count != 0) && (pkt_dev->sofar >= pkt_dev->count)) { if (atomic_read(&(pkt_dev->skb->users)) != 1) { idle_start = getCurUs(); while (atomic_read(&(pkt_dev->skb->users)) != 1) { if (signal_pending(current)) { break; } schedule(); } pkt_dev->idle_acc += getCurUs() - idle_start; } /* Done with this */ pktgen_stop_device(pkt_dev); } out:; } /* * Main loop of the thread goes here */ static void pktgen_thread_worker(struct pktgen_thread *t) { DEFINE_WAIT(wait); struct pktgen_dev *pkt_dev = NULL; int cpu = t->cpu; sigset_t tmpsig; u32 max_before_softirq; u32 tx_since_softirq = 0; daemonize("pktgen/%d", cpu); /* Block all signals except SIGKILL, SIGSTOP and SIGTERM */ spin_lock_irq(¤t->sighand->siglock); tmpsig = current->blocked; siginitsetinv(¤t->blocked, sigmask(SIGKILL) | sigmask(SIGSTOP)| sigmask(SIGTERM)); recalc_sigpending(); spin_unlock_irq(¤t->sighand->siglock); /* Migrate to the right CPU */ set_cpus_allowed(current, cpumask_of_cpu(cpu)); if (smp_processor_id() != cpu) BUG(); init_waitqueue_head(&t->queue); t->control &= ~(T_TERMINATE); t->control &= ~(T_RUN); t->control &= ~(T_STOP); t->control &= ~(T_REMDEV); t->pid = current->pid; PG_DEBUG(printk("pktgen: starting pktgen/%d: pid=%d\n", cpu, current->pid)); max_before_softirq = t->max_before_softirq; __set_current_state(TASK_INTERRUPTIBLE); mb(); while (1) { __set_current_state(TASK_RUNNING); /* * Get next dev to xmit -- if any. */ pkt_dev = next_to_run(t); if (pkt_dev) { pktgen_xmit(pkt_dev); /* * We like to stay RUNNING but must also give * others fair share. */ tx_since_softirq += pkt_dev->last_ok; if (tx_since_softirq > max_before_softirq) { if (local_softirq_pending()) do_softirq(); tx_since_softirq = 0; } } else { prepare_to_wait(&(t->queue), &wait, TASK_INTERRUPTIBLE); schedule_timeout(HZ/10); finish_wait(&(t->queue), &wait); } /* * Back from sleep, either due to the timeout or signal. * We check if we have any "posted" work for us. */ if (t->control & T_TERMINATE || signal_pending(current)) /* we received a request to terminate ourself */ break; if(t->control & T_STOP) { pktgen_stop(t); t->control &= ~(T_STOP); } if(t->control & T_RUN) { pktgen_run(t); t->control &= ~(T_RUN); } if(t->control & T_REMDEV) { pktgen_rem_all_ifs(t); t->control &= ~(T_REMDEV); } if (need_resched()) schedule(); } PG_DEBUG(printk("pktgen: %s stopping all device\n", t->name)); pktgen_stop(t); PG_DEBUG(printk("pktgen: %s removing all device\n", t->name)); pktgen_rem_all_ifs(t); PG_DEBUG(printk("pktgen: %s removing thread.\n", t->name)); pktgen_rem_thread(t); } static struct pktgen_dev *pktgen_find_dev(struct pktgen_thread *t, const char* ifname) { struct pktgen_dev *pkt_dev = NULL; if_lock(t); for(pkt_dev=t->if_list; pkt_dev; pkt_dev = pkt_dev->next ) { if (strcmp(pkt_dev->ifname, ifname) == 0) { break; } } if_unlock(t); PG_DEBUG(printk("pktgen: find_dev(%s) returning %p\n", ifname,pkt_dev)); return pkt_dev; } /* * Adds a dev at front of if_list. */ static int add_dev_to_thread(struct pktgen_thread *t, struct pktgen_dev *pkt_dev) { int rv = 0; if_lock(t); if (pkt_dev->pg_thread) { printk("pktgen: ERROR: already assigned to a thread.\n"); rv = -EBUSY; goto out; } pkt_dev->next =t->if_list; t->if_list=pkt_dev; pkt_dev->pg_thread = t; pkt_dev->running = 0; out: if_unlock(t); return rv; } /* Called under thread lock */ static int pktgen_add_device(struct pktgen_thread *t, const char* ifname) { struct pktgen_dev *pkt_dev; /* We don't allow a device to be on several threads */ if( (pkt_dev = __pktgen_NN_threads(ifname, FIND)) == NULL) { pkt_dev = kmalloc(sizeof(struct pktgen_dev), GFP_KERNEL); if (!pkt_dev) return -ENOMEM; memset(pkt_dev, 0, sizeof(struct pktgen_dev)); pkt_dev->flows = vmalloc(MAX_CFLOWS*sizeof(struct flow_state)); if (pkt_dev->flows == NULL) { kfree(pkt_dev); return -ENOMEM; } memset(pkt_dev->flows, 0, MAX_CFLOWS*sizeof(struct flow_state)); pkt_dev->min_pkt_size = ETH_ZLEN; pkt_dev->max_pkt_size = ETH_ZLEN; pkt_dev->nfrags = 0; pkt_dev->clone_skb = pg_clone_skb_d; pkt_dev->delay_us = pg_delay_d / 1000; pkt_dev->delay_ns = pg_delay_d % 1000; pkt_dev->count = pg_count_d; pkt_dev->sofar = 0; pkt_dev->udp_src_min = 9; /* sink port */ pkt_dev->udp_src_max = 9; pkt_dev->udp_dst_min = 9; pkt_dev->udp_dst_max = 9; strncpy(pkt_dev->ifname, ifname, 31); sprintf(pkt_dev->fname, "%s/%s", PG_PROC_DIR, ifname); if (! pktgen_setup_dev(pkt_dev)) { printk("pktgen: ERROR: pktgen_setup_dev failed.\n"); if (pkt_dev->flows) vfree(pkt_dev->flows); kfree(pkt_dev); return -ENODEV; } pkt_dev->proc_ent = create_proc_entry(pkt_dev->fname, 0600, NULL); if (!pkt_dev->proc_ent) { printk("pktgen: cannot create %s procfs entry.\n", pkt_dev->fname); if (pkt_dev->flows) vfree(pkt_dev->flows); kfree(pkt_dev); return -EINVAL; } pkt_dev->proc_ent->read_proc = proc_if_read; pkt_dev->proc_ent->write_proc = proc_if_write; pkt_dev->proc_ent->data = (void*)(pkt_dev); pkt_dev->proc_ent->owner = THIS_MODULE; return add_dev_to_thread(t, pkt_dev); } else { printk("pktgen: ERROR: interface already used.\n"); return -EBUSY; } } static struct pktgen_thread *pktgen_find_thread(const char* name) { struct pktgen_thread *t = NULL; thread_lock(); t = pktgen_threads; while (t) { if (strcmp(t->name, name) == 0) break; t = t->next; } thread_unlock(); return t; } static int pktgen_create_thread(const char* name, int cpu) { struct pktgen_thread *t = NULL; if (strlen(name) > 31) { printk("pktgen: ERROR: Thread name cannot be more than 31 characters.\n"); return -EINVAL; } if (pktgen_find_thread(name)) { printk("pktgen: ERROR: thread: %s already exists\n", name); return -EINVAL; } t = (struct pktgen_thread*)(kmalloc(sizeof(struct pktgen_thread), GFP_KERNEL)); if (!t) { printk("pktgen: ERROR: out of memory, can't create new thread.\n"); return -ENOMEM; } memset(t, 0, sizeof(struct pktgen_thread)); strcpy(t->name, name); spin_lock_init(&t->if_lock); t->cpu = cpu; sprintf(t->fname, "%s/%s", PG_PROC_DIR, t->name); t->proc_ent = create_proc_entry(t->fname, 0600, NULL); if (!t->proc_ent) { printk("pktgen: cannot create %s procfs entry.\n", t->fname); kfree(t); return -EINVAL; } t->proc_ent->read_proc = proc_thread_read; t->proc_ent->write_proc = proc_thread_write; t->proc_ent->data = (void*)(t); t->proc_ent->owner = THIS_MODULE; t->next = pktgen_threads; pktgen_threads = t; if (kernel_thread((void *) pktgen_thread_worker, (void *) t, CLONE_FS | CLONE_FILES | CLONE_SIGHAND) < 0) printk("pktgen: kernel_thread() failed for cpu %d\n", t->cpu); return 0; } /* * Removes a device from the thread if_list. */ static void _rem_dev_from_if_list(struct pktgen_thread *t, struct pktgen_dev *pkt_dev) { struct pktgen_dev *i, *prev = NULL; i = t->if_list; while(i) { if(i == pkt_dev) { if(prev) prev->next = i->next; else t->if_list = NULL; break; } prev = i; i=i->next; } } static int pktgen_remove_device(struct pktgen_thread *t, struct pktgen_dev *pkt_dev) { PG_DEBUG(printk("pktgen: remove_device pkt_dev=%p\n", pkt_dev)); if (pkt_dev->running) { printk("pktgen:WARNING: trying to remove a running interface, stopping it now.\n"); pktgen_stop_device(pkt_dev); } /* Dis-associate from the interface */ if (pkt_dev->odev) { dev_put(pkt_dev->odev); pkt_dev->odev = NULL; } /* And update the thread if_list */ _rem_dev_from_if_list(t, pkt_dev); /* Clean up proc file system */ if (strlen(pkt_dev->fname)) remove_proc_entry(pkt_dev->fname, NULL); if (pkt_dev->flows) vfree(pkt_dev->flows); kfree(pkt_dev); return 0; } static int __init pg_init(void) { int cpu; printk(version); module_fname[0] = 0; create_proc_dir(); sprintf(module_fname, "%s/pgctrl", PG_PROC_DIR); module_proc_ent = create_proc_entry(module_fname, 0600, NULL); if (!module_proc_ent) { printk("pktgen: ERROR: cannot create %s procfs entry.\n", module_fname); return -EINVAL; } module_proc_ent->proc_fops = &pktgen_fops; module_proc_ent->data = NULL; /* Register us to receive netdevice events */ register_netdevice_notifier(&pktgen_notifier_block); for (cpu = 0; cpu < NR_CPUS ; cpu++) { char buf[30]; if (!cpu_online(cpu)) continue; sprintf(buf, "kpktgend_%i", cpu); pktgen_create_thread(buf, cpu); } return 0; } static void __exit pg_cleanup(void) { wait_queue_head_t queue; init_waitqueue_head(&queue); /* Stop all interfaces & threads */ while (pktgen_threads) { struct pktgen_thread *t = pktgen_threads; pktgen_threads->control |= (T_TERMINATE); wait_event_interruptible_timeout(queue, (t != pktgen_threads), HZ); } /* Un-register us from receiving netdevice events */ unregister_netdevice_notifier(&pktgen_notifier_block); /* Clean up proc file system */ remove_proc_entry(module_fname, NULL); remove_proc_dir(); } module_init(pg_init); module_exit(pg_cleanup); MODULE_AUTHOR("Robert Olsson