diff options
author | Rusty Russell <rusty@rustcorp.com.au> | 2009-07-30 16:03:45 -0600 |
---|---|---|
committer | Rusty Russell <rusty@rustcorp.com.au> | 2009-07-30 16:03:45 +0930 |
commit | 2e04ef76916d1e29a077ea9d0f2003c8fd86724d (patch) | |
tree | 2ff8d625d6e467be9f9f1b67a3674cb6e125e970 /drivers/lguest/segments.c | |
parent | e969fed542cae08cb11d666efac4f7c5d624d09f (diff) |
lguest: fix comment style
I don't really notice it (except to begrudge the extra vertical
space), but Ingo does. And he pointed out that one excuse of lguest
is as a teaching tool, it should set a good example.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ingo Molnar <mingo@redhat.com>
Diffstat (limited to 'drivers/lguest/segments.c')
-rw-r--r-- | drivers/lguest/segments.c | 106 |
1 files changed, 69 insertions, 37 deletions
diff --git a/drivers/lguest/segments.c b/drivers/lguest/segments.c index 482ed5a1875..951c57b0a7e 100644 --- a/drivers/lguest/segments.c +++ b/drivers/lguest/segments.c @@ -1,4 +1,5 @@ -/*P:600 The x86 architecture has segments, which involve a table of descriptors +/*P:600 + * The x86 architecture has segments, which involve a table of descriptors * which can be used to do funky things with virtual address interpretation. * We originally used to use segments so the Guest couldn't alter the * Guest<->Host Switcher, and then we had to trim Guest segments, and restore @@ -8,7 +9,8 @@ * * In these modern times, the segment handling code consists of simple sanity * checks, and the worst you'll experience reading this code is butterfly-rash - * from frolicking through its parklike serenity. :*/ + * from frolicking through its parklike serenity. +:*/ #include "lg.h" /*H:600 @@ -41,10 +43,12 @@ * begin. */ -/* There are several entries we don't let the Guest set. The TSS entry is the +/* + * There are several entries we don't let the Guest set. The TSS entry is the * "Task State Segment" which controls all kinds of delicate things. The * LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the - * the Guest can't be trusted to deal with double faults. */ + * the Guest can't be trusted to deal with double faults. + */ static bool ignored_gdt(unsigned int num) { return (num == GDT_ENTRY_TSS @@ -53,42 +57,52 @@ static bool ignored_gdt(unsigned int num) || num == GDT_ENTRY_DOUBLEFAULT_TSS); } -/*H:630 Once the Guest gave us new GDT entries, we fix them up a little. We +/*H:630 + * Once the Guest gave us new GDT entries, we fix them up a little. We * don't care if they're invalid: the worst that can happen is a General * Protection Fault in the Switcher when it restores a Guest segment register * which tries to use that entry. Then we kill the Guest for causing such a - * mess: the message will be "unhandled trap 256". */ + * mess: the message will be "unhandled trap 256". + */ static void fixup_gdt_table(struct lg_cpu *cpu, unsigned start, unsigned end) { unsigned int i; for (i = start; i < end; i++) { - /* We never copy these ones to real GDT, so we don't care what - * they say */ + /* + * We never copy these ones to real GDT, so we don't care what + * they say + */ if (ignored_gdt(i)) continue; - /* Segment descriptors contain a privilege level: the Guest is + /* + * Segment descriptors contain a privilege level: the Guest is * sometimes careless and leaves this as 0, even though it's - * running at privilege level 1. If so, we fix it here. */ + * running at privilege level 1. If so, we fix it here. + */ if ((cpu->arch.gdt[i].b & 0x00006000) == 0) cpu->arch.gdt[i].b |= (GUEST_PL << 13); - /* Each descriptor has an "accessed" bit. If we don't set it + /* + * Each descriptor has an "accessed" bit. If we don't set it * now, the CPU will try to set it when the Guest first loads * that entry into a segment register. But the GDT isn't - * writable by the Guest, so bad things can happen. */ + * writable by the Guest, so bad things can happen. + */ cpu->arch.gdt[i].b |= 0x00000100; } } -/*H:610 Like the IDT, we never simply use the GDT the Guest gives us. We keep +/*H:610 + * Like the IDT, we never simply use the GDT the Guest gives us. We keep * a GDT for each CPU, and copy across the Guest's entries each time we want to * run the Guest on that CPU. * * This routine is called at boot or modprobe time for each CPU to set up the * constant GDT entries: the ones which are the same no matter what Guest we're - * running. */ + * running. + */ void setup_default_gdt_entries(struct lguest_ro_state *state) { struct desc_struct *gdt = state->guest_gdt; @@ -98,30 +112,37 @@ void setup_default_gdt_entries(struct lguest_ro_state *state) gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT; gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT; - /* The TSS segment refers to the TSS entry for this particular CPU. + /* + * The TSS segment refers to the TSS entry for this particular CPU. * Forgive the magic flags: the 0x8900 means the entry is Present, it's * privilege level 0 Available 386 TSS system segment, and the 0x67 - * means Saturn is eclipsed by Mercury in the twelfth house. */ + * means Saturn is eclipsed by Mercury in the twelfth house. + */ gdt[GDT_ENTRY_TSS].a = 0x00000067 | (tss << 16); gdt[GDT_ENTRY_TSS].b = 0x00008900 | (tss & 0xFF000000) | ((tss >> 16) & 0x000000FF); } -/* This routine sets up the initial Guest GDT for booting. All entries start - * as 0 (unusable). */ +/* + * This routine sets up the initial Guest GDT for booting. All entries start + * as 0 (unusable). + */ void setup_guest_gdt(struct lg_cpu *cpu) { - /* Start with full 0-4G segments... */ + /* + * Start with full 0-4G segments...except the Guest is allowed to use + * them, so set the privilege level appropriately in the flags. + */ cpu->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT; cpu->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT; - /* ...except the Guest is allowed to use them, so set the privilege - * level appropriately in the flags. */ cpu->arch.gdt[GDT_ENTRY_KERNEL_CS].b |= (GUEST_PL << 13); cpu->arch.gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13); } -/*H:650 An optimization of copy_gdt(), for just the three "thead-local storage" - * entries. */ +/*H:650 + * An optimization of copy_gdt(), for just the three "thead-local storage" + * entries. + */ void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt) { unsigned int i; @@ -130,26 +151,34 @@ void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt) gdt[i] = cpu->arch.gdt[i]; } -/*H:640 When the Guest is run on a different CPU, or the GDT entries have - * changed, copy_gdt() is called to copy the Guest's GDT entries across to this - * CPU's GDT. */ +/*H:640 + * When the Guest is run on a different CPU, or the GDT entries have changed, + * copy_gdt() is called to copy the Guest's GDT entries across to this CPU's + * GDT. + */ void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt) { unsigned int i; - /* The default entries from setup_default_gdt_entries() are not - * replaced. See ignored_gdt() above. */ + /* + * The default entries from setup_default_gdt_entries() are not + * replaced. See ignored_gdt() above. + */ for (i = 0; i < GDT_ENTRIES; i++) if (!ignored_gdt(i)) gdt[i] = cpu->arch.gdt[i]; } -/*H:620 This is where the Guest asks us to load a new GDT entry - * (LHCALL_LOAD_GDT_ENTRY). We tweak the entry and copy it in. */ +/*H:620 + * This is where the Guest asks us to load a new GDT entry + * (LHCALL_LOAD_GDT_ENTRY). We tweak the entry and copy it in. + */ void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi) { - /* We assume the Guest has the same number of GDT entries as the - * Host, otherwise we'd have to dynamically allocate the Guest GDT. */ + /* + * We assume the Guest has the same number of GDT entries as the + * Host, otherwise we'd have to dynamically allocate the Guest GDT. + */ if (num >= ARRAY_SIZE(cpu->arch.gdt)) kill_guest(cpu, "too many gdt entries %i", num); @@ -157,15 +186,19 @@ void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi) cpu->arch.gdt[num].a = lo; cpu->arch.gdt[num].b = hi; fixup_gdt_table(cpu, num, num+1); - /* Mark that the GDT changed so the core knows it has to copy it again, - * even if the Guest is run on the same CPU. */ + /* + * Mark that the GDT changed so the core knows it has to copy it again, + * even if the Guest is run on the same CPU. + */ cpu->changed |= CHANGED_GDT; } -/* This is the fast-track version for just changing the three TLS entries. +/* + * This is the fast-track version for just changing the three TLS entries. * Remember that this happens on every context switch, so it's worth * optimizing. But wouldn't it be neater to have a single hypercall to cover - * both cases? */ + * both cases? + */ void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls) { struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN]; @@ -175,7 +208,6 @@ void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls) /* Note that just the TLS entries have changed. */ cpu->changed |= CHANGED_GDT_TLS; } -/*:*/ /*H:660 * With this, we have finished the Host. |