summaryrefslogtreecommitdiff
path: root/drivers/net/isa-skeleton.c
blob: d12377b843581c1947fd1bdb33b9e9fe6d6ca4e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
/* isa-skeleton.c: A network driver outline for linux.
 *
 *	Written 1993-94 by Donald Becker.
 *
 *	Copyright 1993 United States Government as represented by the
 *	Director, National Security Agency.
 *
 *	This software may be used and distributed according to the terms
 *	of the GNU General Public License, incorporated herein by reference.
 *
 *	The author may be reached as becker@scyld.com, or C/O
 *	Scyld Computing Corporation
 *	410 Severn Ave., Suite 210
 *	Annapolis MD 21403
 *
 *	This file is an outline for writing a network device driver for the
 *	the Linux operating system.
 *
 *	To write (or understand) a driver, have a look at the "loopback.c" file to
 *	get a feel of what is going on, and then use the code below as a skeleton
 *	for the new driver.
 *
 */

static const char *version =
	"isa-skeleton.c:v1.51 9/24/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n";

/*
 *  Sources:
 *	List your sources of programming information to document that
 *	the driver is your own creation, and give due credit to others
 *	that contributed to the work. Remember that GNU project code
 *	cannot use proprietary or trade secret information. Interface
 *	definitions are generally considered non-copyrightable to the
 *	extent that the same names and structures must be used to be
 *	compatible.
 *
 *	Finally, keep in mind that the Linux kernel is has an API, not
 *	ABI. Proprietary object-code-only distributions are not permitted
 *	under the GPL.
 */

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/bitops.h>

#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>

/*
 * The name of the card. Is used for messages and in the requests for
 * io regions, irqs and dma channels
 */
static const char* cardname = "netcard";

/* First, a few definitions that the brave might change. */

/* A zero-terminated list of I/O addresses to be probed. */
static unsigned int netcard_portlist[] __initdata =
   { 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0};

/* use 0 for production, 1 for verification, >2 for debug */
#ifndef NET_DEBUG
#define NET_DEBUG 2
#endif
static unsigned int net_debug = NET_DEBUG;

/* The number of low I/O ports used by the ethercard. */
#define NETCARD_IO_EXTENT	32

#define MY_TX_TIMEOUT  ((400*HZ)/1000)

/* Information that need to be kept for each board. */
struct net_local {
	struct net_device_stats stats;
	long open_time;			/* Useless example local info. */

	/* Tx control lock.  This protects the transmit buffer ring
	 * state along with the "tx full" state of the driver.  This
	 * means all netif_queue flow control actions are protected
	 * by this lock as well.
	 */
	spinlock_t lock;
};

/* The station (ethernet) address prefix, used for IDing the board. */
#define SA_ADDR0 0x00
#define SA_ADDR1 0x42
#define SA_ADDR2 0x65

/* Index to functions, as function prototypes. */

static int	netcard_probe1(struct net_device *dev, int ioaddr);
static int	net_open(struct net_device *dev);
static int	net_send_packet(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t net_interrupt(int irq, void *dev_id);
static void	net_rx(struct net_device *dev);
static int	net_close(struct net_device *dev);
static struct	net_device_stats *net_get_stats(struct net_device *dev);
static void	set_multicast_list(struct net_device *dev);
static void     net_tx_timeout(struct net_device *dev);


/* Example routines you must write ;->. */
#define tx_done(dev) 1
static void	hardware_send_packet(short ioaddr, char *buf, int length);
static void 	chipset_init(struct net_device *dev, int startp);

/*
 * Check for a network adaptor of this type, and return '0' iff one exists.
 * If dev->base_addr == 0, probe all likely locations.
 * If dev->base_addr == 1, always return failure.
 * If dev->base_addr == 2, allocate space for the device and return success
 * (detachable devices only).
 */
static int __init do_netcard_probe(struct net_device *dev)
{
	int i;
	int base_addr = dev->base_addr;
	int irq = dev->irq;

	if (base_addr > 0x1ff)    /* Check a single specified location. */
		return netcard_probe1(dev, base_addr);
	else if (base_addr != 0)  /* Don't probe at all. */
		return -ENXIO;

	for (i = 0; netcard_portlist[i]; i++) {
		int ioaddr = netcard_portlist[i];
		if (netcard_probe1(dev, ioaddr) == 0)
			return 0;
		dev->irq = irq;
	}

	return -ENODEV;
}

static void cleanup_card(struct net_device *dev)
{
#ifdef jumpered_dma
	free_dma(dev->dma);
#endif
#ifdef jumpered_interrupts
	free_irq(dev->irq, dev);
#endif
	release_region(dev->base_addr, NETCARD_IO_EXTENT);
}

#ifndef MODULE
struct net_device * __init netcard_probe(int unit)
{
	struct net_device *dev = alloc_etherdev(sizeof(struct net_local));
	int err;

	if (!dev)
		return ERR_PTR(-ENOMEM);

	sprintf(dev->name, "eth%d", unit);
	netdev_boot_setup_check(dev);

	err = do_netcard_probe(dev);
	if (err)
		goto out;
	return dev;
out:
	free_netdev(dev);
	return ERR_PTR(err);
}
#endif

static const struct net_device_ops netcard_netdev_ops = {
	.ndo_open		= net_open,
	.ndo_stop		= net_close,
	.ndo_start_xmit		= net_send_packet,
	.ndo_get_stats		= net_get_stats,
	.ndo_set_multicast_list	= set_multicast_list,
	.ndo_tx_timeout		= net_tx_timeout,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= eth_mac_addr,
	.ndo_change_mtu		= eth_change_mtu,
};

/*
 * This is the real probe routine. Linux has a history of friendly device
 * probes on the ISA bus. A good device probes avoids doing writes, and
 * verifies that the correct device exists and functions.
 */
static int __init netcard_probe1(struct net_device *dev, int ioaddr)
{
	struct net_local *np;
	static unsigned version_printed;
	int i;
	int err = -ENODEV;

	/* Grab the region so that no one else tries to probe our ioports. */
	if (!request_region(ioaddr, NETCARD_IO_EXTENT, cardname))
		return -EBUSY;

	/*
	 * For ethernet adaptors the first three octets of the station address
	 * contains the manufacturer's unique code. That might be a good probe
	 * method. Ideally you would add additional checks.
	 */
	if (inb(ioaddr + 0) != SA_ADDR0
		||	 inb(ioaddr + 1) != SA_ADDR1
		||	 inb(ioaddr + 2) != SA_ADDR2)
		goto out;

	if (net_debug  &&  version_printed++ == 0)
		printk(KERN_DEBUG "%s", version);

	printk(KERN_INFO "%s: %s found at %#3x, ", dev->name, cardname, ioaddr);

	/* Fill in the 'dev' fields. */
	dev->base_addr = ioaddr;

	/* Retrieve and print the ethernet address. */
	for (i = 0; i < 6; i++)
		dev->dev_addr[i] = inb(ioaddr + i);

	printk("%pM", dev->dev_addr);

	err = -EAGAIN;
#ifdef jumpered_interrupts
	/*
	 * If this board has jumpered interrupts, allocate the interrupt
	 * vector now. There is no point in waiting since no other device
	 * can use the interrupt, and this marks the irq as busy. Jumpered
	 * interrupts are typically not reported by the boards, and we must
	 * used autoIRQ to find them.
	 */

	if (dev->irq == -1)
		;	/* Do nothing: a user-level program will set it. */
	else if (dev->irq < 2) {	/* "Auto-IRQ" */
		unsigned long irq_mask = probe_irq_on();
		/* Trigger an interrupt here. */

		dev->irq = probe_irq_off(irq_mask);
		if (net_debug >= 2)
			printk(" autoirq is %d", dev->irq);
	} else if (dev->irq == 2)
		/*
		 * Fixup for users that don't know that IRQ 2 is really
		 * IRQ9, or don't know which one to set.
		 */
		dev->irq = 9;

	{
		int irqval = request_irq(dev->irq, &net_interrupt, 0, cardname, dev);
		if (irqval) {
			printk("%s: unable to get IRQ %d (irqval=%d).\n",
				   dev->name, dev->irq, irqval);
			goto out;
		}
	}
#endif	/* jumpered interrupt */
#ifdef jumpered_dma
	/*
	 * If we use a jumpered DMA channel, that should be probed for and
	 * allocated here as well. See lance.c for an example.
	 */
	if (dev->dma == 0) {
		if (request_dma(dev->dma, cardname)) {
			printk("DMA %d allocation failed.\n", dev->dma);
			goto out1;
		} else
			printk(", assigned DMA %d.\n", dev->dma);
	} else {
		short dma_status, new_dma_status;

		/* Read the DMA channel status registers. */
		dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
			(inb(DMA2_STAT_REG) & 0xf0);
		/* Trigger a DMA request, perhaps pause a bit. */
		outw(0x1234, ioaddr + 8);
		/* Re-read the DMA status registers. */
		new_dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) |
			(inb(DMA2_STAT_REG) & 0xf0);
		/*
		 * Eliminate the old and floating requests,
		 * and DMA4 the cascade.
		 */
		new_dma_status ^= dma_status;
		new_dma_status &= ~0x10;
		for (i = 7; i > 0; i--)
			if (test_bit(i, &new_dma_status)) {
				dev->dma = i;
				break;
			}
		if (i <= 0) {
			printk("DMA probe failed.\n");
			goto out1;
		}
		if (request_dma(dev->dma, cardname)) {
			printk("probed DMA %d allocation failed.\n", dev->dma);
			goto out1;
		}
	}
#endif	/* jumpered DMA */

	np = netdev_priv(dev);
	spin_lock_init(&np->lock);

        dev->netdev_ops		= &netcard_netdev_ops;
        dev->watchdog_timeo	= MY_TX_TIMEOUT;

	err = register_netdev(dev);
	if (err)
		goto out2;
	return 0;
out2:
#ifdef jumpered_dma
	free_dma(dev->dma);
#endif
out1:
#ifdef jumpered_interrupts
	free_irq(dev->irq, dev);
#endif
out:
	release_region(base_addr, NETCARD_IO_EXTENT);
	return err;
}

static void net_tx_timeout(struct net_device *dev)
{
	struct net_local *np = netdev_priv(dev);

	printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
	       tx_done(dev) ? "IRQ conflict" : "network cable problem");

	/* Try to restart the adaptor. */
	chipset_init(dev, 1);

	np->stats.tx_errors++;

	/* If we have space available to accept new transmit
	 * requests, wake up the queueing layer.  This would
	 * be the case if the chipset_init() call above just
	 * flushes out the tx queue and empties it.
	 *
	 * If instead, the tx queue is retained then the
	 * netif_wake_queue() call should be placed in the
	 * TX completion interrupt handler of the driver instead
	 * of here.
	 */
	if (!tx_full(dev))
		netif_wake_queue(dev);
}

/*
 * Open/initialize the board. This is called (in the current kernel)
 * sometime after booting when the 'ifconfig' program is run.
 *
 * This routine should set everything up anew at each open, even
 * registers that "should" only need to be set once at boot, so that
 * there is non-reboot way to recover if something goes wrong.
 */
static int
net_open(struct net_device *dev)
{
	struct net_local *np = netdev_priv(dev);
	int ioaddr = dev->base_addr;
	/*
	 * This is used if the interrupt line can turned off (shared).
	 * See 3c503.c for an example of selecting the IRQ at config-time.
	 */
	if (request_irq(dev->irq, &net_interrupt, 0, cardname, dev)) {
		return -EAGAIN;
	}
	/*
	 * Always allocate the DMA channel after the IRQ,
	 * and clean up on failure.
	 */
	if (request_dma(dev->dma, cardname)) {
		free_irq(dev->irq, dev);
		return -EAGAIN;
	}

	/* Reset the hardware here. Don't forget to set the station address. */
	chipset_init(dev, 1);
	outb(0x00, ioaddr);
	np->open_time = jiffies;

	/* We are now ready to accept transmit requeusts from
	 * the queueing layer of the networking.
	 */
	netif_start_queue(dev);

	return 0;
}

/* This will only be invoked if your driver is _not_ in XOFF state.
 * What this means is that you need not check it, and that this
 * invariant will hold if you make sure that the netif_*_queue()
 * calls are done at the proper times.
 */
static int net_send_packet(struct sk_buff *skb, struct net_device *dev)
{
	struct net_local *np = netdev_priv(dev);
	int ioaddr = dev->base_addr;
	short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN;
	unsigned char *buf = skb->data;

	/* If some error occurs while trying to transmit this
	 * packet, you should return '1' from this function.
	 * In such a case you _may not_ do anything to the
	 * SKB, it is still owned by the network queueing
	 * layer when an error is returned.  This means you
	 * may not modify any SKB fields, you may not free
	 * the SKB, etc.
	 */

#if TX_RING
	/* This is the most common case for modern hardware.
	 * The spinlock protects this code from the TX complete
	 * hardware interrupt handler.  Queue flow control is
	 * thus managed under this lock as well.
	 */
	unsigned long flags;
	spin_lock_irqsave(&np->lock, flags);

	add_to_tx_ring(np, skb, length);
	dev->trans_start = jiffies;

	/* If we just used up the very last entry in the
	 * TX ring on this device, tell the queueing
	 * layer to send no more.
	 */
	if (tx_full(dev))
		netif_stop_queue(dev);

	/* When the TX completion hw interrupt arrives, this
	 * is when the transmit statistics are updated.
	 */

	spin_unlock_irqrestore(&np->lock, flags);
#else
	/* This is the case for older hardware which takes
	 * a single transmit buffer at a time, and it is
	 * just written to the device via PIO.
	 *
	 * No spin locking is needed since there is no TX complete
	 * event.  If by chance your card does have a TX complete
	 * hardware IRQ then you may need to utilize np->lock here.
	 */
	hardware_send_packet(ioaddr, buf, length);
	np->stats.tx_bytes += skb->len;

	dev->trans_start = jiffies;

	/* You might need to clean up and record Tx statistics here. */
	if (inw(ioaddr) == /*RU*/81)
		np->stats.tx_aborted_errors++;
	dev_kfree_skb (skb);
#endif

	return 0;
}

#if TX_RING
/* This handles TX complete events posted by the device
 * via interrupts.
 */
void net_tx(struct net_device *dev)
{
	struct net_local *np = netdev_priv(dev);
	int entry;

	/* This protects us from concurrent execution of
	 * our dev->hard_start_xmit function above.
	 */
	spin_lock(&np->lock);

	entry = np->tx_old;
	while (tx_entry_is_sent(np, entry)) {
		struct sk_buff *skb = np->skbs[entry];

		np->stats.tx_bytes += skb->len;
		dev_kfree_skb_irq (skb);

		entry = next_tx_entry(np, entry);
	}
	np->tx_old = entry;

	/* If we had stopped the queue due to a "tx full"
	 * condition, and space has now been made available,
	 * wake up the queue.
	 */
	if (netif_queue_stopped(dev) && ! tx_full(dev))
		netif_wake_queue(dev);

	spin_unlock(&np->lock);
}
#endif

/*
 * The typical workload of the driver:
 * Handle the network interface interrupts.
 */
static irqreturn_t net_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct net_local *np;
	int ioaddr, status;
	int handled = 0;

	ioaddr = dev->base_addr;

	np = netdev_priv(dev);
	status = inw(ioaddr + 0);

	if (status == 0)
		goto out;
	handled = 1;

	if (status & RX_INTR) {
		/* Got a packet(s). */
		net_rx(dev);
	}
#if TX_RING
	if (status & TX_INTR) {
		/* Transmit complete. */
		net_tx(dev);
		np->stats.tx_packets++;
		netif_wake_queue(dev);
	}
#endif
	if (status & COUNTERS_INTR) {
		/* Increment the appropriate 'localstats' field. */
		np->stats.tx_window_errors++;
	}
out:
	return IRQ_RETVAL(handled);
}

/* We have a good packet(s), get it/them out of the buffers. */
static void
net_rx(struct net_device *dev)
{
	struct net_local *lp = netdev_priv(dev);
	int ioaddr = dev->base_addr;
	int boguscount = 10;

	do {
		int status = inw(ioaddr);
		int pkt_len = inw(ioaddr);

		if (pkt_len == 0)		/* Read all the frames? */
			break;			/* Done for now */

		if (status & 0x40) {	/* There was an error. */
			lp->stats.rx_errors++;
			if (status & 0x20) lp->stats.rx_frame_errors++;
			if (status & 0x10) lp->stats.rx_over_errors++;
			if (status & 0x08) lp->stats.rx_crc_errors++;
			if (status & 0x04) lp->stats.rx_fifo_errors++;
		} else {
			/* Malloc up new buffer. */
			struct sk_buff *skb;

			lp->stats.rx_bytes+=pkt_len;

			skb = dev_alloc_skb(pkt_len);
			if (skb == NULL) {
				printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n",
					   dev->name);
				lp->stats.rx_dropped++;
				break;
			}
			skb->dev = dev;

			/* 'skb->data' points to the start of sk_buff data area. */
			memcpy(skb_put(skb,pkt_len), (void*)dev->rmem_start,
				   pkt_len);
			/* or */
			insw(ioaddr, skb->data, (pkt_len + 1) >> 1);

			netif_rx(skb);
			lp->stats.rx_packets++;
			lp->stats.rx_bytes += pkt_len;
		}
	} while (--boguscount);

	return;
}

/* The inverse routine to net_open(). */
static int
net_close(struct net_device *dev)
{
	struct net_local *lp = netdev_priv(dev);
	int ioaddr = dev->base_addr;

	lp->open_time = 0;

	netif_stop_queue(dev);

	/* Flush the Tx and disable Rx here. */

	disable_dma(dev->dma);

	/* If not IRQ or DMA jumpered, free up the line. */
	outw(0x00, ioaddr+0);	/* Release the physical interrupt line. */

	free_irq(dev->irq, dev);
	free_dma(dev->dma);

	/* Update the statistics here. */

	return 0;

}

/*
 * Get the current statistics.
 * This may be called with the card open or closed.
 */
static struct net_device_stats *net_get_stats(struct net_device *dev)
{
	struct net_local *lp = netdev_priv(dev);
	short ioaddr = dev->base_addr;

	/* Update the statistics from the device registers. */
	lp->stats.rx_missed_errors = inw(ioaddr+1);
	return &lp->stats;
}

/*
 * Set or clear the multicast filter for this adaptor.
 * num_addrs == -1	Promiscuous mode, receive all packets
 * num_addrs == 0	Normal mode, clear multicast list
 * num_addrs > 0	Multicast mode, receive normal and MC packets,
 *			and do best-effort filtering.
 */
static void
set_multicast_list(struct net_device *dev)
{
	short ioaddr = dev->base_addr;
	if (dev->flags&IFF_PROMISC)
	{
		/* Enable promiscuous mode */
		outw(MULTICAST|PROMISC, ioaddr);
	}
	else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > HW_MAX_ADDRS)
	{
		/* Disable promiscuous mode, use normal mode. */
		hardware_set_filter(NULL);

		outw(MULTICAST, ioaddr);
	}
	else if(dev->mc_count)
	{
		/* Walk the address list, and load the filter */
		hardware_set_filter(dev->mc_list);

		outw(MULTICAST, ioaddr);
	}
	else
		outw(0, ioaddr);
}

#ifdef MODULE

static struct net_device *this_device;
static int io = 0x300;
static int irq;
static int dma;
static int mem;
MODULE_LICENSE("GPL");

int init_module(void)
{
	struct net_device *dev;
	int result;

	if (io == 0)
		printk(KERN_WARNING "%s: You shouldn't use auto-probing with insmod!\n",
			   cardname);
	dev = alloc_etherdev(sizeof(struct net_local));
	if (!dev)
		return -ENOMEM;

	/* Copy the parameters from insmod into the device structure. */
	dev->base_addr = io;
	dev->irq       = irq;
	dev->dma       = dma;
	dev->mem_start = mem;
	if (do_netcard_probe(dev) == 0) {
		this_device = dev;
		return 0;
	}
	free_netdev(dev);
	return -ENXIO;
}

void
cleanup_module(void)
{
	unregister_netdev(this_device);
	cleanup_card(this_device);
	free_netdev(this_device);
}

#endif /* MODULE */