summaryrefslogtreecommitdiff
path: root/lib/intel_aux_pgtable.c
blob: 7556351a020585ee8cb67d53867c47f79460488c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
#include <stdbool.h>
#include <stdint.h>

#include "drmtest.h"
#include "intel_aux_pgtable.h"
#include "intel_batchbuffer.h"
#include "intel_bufops.h"
#include "ioctl_wrappers.h"

#include "i915/gem_mman.h"

#define BITS_PER_LONG_LONG	(sizeof(long long) * 8)
#define BITMASK(e, s)		((~0ULL << (s)) & \
				 (~0ULL >> (BITS_PER_LONG_LONG - 1 - (e))))

/* The unit size to which the AUX CCS surface is aligned to. */
#define AUX_CCS_UNIT_SIZE	64
/*
 * The block size on the AUX CCS surface which is mapped by one L1 AUX
 * pagetable entry.
 */
#define AUX_CCS_BLOCK_SIZE	(4 * AUX_CCS_UNIT_SIZE)
/*
 * The block size on the main surface mapped by one AUX CCS block:
 *   256 bytes per CCS block *
 *   8   bits per byte /
 *   2   bits per main surface CL *
 *   64  bytes per main surface CL
 */
#define MAIN_SURFACE_BLOCK_SIZE	(AUX_CCS_BLOCK_SIZE * 8 / 2 * 64)

#define GFX_ADDRESS_BITS	48

#define AUX_FORMAT_YCRCB	0x03
#define AUX_FORMAT_P010		0x07
#define AUX_FORMAT_P016		0x08
#define AUX_FORMAT_AYUV		0x09
#define AUX_FORMAT_ARGB_8B	0x0A
#define AUX_FORMAT_NV12_21	0x0F

struct pgtable_level_desc {
	int idx_shift;
	int idx_bits;
	int entry_ptr_shift;
	int table_size;
};

struct pgtable_level_info {
	const struct pgtable_level_desc *desc;
	int table_count;
	int alloc_base;
	int alloc_ptr;
};

struct pgtable {
	int levels;
	struct pgtable_level_info *level_info;
	int size;
	int max_align;
	struct intel_bb *ibb;
	struct intel_buf *buf;
	void *ptr;
};

static uint64_t last_buf_surface_end(struct intel_buf *buf)
{
	uint64_t end_offset = 0;
	int num_surfaces = buf->format_is_yuv_semiplanar ? 2 : 1;
	int i;

	for (i = 0; i < num_surfaces; i++) {
		uint64_t surface_end = buf->surface[i].offset +
				       buf->surface[i].size;

		if (surface_end > end_offset)
			end_offset = surface_end;
	}

	return end_offset;
}

static int
pgt_table_count(int address_bits, struct intel_buf **bufs, int buf_count)
{
	uint64_t end;
	int count;
	int i;

	count = 0;
	end = 0;
	for (i = 0; i < buf_count; i++) {
		struct intel_buf *buf = bufs[i];
		uint64_t start;

		/* We require bufs to be sorted. */
		igt_assert(i == 0 ||
			   buf->addr.offset >= bufs[i - 1]->addr.offset +
				intel_buf_size(bufs[i - 1]));
		start = ALIGN_DOWN(buf->addr.offset, 1UL << address_bits);

		/* Avoid double counting for overlapping aligned bufs. */
		start = max(start, end);

		end = ALIGN(buf->addr.offset + last_buf_surface_end(buf),
			    1UL << address_bits);
		igt_assert(end >= start);

		count += (end - start) >> address_bits;
	}

	return count;
}

static void
pgt_calc_size(struct pgtable *pgt, struct intel_buf **bufs, int buf_count)
{
	int level;

	pgt->size = 0;

	for (level = pgt->levels - 1; level >= 0; level--) {
		struct pgtable_level_info *li = &pgt->level_info[level];

		li->alloc_base = ALIGN(pgt->size, li->desc->table_size);
		li->alloc_ptr = li->alloc_base;

		li->table_count = pgt_table_count(li->desc->idx_shift +
						  li->desc->idx_bits,
						  bufs, buf_count);

		pgt->size = li->alloc_base +
			    li->table_count * li->desc->table_size;
	}
}

static uint64_t pgt_alloc_table(struct pgtable *pgt, int level)
{
	struct pgtable_level_info *li = &pgt->level_info[level];
	uint64_t table;

	table = li->alloc_ptr;
	li->alloc_ptr += li->desc->table_size;

	igt_assert(li->alloc_ptr <=
		   li->alloc_base + li->table_count * li->desc->table_size);

	return table;
}

static int pgt_entry_index(struct pgtable *pgt, int level, uint64_t address)
{
	const struct pgtable_level_desc *ld = pgt->level_info[level].desc;
	uint64_t mask = BITMASK(ld->idx_shift + ld->idx_bits - 1,
				ld->idx_shift);

	return (address & mask) >> ld->idx_shift;
}

static uint64_t ptr_mask(struct pgtable *pgt, int level)
{
	const struct pgtable_level_desc *ld = pgt->level_info[level].desc;

	return BITMASK(GFX_ADDRESS_BITS - 1, ld->entry_ptr_shift);
}

static uint64_t
pgt_get_child_table(struct pgtable *pgt, uint64_t parent_table,
		    int level, uint64_t address, uint64_t flags)
{
	uint64_t *parent_table_ptr;
	int child_entry_idx;
	uint64_t *child_entry_ptr;
	uint64_t child_table;

	parent_table_ptr = pgt->ptr + parent_table;
	child_entry_idx = pgt_entry_index(pgt, level, address);
	child_entry_ptr = &parent_table_ptr[child_entry_idx];

	if (!*child_entry_ptr) {
		uint64_t pte;
		uint32_t offset;

		child_table = pgt_alloc_table(pgt, level - 1);
		igt_assert(!((child_table + pgt->buf->addr.offset) &
			     ~ptr_mask(pgt, level)));

		pte = child_table | flags;
		*child_entry_ptr = pgt->buf->addr.offset + pte;

		igt_assert(pte <= INT32_MAX);

		offset = parent_table + child_entry_idx * sizeof(uint64_t);
		intel_bb_offset_reloc_to_object(pgt->ibb,
						pgt->buf->handle,
						pgt->buf->handle,
						0, 0,
						pte, offset,
						pgt->buf->addr.offset);
	} else {
		child_table = (*child_entry_ptr & ptr_mask(pgt, level)) -
			      pgt->buf->addr.offset;
	}

	return child_table;
}

static void
pgt_set_l1_entry(struct pgtable *pgt, uint64_t l1_table,
		 uint64_t address, uint64_t ptr, uint64_t flags)
{
	uint64_t *l1_table_ptr;
	uint64_t *l1_entry_ptr;

	l1_table_ptr = pgt->ptr + l1_table;
	l1_entry_ptr = &l1_table_ptr[pgt_entry_index(pgt, 0, address)];

	igt_assert(!(ptr & ~ptr_mask(pgt, 0)));
	*l1_entry_ptr = ptr | flags;
}

#define DEPTH_VAL_RESERVED	3

static int bpp_to_depth_val(int bpp)
{
	switch (bpp) {
	case 8:
		return 4;
	case 10:
		return 1;
	case 12:
		return 2;
	case 16:
		return 0;
	case 32:
		return 5;
	case 64:
		return 6;
	default:
		igt_assert_f(0, "invalid bpp %d\n", bpp);
	}
}

static uint64_t pgt_get_l1_flags(const struct intel_buf *buf, int surface_idx)
{
	/*
	 * The offset of .tile_mode isn't specifed by bspec, it's what Mesa
	 * uses.
	 */
	union {
		struct {
			uint64_t	valid:1;
			uint64_t	compression_mod:2;
			uint64_t	lossy_compression:1;
			uint64_t	pad:4;
			uint64_t	addr:40;
			uint64_t	pad2:4;
			uint64_t	tile_mode:2;
			uint64_t	depth:3;
			uint64_t	ycr:1;
			uint64_t	format:6;
		} e;
		uint64_t l;
	} entry = {
		.e = {
			.valid = 1,
			.tile_mode = buf->tiling == I915_TILING_Y ? 1 :
				(buf->tiling == I915_TILING_4 ? 2 : 0),
		}
	};

	/*
	 * TODO: Clarify if Yf is supported and if we need to differentiate
	 *       Ys and Yf.
	 *       Add support for more formats.
	 */
	igt_assert(buf->tiling == I915_TILING_Y ||
		   buf->tiling == I915_TILING_Yf ||
		   buf->tiling == I915_TILING_Ys ||
		   buf->tiling == I915_TILING_4);

	entry.e.ycr = surface_idx > 0;

	if (buf->format_is_yuv_semiplanar) {
		entry.e.depth = bpp_to_depth_val(buf->bpp);
		switch (buf->yuv_semiplanar_bpp) {
		case 8:
			entry.e.format = AUX_FORMAT_NV12_21;
			entry.e.depth = DEPTH_VAL_RESERVED;
			break;
		case 10:
			entry.e.format = AUX_FORMAT_P010;
			entry.e.depth = bpp_to_depth_val(10);
			break;
		case 12:
			entry.e.format = AUX_FORMAT_P016;
			entry.e.depth = bpp_to_depth_val(12);
			break;
		case 16:
			entry.e.format = AUX_FORMAT_P016;
			entry.e.depth = bpp_to_depth_val(16);
			break;
		default:
			igt_assert(0);
		}
	} else if (buf->format_is_yuv) {
		switch (buf->bpp) {
		case 16:
			entry.e.format = AUX_FORMAT_YCRCB;
			entry.e.depth = DEPTH_VAL_RESERVED;
			break;
		case 32:
			entry.e.format = AUX_FORMAT_AYUV;
			entry.e.depth = DEPTH_VAL_RESERVED;
			break;
		default:
			igt_assert(0);
		}
	} else {
		switch (buf->bpp) {
		case 32:
			entry.e.format = AUX_FORMAT_ARGB_8B;
			entry.e.depth = bpp_to_depth_val(32);
			break;
		default:
			igt_assert(0);
		}
	}

	return entry.l;
}

static uint64_t pgt_get_lx_flags(void)
{
	union {
		struct {
			uint64_t        valid:1;
			uint64_t        addr:47;
			uint64_t        pad:16;
		} e;
		uint64_t l;
	} entry = {
		.e = {
			.valid = 1,
		}
	};

	return entry.l;
}

static void
pgt_populate_entries_for_buf(struct pgtable *pgt,
			     struct intel_buf *buf,
			     uint64_t top_table,
			     int surface_idx)
{
	uint64_t surface_addr = buf->addr.offset + buf->surface[surface_idx].offset;
	uint64_t surface_end = surface_addr +  buf->surface[surface_idx].size;
	uint64_t aux_addr = buf->addr.offset + buf->ccs[surface_idx].offset;
	uint64_t l1_flags = pgt_get_l1_flags(buf, surface_idx);
	uint64_t lx_flags = pgt_get_lx_flags();

	igt_assert(!(buf->surface[surface_idx].stride % 512));
	igt_assert_eq(buf->ccs[surface_idx].stride,
		      buf->surface[surface_idx].stride / 512 * 64);

	for (; surface_addr < surface_end;
	     surface_addr += MAIN_SURFACE_BLOCK_SIZE,
	     aux_addr += AUX_CCS_BLOCK_SIZE) {
		uint64_t table = top_table;
		int level;

		for (level = pgt->levels - 1; level >= 1; level--)
			table = pgt_get_child_table(pgt, table, level,
						    surface_addr, lx_flags);

		pgt_set_l1_entry(pgt, table, surface_addr, aux_addr, l1_flags);
	}
}

static void pgt_map(int i915, struct pgtable *pgt)
{
	pgt->ptr = gem_mmap__device_coherent(i915, pgt->buf->handle, 0,
					     pgt->size, PROT_READ | PROT_WRITE);
}

static void pgt_unmap(struct pgtable *pgt)
{
	munmap(pgt->ptr, pgt->size);
}

static void pgt_populate_entries(struct pgtable *pgt,
				 struct intel_buf **bufs,
				 int buf_count)
{
	uint64_t top_table;
	int i;

	top_table = pgt_alloc_table(pgt, pgt->levels - 1);
	/* Top level table must be at offset 0. */
	igt_assert(top_table == 0);

	for (i = 0; i < buf_count; i++) {
		igt_assert_eq(bufs[i]->surface[0].offset, 0);

		pgt_populate_entries_for_buf(pgt, bufs[i], top_table, 0);
		if (bufs[i]->format_is_yuv_semiplanar)
			pgt_populate_entries_for_buf(pgt, bufs[i], top_table, 1);
	}
}

static struct pgtable *
pgt_create(const struct pgtable_level_desc *level_descs, int levels,
	   struct intel_buf **bufs, int buf_count)
{
	struct pgtable *pgt;
	int level;

	pgt = calloc(1, sizeof(*pgt));
	igt_assert(pgt);

	pgt->levels = levels;

	pgt->level_info = calloc(levels, sizeof(*pgt->level_info));
	igt_assert(pgt->level_info);

	for (level = 0; level < pgt->levels; level++) {
		struct pgtable_level_info *li = &pgt->level_info[level];

		li->desc = &level_descs[level];
		if (li->desc->table_size > pgt->max_align)
			pgt->max_align = li->desc->table_size;
	}

	pgt_calc_size(pgt, bufs, buf_count);

	return pgt;
}

static void pgt_destroy(struct pgtable *pgt)
{
	free(pgt->level_info);
	free(pgt);
}

struct intel_buf *
intel_aux_pgtable_create(struct intel_bb *ibb,
			 struct intel_buf **bufs, int buf_count)
{
	static const struct pgtable_level_desc level_desc[] = {
		{
			.idx_shift = 16,
			.idx_bits = 8,
			.entry_ptr_shift = 8,
			.table_size = 8 * 1024,
		},
		{
			.idx_shift = 24,
			.idx_bits = 12,
			.entry_ptr_shift = 13,
			.table_size = 32 * 1024,
		},
		{
			.idx_shift = 36,
			.idx_bits = 12,
			.entry_ptr_shift = 15,
			.table_size = 32 * 1024,
		},
	};
	struct pgtable *pgt;
	struct buf_ops *bops;
	struct intel_buf *buf;

	igt_assert(buf_count);
	bops = bufs[0]->bops;

	pgt = pgt_create(level_desc, ARRAY_SIZE(level_desc), bufs, buf_count);
	pgt->ibb = ibb;
	pgt->buf = intel_buf_create(bops, pgt->size, 1, 8, 0, I915_TILING_NONE,
				    I915_COMPRESSION_NONE);

	/* We need to use pgt->max_align for aux table */
	intel_bb_add_intel_buf_with_alignment(ibb, pgt->buf,
					      pgt->max_align, false);

	pgt_map(ibb->i915, pgt);
	pgt_populate_entries(pgt, bufs, buf_count);
	pgt_unmap(pgt);

	buf = pgt->buf;
	pgt_destroy(pgt);

	return buf;
}

static void
aux_pgtable_reserve_buf_slot(struct intel_buf **bufs, int buf_count,
			     struct intel_buf *new_buf)
{
	int i;

	for (i = 0; i < buf_count; i++) {
		if (bufs[i]->addr.offset > new_buf->addr.offset)
			break;
	}

	memmove(&bufs[i + 1], &bufs[i], sizeof(bufs[0]) * (buf_count - i));

	bufs[i] = new_buf;
}

void
gen12_aux_pgtable_init(struct aux_pgtable_info *info,
		       struct intel_bb *ibb,
		       struct intel_buf *src_buf,
		       struct intel_buf *dst_buf)
{
	struct intel_buf *bufs[2];
	int buf_count = 0;
	struct intel_buf *reserved_bufs[2];
	int reserved_buf_count;
	bool has_compressed_buf = false;
	bool write_buf[2];
	int i;

	igt_assert_f(ibb->enforce_relocs == false,
		     "We support aux pgtables for non-forced relocs yet!");

	if (src_buf) {
		bufs[buf_count] = src_buf;
		write_buf[buf_count] = false;
		buf_count++;

		if (intel_buf_compressed(src_buf))
			has_compressed_buf = true;
	}
	if (dst_buf) {
		bufs[buf_count] = dst_buf;
		write_buf[buf_count] = true;
		buf_count++;

		if (intel_buf_compressed(dst_buf))
			has_compressed_buf = true;
	}

	if (!has_compressed_buf)
		return;

	/*
	 * Surface index in pgt table depend on its address so:
	 *   1. if handle was previously executed in batch use that address
	 *   2. add object to batch, this will generate random address
	 *
	 * Randomizing addresses can lead to overlapping, but we don't have
	 * global address space generator in IGT. Currently assumption is
	 * randomizing address is spread over 48-bit address space equally
	 * so risk with overlapping is minimal. Of course it is growing
	 * with number of objects (+its sizes) involved in blit.
	 * To avoid relocation EXEC_OBJECT_PINNED flag is set for compressed
	 * surfaces.
	 */

	for (i = 0; i < buf_count; i++) {
		intel_bb_add_intel_buf(ibb, bufs[i], write_buf[i]);
		if (intel_buf_compressed(bufs[i]))
			intel_bb_object_set_flag(ibb, bufs[i]->handle, EXEC_OBJECT_PINNED);
	}

	reserved_buf_count = 0;
	/* First reserve space for any bufs that are bound already. */
	for (i = 0; i < buf_count; i++) {
		igt_assert(bufs[i]->addr.offset != INTEL_BUF_INVALID_ADDRESS);
		aux_pgtable_reserve_buf_slot(reserved_bufs,
					     reserved_buf_count++,
					     bufs[i]);
	}

	/* Create AUX pgtable entries only for bufs with an AUX surface */
	info->buf_count = 0;
	for (i = 0; i < reserved_buf_count; i++) {
		if (!intel_buf_compressed(reserved_bufs[i]))
			continue;

		info->bufs[info->buf_count] = reserved_bufs[i];
		info->buf_pin_offsets[info->buf_count] =
			reserved_bufs[i]->addr.offset;

		info->buf_count++;
	}

	info->pgtable_buf = intel_aux_pgtable_create(ibb,
						     info->bufs,
						     info->buf_count);

	igt_assert(info->pgtable_buf);
}

void
gen12_aux_pgtable_cleanup(struct intel_bb *ibb, struct aux_pgtable_info *info)
{
	int i;

	/* Check that the pinned bufs kept their offset after the exec. */
	for (i = 0; i < info->buf_count; i++) {
		uint64_t addr;

		addr = intel_bb_get_object_offset(ibb, info->bufs[i]->handle);
		igt_assert_eq_u64(addr, info->buf_pin_offsets[i]);
	}

	if (info->pgtable_buf) {
		intel_bb_remove_intel_buf(ibb, info->pgtable_buf);
		intel_buf_destroy(info->pgtable_buf);
	}
}

uint32_t
gen12_create_aux_pgtable_state(struct intel_bb *ibb,
			       struct intel_buf *aux_pgtable_buf)
{
	uint64_t *pgtable_ptr;
	uint32_t pgtable_ptr_offset;

	if (!aux_pgtable_buf)
		return 0;

	pgtable_ptr = intel_bb_ptr(ibb);
	pgtable_ptr_offset = intel_bb_offset(ibb);

	*pgtable_ptr = intel_bb_offset_reloc(ibb, aux_pgtable_buf->handle,
					     0, 0,
					     pgtable_ptr_offset,
					     aux_pgtable_buf->addr.offset);
	intel_bb_ptr_add(ibb, sizeof(*pgtable_ptr));

	return pgtable_ptr_offset;
}

void
gen12_emit_aux_pgtable_state(struct intel_bb *ibb, uint32_t state, bool render)
{
	uint32_t table_base_reg = render ? GEN12_GFX_AUX_TABLE_BASE_ADDR :
					   GEN12_VEBOX_AUX_TABLE_BASE_ADDR;

	if (!state)
		return;

	intel_bb_out(ibb, MI_LOAD_REGISTER_MEM | MI_MMIO_REMAP_ENABLE_GEN12 | 2);
	intel_bb_out(ibb, table_base_reg);
	intel_bb_emit_reloc(ibb, ibb->handle, 0, 0, state, ibb->batch_offset);

	intel_bb_out(ibb, MI_LOAD_REGISTER_MEM | MI_MMIO_REMAP_ENABLE_GEN12 | 2);
	intel_bb_out(ibb, table_base_reg + 4);
	intel_bb_emit_reloc(ibb, ibb->handle, 0, 0, state + 4, ibb->batch_offset);
}