diff options
author | Russell King <rmk@dyn-67.arm.linux.org.uk> | 2008-08-02 10:55:55 +0100 |
---|---|---|
committer | Russell King <rmk+kernel@arm.linux.org.uk> | 2008-08-02 21:32:35 +0100 |
commit | 4baa9922430662431231ac637adedddbb0cfb2d7 (patch) | |
tree | e8fb765ce3e41c01f33de34a0bc9494f0ae19818 /arch/arm/include/asm/bitops.h | |
parent | ff4db0a043a5dee7180bdffd178e61cd02812c68 (diff) |
[ARM] move include/asm-arm to arch/arm/include/asm
Move platform independent header files to arch/arm/include/asm, leaving
those in asm/arch* and asm/plat* alone.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Diffstat (limited to 'arch/arm/include/asm/bitops.h')
-rw-r--r-- | arch/arm/include/asm/bitops.h | 340 |
1 files changed, 340 insertions, 0 deletions
diff --git a/arch/arm/include/asm/bitops.h b/arch/arm/include/asm/bitops.h new file mode 100644 index 00000000000..9a1db20e032 --- /dev/null +++ b/arch/arm/include/asm/bitops.h @@ -0,0 +1,340 @@ +/* + * Copyright 1995, Russell King. + * Various bits and pieces copyrights include: + * Linus Torvalds (test_bit). + * Big endian support: Copyright 2001, Nicolas Pitre + * reworked by rmk. + * + * bit 0 is the LSB of an "unsigned long" quantity. + * + * Please note that the code in this file should never be included + * from user space. Many of these are not implemented in assembler + * since they would be too costly. Also, they require privileged + * instructions (which are not available from user mode) to ensure + * that they are atomic. + */ + +#ifndef __ASM_ARM_BITOPS_H +#define __ASM_ARM_BITOPS_H + +#ifdef __KERNEL__ + +#ifndef _LINUX_BITOPS_H +#error only <linux/bitops.h> can be included directly +#endif + +#include <linux/compiler.h> +#include <asm/system.h> + +#define smp_mb__before_clear_bit() mb() +#define smp_mb__after_clear_bit() mb() + +/* + * These functions are the basis of our bit ops. + * + * First, the atomic bitops. These use native endian. + */ +static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) +{ + unsigned long flags; + unsigned long mask = 1UL << (bit & 31); + + p += bit >> 5; + + raw_local_irq_save(flags); + *p |= mask; + raw_local_irq_restore(flags); +} + +static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) +{ + unsigned long flags; + unsigned long mask = 1UL << (bit & 31); + + p += bit >> 5; + + raw_local_irq_save(flags); + *p &= ~mask; + raw_local_irq_restore(flags); +} + +static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) +{ + unsigned long flags; + unsigned long mask = 1UL << (bit & 31); + + p += bit >> 5; + + raw_local_irq_save(flags); + *p ^= mask; + raw_local_irq_restore(flags); +} + +static inline int +____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) +{ + unsigned long flags; + unsigned int res; + unsigned long mask = 1UL << (bit & 31); + + p += bit >> 5; + + raw_local_irq_save(flags); + res = *p; + *p = res | mask; + raw_local_irq_restore(flags); + + return res & mask; +} + +static inline int +____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) +{ + unsigned long flags; + unsigned int res; + unsigned long mask = 1UL << (bit & 31); + + p += bit >> 5; + + raw_local_irq_save(flags); + res = *p; + *p = res & ~mask; + raw_local_irq_restore(flags); + + return res & mask; +} + +static inline int +____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) +{ + unsigned long flags; + unsigned int res; + unsigned long mask = 1UL << (bit & 31); + + p += bit >> 5; + + raw_local_irq_save(flags); + res = *p; + *p = res ^ mask; + raw_local_irq_restore(flags); + + return res & mask; +} + +#include <asm-generic/bitops/non-atomic.h> + +/* + * A note about Endian-ness. + * ------------------------- + * + * When the ARM is put into big endian mode via CR15, the processor + * merely swaps the order of bytes within words, thus: + * + * ------------ physical data bus bits ----------- + * D31 ... D24 D23 ... D16 D15 ... D8 D7 ... D0 + * little byte 3 byte 2 byte 1 byte 0 + * big byte 0 byte 1 byte 2 byte 3 + * + * This means that reading a 32-bit word at address 0 returns the same + * value irrespective of the endian mode bit. + * + * Peripheral devices should be connected with the data bus reversed in + * "Big Endian" mode. ARM Application Note 61 is applicable, and is + * available from http://www.arm.com/. + * + * The following assumes that the data bus connectivity for big endian + * mode has been followed. + * + * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0. + */ + +/* + * Little endian assembly bitops. nr = 0 -> byte 0 bit 0. + */ +extern void _set_bit_le(int nr, volatile unsigned long * p); +extern void _clear_bit_le(int nr, volatile unsigned long * p); +extern void _change_bit_le(int nr, volatile unsigned long * p); +extern int _test_and_set_bit_le(int nr, volatile unsigned long * p); +extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p); +extern int _test_and_change_bit_le(int nr, volatile unsigned long * p); +extern int _find_first_zero_bit_le(const void * p, unsigned size); +extern int _find_next_zero_bit_le(const void * p, int size, int offset); +extern int _find_first_bit_le(const unsigned long *p, unsigned size); +extern int _find_next_bit_le(const unsigned long *p, int size, int offset); + +/* + * Big endian assembly bitops. nr = 0 -> byte 3 bit 0. + */ +extern void _set_bit_be(int nr, volatile unsigned long * p); +extern void _clear_bit_be(int nr, volatile unsigned long * p); +extern void _change_bit_be(int nr, volatile unsigned long * p); +extern int _test_and_set_bit_be(int nr, volatile unsigned long * p); +extern int _test_and_clear_bit_be(int nr, volatile unsigned long * p); +extern int _test_and_change_bit_be(int nr, volatile unsigned long * p); +extern int _find_first_zero_bit_be(const void * p, unsigned size); +extern int _find_next_zero_bit_be(const void * p, int size, int offset); +extern int _find_first_bit_be(const unsigned long *p, unsigned size); +extern int _find_next_bit_be(const unsigned long *p, int size, int offset); + +#ifndef CONFIG_SMP +/* + * The __* form of bitops are non-atomic and may be reordered. + */ +#define ATOMIC_BITOP_LE(name,nr,p) \ + (__builtin_constant_p(nr) ? \ + ____atomic_##name(nr, p) : \ + _##name##_le(nr,p)) + +#define ATOMIC_BITOP_BE(name,nr,p) \ + (__builtin_constant_p(nr) ? \ + ____atomic_##name(nr, p) : \ + _##name##_be(nr,p)) +#else +#define ATOMIC_BITOP_LE(name,nr,p) _##name##_le(nr,p) +#define ATOMIC_BITOP_BE(name,nr,p) _##name##_be(nr,p) +#endif + +#define NONATOMIC_BITOP(name,nr,p) \ + (____nonatomic_##name(nr, p)) + +#ifndef __ARMEB__ +/* + * These are the little endian, atomic definitions. + */ +#define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p) +#define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p) +#define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p) +#define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p) +#define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p) +#define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p) +#define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz) +#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off) +#define find_first_bit(p,sz) _find_first_bit_le(p,sz) +#define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off) + +#define WORD_BITOFF_TO_LE(x) ((x)) + +#else + +/* + * These are the big endian, atomic definitions. + */ +#define set_bit(nr,p) ATOMIC_BITOP_BE(set_bit,nr,p) +#define clear_bit(nr,p) ATOMIC_BITOP_BE(clear_bit,nr,p) +#define change_bit(nr,p) ATOMIC_BITOP_BE(change_bit,nr,p) +#define test_and_set_bit(nr,p) ATOMIC_BITOP_BE(test_and_set_bit,nr,p) +#define test_and_clear_bit(nr,p) ATOMIC_BITOP_BE(test_and_clear_bit,nr,p) +#define test_and_change_bit(nr,p) ATOMIC_BITOP_BE(test_and_change_bit,nr,p) +#define find_first_zero_bit(p,sz) _find_first_zero_bit_be(p,sz) +#define find_next_zero_bit(p,sz,off) _find_next_zero_bit_be(p,sz,off) +#define find_first_bit(p,sz) _find_first_bit_be(p,sz) +#define find_next_bit(p,sz,off) _find_next_bit_be(p,sz,off) + +#define WORD_BITOFF_TO_LE(x) ((x) ^ 0x18) + +#endif + +#if __LINUX_ARM_ARCH__ < 5 + +#include <asm-generic/bitops/ffz.h> +#include <asm-generic/bitops/__ffs.h> +#include <asm-generic/bitops/fls.h> +#include <asm-generic/bitops/ffs.h> + +#else + +static inline int constant_fls(int x) +{ + int r = 32; + + if (!x) + return 0; + if (!(x & 0xffff0000u)) { + x <<= 16; + r -= 16; + } + if (!(x & 0xff000000u)) { + x <<= 8; + r -= 8; + } + if (!(x & 0xf0000000u)) { + x <<= 4; + r -= 4; + } + if (!(x & 0xc0000000u)) { + x <<= 2; + r -= 2; + } + if (!(x & 0x80000000u)) { + x <<= 1; + r -= 1; + } + return r; +} + +/* + * On ARMv5 and above those functions can be implemented around + * the clz instruction for much better code efficiency. + */ + +#define __fls(x) \ + ( __builtin_constant_p(x) ? constant_fls(x) : \ + ({ int __r; asm("clz\t%0, %1" : "=r"(__r) : "r"(x) : "cc"); 32-__r; }) ) + +/* Implement fls() in C so that 64-bit args are suitably truncated */ +static inline int fls(int x) +{ + return __fls(x); +} + +#define ffs(x) ({ unsigned long __t = (x); fls(__t & -__t); }) +#define __ffs(x) (ffs(x) - 1) +#define ffz(x) __ffs( ~(x) ) + +#endif + +#include <asm-generic/bitops/fls64.h> + +#include <asm-generic/bitops/sched.h> +#include <asm-generic/bitops/hweight.h> +#include <asm-generic/bitops/lock.h> + +/* + * Ext2 is defined to use little-endian byte ordering. + * These do not need to be atomic. + */ +#define ext2_set_bit(nr,p) \ + __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define ext2_set_bit_atomic(lock,nr,p) \ + test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define ext2_clear_bit(nr,p) \ + __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define ext2_clear_bit_atomic(lock,nr,p) \ + test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define ext2_test_bit(nr,p) \ + test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define ext2_find_first_zero_bit(p,sz) \ + _find_first_zero_bit_le(p,sz) +#define ext2_find_next_zero_bit(p,sz,off) \ + _find_next_zero_bit_le(p,sz,off) +#define ext2_find_next_bit(p, sz, off) \ + _find_next_bit_le(p, sz, off) + +/* + * Minix is defined to use little-endian byte ordering. + * These do not need to be atomic. + */ +#define minix_set_bit(nr,p) \ + __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define minix_test_bit(nr,p) \ + test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define minix_test_and_set_bit(nr,p) \ + __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define minix_test_and_clear_bit(nr,p) \ + __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) +#define minix_find_first_zero_bit(p,sz) \ + _find_first_zero_bit_le(p,sz) + +#endif /* __KERNEL__ */ + +#endif /* _ARM_BITOPS_H */ |